Tyrp1 Mutant Variants Associated with OCA3: Computational Characterization of Protein Stability and Ligand Binding
Abstract
:1. Introduction
2. Results
2.1. Crystal Structure of Tyrp1 and OCA3-Related Mutants
2.2. Mutant Variant Stability
2.3. Cys-rich Subdomain Instability
2.4. Free Energy Landscapes
2.5. Ligand–Receptor Interactions
3. Discussion
4. Methods
4.1. Molecular Modeling and Simulation
4.2. Unfolding Mutation Screen
4.3. Free Energy Landscape
4.4. Docking Experiments
4.5. Structure Comparison
4.6. In Vitro Analysis of Tyrp1 and OCA3-Related Mutants
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lai, X.; Wichers, H.J.; Soler-Lopez, M.; Dijkstra, B.W. Structure of Human Tyrosinase Related Protein 1 Reveals a Binuclear Zinc Active Site Important for Melanogenesis. Angew. Chem. Int. Ed. Engl. 2017, 56, 9812–9815. [Google Scholar] [CrossRef]
- Lu, H.-S.; Chai, J.-J.; Li, M.; Huang, B.-R.; He, C.-H.; Bi, R.-C. Crystal Structure of Human Epidermal Growth Factor and Its Dimerization. J. Biol. Chem. 2001, 276, 34913–34917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, M.; Sergeev, Y. Functional in silico analysis of human tyrosinase and OCA1 associated mutations. J. Anal. Pharm. Res. 2020, 9, 81–89. [Google Scholar]
- Yamada, M.; Sakai, K.; Hayashi, M.; Hozumi, Y.; Abe, Y.; Kawaguchi, M.; Ihn, H.; Suzuki, T. Oculocutaneous albinism type 3: A Japanese girl with novel mutations in TYRP1 gene. J. Dermatol. Sci. 2011, 64, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Noh, H.; Lee, S.J.; Jo, H.-J.; Choi, H.W.; Hong, S.; Kong, K.-H. Histidine residues at the copper-binding site in human tyrosinase are essential for its catalytic activities. J. Enzym. Inhib. Med. Chem. 2020, 35, 726–732. [Google Scholar] [CrossRef]
- Dolinska, M.B.; Kus, N.J.; Farney, S.K.; Wingfield, P.T.; Brooks, B.P.; Sergeev, Y.V. Oculocutaneous albinism type 1: A link between mutations, tyrosinase conformational stability, and enzymatic activity. Pigment. Cell Melanoma Res. 2017, 30, 41–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.H.; Li, Z.; Lei, J.; Pang, T.; Xu, B.; Jiang, W.Y.; Li, H.Y. Oculocutaneous albinism type 3 (OCA3): Analysis of two novel mutations in TYRP1 gene in two Chinese patients. Cell Biochem. Biophys. 2011, 61, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Lasseaux, E.; Plaisant, C.; Michaud, V.; Pennamen, P.; Trimouille, A.; Gaston, L.; Monfermé, S.; Lacombe, D.; Rooryck, C.; Morice-Picard, F.; et al. Molecular characterization of a series of 990 index patients with albinism. Pigment. Cell Melanoma Res. 2018, 31, 466–474. [Google Scholar] [CrossRef]
- Branza-Nichita, N.; Negroiu, G.; Petrescu, A.-J.; Garman, E.; Platt, F.; Wormald, M.; Dwek, R.A.; Petrescu, S. Mutations at Critical N-Glycosylation Sites Reduce Tyrosinase Activity by Altering Folding and Quality Control. J. Biol. Chem. 2000, 275, 8169–8175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Branza-Nichita, N.; Petrescu, A.J.; Negroiu, G.; Dwek, R.A.; Petrescu, S. N-Glycosylation Processing and Glycoprotein Folding−Lessons from the Tyrosinase-Related Proteins. Chem. Rev. 2000, 100, 4697–4712. [Google Scholar] [CrossRef] [PubMed]
- McCafferty, C.L.; Sergeev, Y.V. In silico Mapping of Protein Unfolding Mutations for Inherited Disease. Sci. Rep. 2016, 6, 37298. [Google Scholar] [CrossRef] [Green Version]
- NEI Commons Website. Ocular Proteome Webpage, National Eye Institute. 2017. Available online: https://neicommons.nei.nih.gov/#/proteomeData (accessed on 2 July 2021).
- Schymkowitz, J.; Borg, J.; Stricher, F.; Nys, R.; Rousseau, F.; Serrano, L. The FoldX web server: An online force field. Nucleic Acids Res. 2005, 33, W382–W388. [Google Scholar] [CrossRef] [Green Version]
- McCafferty, C.L.; Sergeev, Y.V. Global computational mutagenesis provides a critical stability framework in protein structures. PLoS ONE 2017, 12, e0189064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz, F.W.; Sergeev, Y.V. Global computational mutagenesis of domain structures associated with inherited eye disease. Sci. Rep. 2019, 9, 3676. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Bouzida, D.; Swendsen, R.H.; Kollman, P.A.; Rosenberg, J.M. The Weighted Histogram Analysis Method for Free-Energy Calculations on Biomolecules. I. The Method. J. Comput. Chem. 1992, 13, 1011–1021. [Google Scholar] [CrossRef]
- Kumar, S.; Rosenberg, J.M.; Bouzida, D.; Swendsen, R.H.; Kollman, P.A. Multidimensional Free-Energy Calculations Using the Weighted Histogram Analysis Method. J. Comput. Chem. 1995, 16, 1339–1350. [Google Scholar] [CrossRef]
- Roux, B. The calculation of the potential of mean force using computer simulations. Comput. Phys. Commun. 1995, 91, 275–282. [Google Scholar] [CrossRef]
- Grossfield, A. WHAM: The Weighted Histogram Analysis Method, 2.0.10.2 ed. Available online: http://membrane.urmc.rochester.edu/wordpress/?page_id=126/ (accessed on 21 September 2021).
- Tyukhtenko, S.; Rajarshi, G.; Karageorgos, I.; Zvonok, N.; Gallagher, E.S.; Huang, H.; Vemuri, K.; Hudgens, J.W.; Ma, X.; Nasr, M.L.; et al. Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase. Sci. Rep. 2018, 8, 1719. [Google Scholar] [CrossRef] [Green Version]
- Naganathan, A.N. Modulation of allosteric coupling by mutations: From protein dynamics and packing to altered native ensembles and function. Curr. Opin. Struct. Biol. 2018, 54, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Simeonov, D.R.; Wang, X.; Wang, C.; Sergeev, Y.; Dolinska, M.; Bower, M.; Fischer, R.; Winer, D.; Dubrovsky, G.; Balog, J.Z.; et al. DNA variations in oculocutaneous albinism: An updated mutation list and current outstanding issues in molecular diagnostics. Hum. Mutat. 2013, 34, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef] [PubMed]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G. Open Babel: An open chemical toolbox. J. Chem. 2011, 3, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shelley, J.C.; Cholleti, A.; Frye, L.L.; Greenwood, J.R.; Timlin, M.R.; Uchimaya, M. Epik: A software program for pK(a) prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des. 2007, 21, 681–691. [Google Scholar] [CrossRef]
- Greenwood, J.R.; Calkins, D.; Sullivan, A.; Shelley, J.C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Mol. Des. 2010, 24, 591–604. [Google Scholar] [CrossRef]
- Dolinska, M.B.; Young, K.L., II; Kassouf, C.; Dimitriadis, E.K.; Wingfield, P.T.; Sergeev, Y.V. Protein Stability and Functional Characterization of Intra-Melanosomal Domain of Human Recombinant Tyrosinase-Related Protein 1. Int. J. Mol. Sci. 2020, 21, 331. [Google Scholar] [CrossRef] [Green Version]
- Dolinska, M.B.; Wingfield, P.T.; Young, K.L., 2nd; Sergeev, Y.V. The TYRP1-mediated protection of human tyrosinase activity does not involve stable interactions of tyrosinase domains. Pigment. Cell Melanoma Res. 2019, 32, 753–765. [Google Scholar] [CrossRef] [PubMed]
Residue | Foldability Parameter | OCA3 Mutation | Unfolding Parameter | ∆∆G | Tyrp1 Polypeptide from SDS-PAGE | Clinical Significance (ClinVar) |
---|---|---|---|---|---|---|
C30 | 18.99 | C30R | 1.00 | 16.21 | No band | No melanin2 |
H215 | 19.85 | H215Y | 1.00 | 17.82 | No band | Pathogenic |
D308 | 0.98 | D308N | 0.56 | 0.14 | ~60 kDa | Unknown |
R326 | 6.74 | R326H | 0.98 | 2.31 | ~60 kDa | Benign |
Mean (Å) | Std. Dev. (Å) | Min. (Å) | Max (Å) | |
---|---|---|---|---|
Y362-T391 | ||||
Tyrp1 | 7.37 | 1.05 | 5.02 | 11.89 |
D308N | 8.45 | 0.65 | 6.70 | 10.35 |
R326H | 9.90 | 1.50 | 6.17 | 14.30 |
N378-T391 | ||||
Tyrp1 | 8.47 | 1.28 | 4.83 | 13.62 |
D308N | 10.62 | 1.11 | 6.93 | 12.94 |
R326H | 9.93 | 1.65 | 6.03 | 14.51 |
Tyrp1 | D308N | R326H | |
Distance to Zinc | 4.15 | 4.51 | 3.63 |
Salt Bridge Length D212 (Å) | 2.79 | 4.31 | 3.93 |
Salt Bridge Length E216 (Å) | 3.91 | 4.49 | n/a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, M.H.; Dolinska, M.B.; Sergeev, Y.V. Tyrp1 Mutant Variants Associated with OCA3: Computational Characterization of Protein Stability and Ligand Binding. Int. J. Mol. Sci. 2021, 22, 10203. https://doi.org/10.3390/ijms221910203
Patel MH, Dolinska MB, Sergeev YV. Tyrp1 Mutant Variants Associated with OCA3: Computational Characterization of Protein Stability and Ligand Binding. International Journal of Molecular Sciences. 2021; 22(19):10203. https://doi.org/10.3390/ijms221910203
Chicago/Turabian StylePatel, Milan H., Monika B. Dolinska, and Yuri V. Sergeev. 2021. "Tyrp1 Mutant Variants Associated with OCA3: Computational Characterization of Protein Stability and Ligand Binding" International Journal of Molecular Sciences 22, no. 19: 10203. https://doi.org/10.3390/ijms221910203
APA StylePatel, M. H., Dolinska, M. B., & Sergeev, Y. V. (2021). Tyrp1 Mutant Variants Associated with OCA3: Computational Characterization of Protein Stability and Ligand Binding. International Journal of Molecular Sciences, 22(19), 10203. https://doi.org/10.3390/ijms221910203