Halting Tumor Progression via Novel Non-Hydroxamate Triazole-Based Mannich Bases MMP-2/9 Inhibitors; Design, Microwave-Assisted Synthesis, and Biological Evaluation
Abstract
:1. Introduction
2. Design Rationale
3. Results and Discussion
3.1. Chemistry
3.2. Biology
3.2.1. Cytotoxicity Screening
3.2.2. Apoptosis Induction Evaluation
Quantitative Real-Time PCR Analysis of p53 Gene
Quantitative Real-Time PCR Analysis of Cyclin D
3.2.3. MMP-2/9 Inhibition
3.3. Molecular Modeling
3.3.1. Docking Simulations
3.3.2. ADMET and Drug-Likeness Prediction
3.4. Structure–Activity Relationship
4. Experimental Design
4.1. Chemistry
4.1.1. Synthesis and Characterization of ethyl 2-(4-phenyl-1H-1,2,3-triazol-1-yl)acetate (3)
4.1.2. Synthesis and Characterization of 2-(4-phenyl-1H-1,2,3-triazol-1-yl)acetohydrazide (4)
4.1.3. Synthesis of N-subtituted-2-(2-(4-phenyl-1H-1,2,3-triazol-1-yl)acetyl)hydrazine-1-carbothioamide 5-6
4.1.4. Synthesis and Characterization of 4-substituted -3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)-1H-1,2,4-triazole-5(4H)-thiones 7 and 8
4.1.5. 4-Phenyl-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)-1H-1,2,4-triazole-5(4H)-thione 7
4.1.6. 4-Ethyl-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)-1H-1,2,4-triazole-5(4H)-thione 8
4.1.7. Synthesis and Characterization of Mannich Bases 9–16
4.1.8. 4-Phenyl-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)-1-(piperidin-1-ylmethyl)-1H-1,2,4-triazole-5(4H)-thione (9)
4.1.9. 4-Ethyl-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)-1-(piperidin-1-ylmethyl)-1H-1,2,4-triazole-5(4H)-thione (10)
4.1.10. 1-(Morpholinomethyl)-4-phenyl-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)-1H-1,2,4-triazole-5(4H)-thione (11)
4.1.11. 1-(Morpholinomethyl)-4-ethyl-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)-1H-1,2,4-triazole-5(4H)-thione (12)
4.1.12. 1-((4-Methylpiperazin-1-yl)methyl)-4-phenyl-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)-1H-1,2,4-triazole-5(4H)-thione (13)
4.1.13. 1-((4-Methylpiperazin-1-yl)methyl)-4-ethyl-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)-1H-1,2,4-triazole-5(4H)-thione (14)
4.1.14. 1,1′-(piperazine-1,4-diylbis(methylene))bis(4-phenyl-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)-1H-1,2,4-triazole-5(4H)-thione) (15)
4.1.15. 1,1′-(piperazine-1,4-diylbis(methylene))bis(4-ethyl-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)-1H-1,2,4-triazole-5(4H)-thione) (16)
4.2. Biology
4.2.1. Cytotoxicity Screening
4.2.2. Quantitative Real-Time PCR Analysis of p53 and Cyclin D
4.2.3. MMP-2/9 Inhibition Assays
4.2.4. Molecular Modeling
Docking Simulations
ADMET and Drug-likeness Prediction
4.2.5. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stetler-Stevenson, W.G.; Aznavoorian, S.; Liotta, L.A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. cell Biol. 1993, 9, 541–573. [Google Scholar] [CrossRef]
- Walker, C.; Mojares, E.; del Río Hernández, A. Role of extracellular matrix in development and cancer progression. Int. J. Mol. Sci. 2018, 19, 3028. [Google Scholar] [CrossRef] [Green Version]
- Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 2010, 141, 52–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cathcart, J.; Pulkoski-Gross, A.; Cao, J. Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas. Genes Dis. 2015, 2, 26–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curran, S.; Dundas, S.R.; Buxton, J.; Leeman, M.F.; Ramsay, R.; Murray, G.I. Matrix metalloproteinase/tissue inhibitors of matrix metalloproteinase phenotype identifies poor prognosis colorectal cancers. Clin. Cancer Res. 2004, 10, 8229–8234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forget, M.-A.; Desrosiers, R.R.; Béliveau, R. Physiological roles of matrix metalloproteinases: Implications for tumor growth and metastasis. Can. J. Physiol. Pharmacol. 1999, 77, 465–480. [Google Scholar] [CrossRef]
- Adhikari, N.; Mukherjee, A.; Saha, A.; Jha, T. Arylsulfonamides and selectivity of matrix metalloproteinase-2: An overview. Eur. J. Med. Chem. 2017, 129, 72–109. [Google Scholar] [CrossRef]
- Fisher, B.; Costantino, J.; Redmond, C.; Poisson, R.; Bowman, D.; Couture, J.; Dimitrov, N.V.; Wolmark, N.; Wickerham, D.L.; Fisher, E.R. A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor–positive tumors. N. Engl. J. Med. 1989, 320, 479–484. [Google Scholar] [CrossRef]
- Maskos, K. Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Biochimie 2005, 87, 249–263. [Google Scholar] [CrossRef]
- Bhowmick, N.A.; Neilson, E.G.; Moses, H.L. Stromal fibroblasts in cancer initiation and progression. Nature 2004, 432, 332–337. [Google Scholar] [CrossRef]
- Chambers, A.F.; Matrisian, L.M. Changing views of the role of matrix metalloproteinases in metastasis. J. Natl. Cancer Inst. 1997, 89, 1260–1270. [Google Scholar] [CrossRef] [Green Version]
- Kalluri, R.; Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 2006, 6, 392–401. [Google Scholar] [CrossRef]
- Overall, C.M.; Kleifeld, O. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 2006, 6, 227–239. [Google Scholar] [CrossRef]
- Baidya, S.K.; Amin, S.A.; Jha, T. Outline of gelatinase inhibitors as anti-cancer agents: A patent mini-review for 2010-present. Eur. J. Med. Chem. 2020, 213, 113044. [Google Scholar] [CrossRef]
- Mondal, S.; Adhikari, N.; Banerjee, S.; Amin, S.A.; Jha, T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur. J. Med. Chem. 2020, 194, 112260. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Lu, Y.-T.; Sun, Y.; Shi, Z.-H.; Li, N.-G.; Tang, Y.-P.; Duan, J.-A. Recent opportunities in matrix metalloproteinase inhibitor drug design for cancer. Expert Opin. Drug Discov. 2018, 13, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Fischer, T.; Senn, N.; Riedl, R. Frontispiece: Design and Structural Evolution of Matrix Metalloproteinase Inhibitors. Chem.–A Eur. J. 2019, 25. [Google Scholar] [CrossRef] [PubMed]
- Rao, B.G. Recent developments in the design of specific matrix metalloproteinase inhibitors aided by structural and computational studies. Curr. Pharm. Des. 2005, 11, 295–322. [Google Scholar] [CrossRef] [PubMed]
- Breuer, E.; Frant, J.; Reich, R. Recent non-hydroxamate matrix metalloproteinase inhibitors. Expert Opin. Ther. Pat. 2005, 15, 253–269. [Google Scholar] [CrossRef]
- Danishefsky, S.J.; Allen, J.R. Vom Labor zur Klinik: Vollsynthetische Antitumor-Impfstoffe auf Kohlenhydratbasis. Angew. Chem. 2000, 112, 882–912. [Google Scholar] [CrossRef]
- Brown, S.; Meroueh, S.O.; Fridman, R.; Mobashery, S. Quest for selectivity in inhibition of matrix metalloproteinases. Curr. Top. Med. Chem. 2004, 4, 1227–1238. [Google Scholar] [CrossRef]
- Boström, E.A.; Tarkowski, A.; Bokarewa, M. Resistin is stored in neutrophil granules being released upon challenge with inflammatory stimuli. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2009, 1793, 1894–1900. [Google Scholar] [CrossRef] [Green Version]
- Folgueras, A.R.; Pendas, A.M.; Sanchez, L.M.; Lopez-Otin, C. Matrix metalloproteinases in cancer: From new functions to improved inhibition strategies. Int. J. Dev. Biol. 2004, 48, 411–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dublanchet, A.-C.; Ducrot, P.; Andrianjara, C.; O’Gara, M.; Morales, R.; Compère, D.; Denis, A.; Blais, S.; Cluzeau, P.; Courté, K. Structure-based design and synthesis of novel non-zinc chelating MMP-12 inhibitors. Bioorganic Med. Chem. Lett. 2005, 15, 3787–3790. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.R.; Pavlovsky, A.G.; Ortwine, D.F.; Prior, F.; Man, C.-F.; Bornemeier, D.A.; Banotai, C.A.; Mueller, W.T.; McConnell, P.; Yan, C. Discovery and characterization of a novel inhibitor of matrix metalloprotease-13 that reduces cartilage damage in vivo without joint fibroplasia side effects. J. Biol. Chem. 2007, 282, 27781–27791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.J.; Nahra, J.; Johnson, A.R.; Bunker, A.; O’Brien, P.; Yue, W.-S.; Ortwine, D.F.; Man, C.-F.; Baragi, V.; Kilgore, K. Quinazolinones and pyrido [3, 4-d] pyrimidin-4-ones as orally active and specific matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis. J. Med. Chem. 2008, 51, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Morales, R.; Perrier, S.; Florent, J.-M.; Beltra, J.; Dufour, S.; De Mendez, I.; Manceau, P.; Tertre, A.; Moreau, F.; Compere, D. Crystal structures of novel non-peptidic, non-zinc chelating inhibitors bound to MMP-12. J. Mol. Biol. 2004, 341, 1063–1076. [Google Scholar] [CrossRef] [PubMed]
- Ayoup, M.S.; Fouad, M.A.; Abdel-Hamid, H.; Abu-Serie, M.M.; Noby, A.; Teleb, M. Battle tactics against MMP-9; discovery of novel non-hydroxamate MMP-9 inhibitors endowed with PI3K/AKT signaling attenuation and caspase 3/7 activation via Ugi bis-amide synthesis. Eur. J. Med. Chem. 2020, 186, 111875. [Google Scholar] [CrossRef]
- Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzym. Inhib. Med. Chem. 2011, 26, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Maddila, S.; Pagadala, R.; Jonnalagadda, S.B. 1, 2, 4-Triazoles: A review of synthetic approaches and the biological activity. Lett. Org. Chem. 2013, 10, 693–714. [Google Scholar] [CrossRef]
- Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1, 2, 3-triazoles: Current developments. Bioorganic Chem. 2017, 71, 30–54. [Google Scholar] [CrossRef]
- Aouad, M.R. Efficient eco-friendly solvent-free click synthesis and antimicrobial evaluation of new fluorinated 1, 2, 3-triazoles and their conversion into Schiff Bases. J. Braz. Chem. Soc. 2015, 26, 2105–2115. [Google Scholar] [CrossRef]
- Aouad, M.R. Synthesis and antimicrobial screening of novel thioglycosides and acyclonucleoside analogs carrying 1, 2, 3-triazole and 1, 3, 4-oxadiazole moieties. Nucleosides Nucleotides Nucleic Acids 2016, 35, 1–15. [Google Scholar] [CrossRef]
- Rezki, N.; Mayaba, M.M.; Al-blewi, F.F.; Aouad, M.R. Click 1, 4-regioselective synthesis, characterization, and antimicrobial screening of novel 1, 2, 3-triazoles tethering fluorinated 1, 2, 4-triazole and lipophilic side chain. Res. Chem. Intermed. 2017, 43, 995–1011. [Google Scholar] [CrossRef]
- Aouad, M.R. Click Synthesis and antimicrobial screening of novel isatin-1, 2, 3-triazoles with piperidine, morpholine, or piperazine moieties. Org. Prep. Proced. Int. 2017, 49, 216–227. [Google Scholar] [CrossRef]
- Aouad, M.R.; Mayaba, M.M.; Naqvi, A.; Bardaweel, S.K.; Al-Blewi, F.F.; Messali, M.; Rezki, N. Design, synthesis, in silico and in vitro antimicrobial screenings of novel 1, 2, 4-triazoles carrying 1, 2, 3-triazole scaffold with lipophilic side chain tether. Chem. Cent. J. 2017, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Rezki, N. Green microwave synthesis and antimicrobial evaluation of novel triazoles. Org. Prep. Proced. Int. 2017, 49, 525–541. [Google Scholar] [CrossRef]
- Rezki, Z.; Aouad, M.R. Green ultrasound-assisted three-component click synthesis of novel 1H-1, 2, 3-triazole carrying benzothiazoles and fluorinated-1, 2, 4-triazole conjugates and their antimicrobial evaluation. Acta Pharm. 2017, 67, 309–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aouad, M.R.; Soliman, M.A.; Alharbi, M.O.; Bardaweel, S.K.; Sahu, P.K.; Ali, A.A.; Messali, M.; Rezki, N.; Al-Soud, Y.A. Design, synthesis and anticancer screening of novel benzothiazole-piperazine-1, 2, 3-triazole hybrids. Molecules 2018, 23, 2788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aouad, M.R.; Almehmadi, M.A.; Rezki, N.; Al-blewi, F.F.; Messali, M.; Ali, I. Design, click synthesis, anticancer screening and docking studies of novel benzothiazole-1, 2, 3-triazoles appended with some bioactive benzofused heterocycles. J. Mol. Struct. 2019, 1188, 153–164. [Google Scholar] [CrossRef]
- Al-Blewi, F.F.; Almehmadi, M.A.; Aouad, M.R.; Bardaweel, S.K.; Sahu, P.K.; Messali, M.; Rezki, N.; El Sayed, H. Design, synthesis, ADME prediction and pharmacological evaluation of novel benzimidazole-1, 2, 3-triazole-sulfonamide hybrids as antimicrobial and antiproliferative agents. Chem. Cent. J. 2018, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Rezki, N.; Almehmadi, M.A.; Ihmaid, S.; Shehata, A.M.; Omar, A.M.; Ahmed, H.E.; Aouad, M.R. Novel scaffold hopping of potent benzothiazole and isatin analogues linked to 1, 2, 3-triazole fragment that mimic quinazoline epidermal growth factor receptor inhibitors: Synthesis, antitumor and mechanistic analyses. Bioorganic Chem. 2020, 103, 104133. [Google Scholar] [CrossRef] [PubMed]
- Almehmadi, M.A.; Aljuhani, A.; Alraqa, S.Y.; Ali, I.; Rezki, N.; Aouad, M.R.; Hagar, M. Design, synthesis, DNA binding, modeling, anticancer studies and DFT calculations of Schiff bases tethering benzothiazole-1, 2, 3-triazole conjugates. J. Mol. Struct. 2021, 1225, 129148. [Google Scholar] [CrossRef]
- Alraqa, S.Y.; Alharbi, K.; Aljuhani, A.; Rezki, N.; Aouad, M.R.; Ali, I. Design, click conventional and microwave syntheses, DNA binding, docking and anticancer studies of benzotriazole-1, 2, 3-triazole molecular hybrids with different pharmacophores. J. Mol. Struct. 2021, 1225, 129192. [Google Scholar] [CrossRef]
- Ihmaid, S.K.; Alraqa, S.Y.; Aouad, M.R.; Aljuhani, A.; Elbadawy, H.M.; Salama, S.A.; Rezki, N.; Ahmed, H.E. Design of molecular hybrids of phthalimide-triazole agents with potent selective MCF-7/HepG2 cytotoxicity: Synthesis, EGFR inhibitory effect, and metabolic stability. Bioorganic Chem. 2021, 111, 104835. [Google Scholar] [CrossRef]
- Aouad, M.R.; Khan, D.J.; Said, M.A.; Al-Kaff, N.S.; Rezki, N.; Ali, A.A.; Bouqellah, N.; Hagar, M. Novel 1, 2, 3-Triazole Derivatives as Potential Inhibitors against Covid-19 Main Protease: Synthesis, Characterization, Molecular Docking and DFT Studies. ChemistrySelect 2021, 6, 3468. [Google Scholar] [CrossRef] [PubMed]
- Rezki, N.; Al-Yahyawi, A.M.; Bardaweel, S.K.; Al-Blewi, F.F.; Aouad, M.R. Synthesis of novel 2, 5-disubstituted-1, 3, 4-thiadiazoles clubbed 1, 2, 4-triazole, 1, 3, 4-thiadiazole, 1, 3, 4-oxadiazole and/or Schiff base as potential antimicrobial and antiproliferative agents. Molecules 2015, 20, 16048–16067. [Google Scholar] [CrossRef] [Green Version]
- Aouad, M.R. Synthesis, Characterization and antimicrobial evaluation of some new Schiff, Mannich and acetylenic Mannich bases incorporating a 1, 2, 4-triazole nucleus. Molecules 2014, 19, 18897–18910. [Google Scholar] [CrossRef] [Green Version]
- Fabre, B.; Filipiak, K.; Zapico, J.M.; Díaz, N.; Carbajo, R.J.; Schott, A.K.; Martínez-Alcázar, M.P.; Suárez, D.; Pineda-Lucena, A.; Ramos, A. Progress towards water-soluble triazole-based selective MMP-2 inhibitors. Org. Biomol. Chem. 2013, 11, 6623–6641. [Google Scholar] [CrossRef]
- Kreituss, I.; Rozenberga, E.; Zemītis, J.; Trapencieris, P.; Romanchikova, N.; Turks, M. Discovery of aziridine-triazole conjugates as selective MMP-2 inhibitors. Chem. Heterocycl. Compd. 2013, 49, 1108–1117. [Google Scholar] [CrossRef]
- Hugenberg, V.; Breyholz, H.-J.R.; Riemann, B.; Hermann, S.; Schober, O.; Schäfers, M.; Gangadharmath, U.; Mocharla, V.; Kolb, H.; Walsh, J. A new class of highly potent matrix metalloproteinase inhibitors based on triazole-substituted hydroxamates:(radio) synthesis and in vitro and first in vivo evaluation. J. Med. Chem. 2012, 55, 4714–4727. [Google Scholar] [CrossRef]
- Özdemir, A.; Sever, B.; Altıntop, M.D.; Temel, H.E.; Atlı, Ö.; Baysal, M.; Demirci, F. Synthesis and evaluation of new oxadiazole, thiadiazole, and triazole derivatives as potential anticancer agents targeting MMP-9. Molecules 2017, 22, 1109. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, M.A.; Yu, S.-M.; Siddiqui, S.Z.; Kim, S.J.; Raza, H.; Hassan, M.; Butt, A.R.S.; Shah, S.A.A.; Seo, S.-Y. Synthesis and exploration of a novel chlorobenzylated 2-aminothiazole-phenyltriazole hybrid as migratory inhibitor of B16F10 in melanoma cells. Toxicol. Rep. 2019, 6, 897–903. [Google Scholar] [CrossRef]
- Yurttaş, L.; Evren, A.E.; Kubilay, A.; Temel, H.E.; Çiftçi, G.A. 3, 4, 5-Trisubstituted-1, 2, 4-triazole Derivatives as Antiproliferative Agents: Synthesis, In vitro Evaluation and Molecular Modelling. Lett. Drug Des. Discov. 2020, 17, 1502–1515. [Google Scholar] [CrossRef]
- Yurttaş, L.; Evren, A.E.; Kubilay, A.; Temel, H.E. Synthesis of New 1, 2, 4-Triazole Derivatives and Investigation of Their Matrix Metalloproteinase-9 (MMP-9) Inhibition Properties. Acta Pharm. Sci. 2021, 59, 216–232. [Google Scholar]
- Patani, G.A.; LaVoie, E.J. Bioisosterism: A rational approach in drug design. Chem. Rev. 1996, 96, 3147–3176. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- El Ashry, E.S.H.; Awad, L.F.; Teleb, M.; Ibrahim, N.A.; Abu-Serie, M.M.; Abd Al Moaty, M.N. Structure-based design and optimization of pyrimidine-and 1, 2, 4-triazolo [4, 3-a] pyrimidine-based matrix metalloproteinase-10/13 inhibitors via Dimroth rearrangement towards targeted polypharmacology. Bioorganic Chem. 2020, 96, 103616. [Google Scholar] [CrossRef] [PubMed]
- Rizk, O.H.; Teleb, M.; Abu-Serie, M.M.; Shaaban, O.G. Dual VEGFR-2/PIM-1 kinase inhibition towards surmounting the resistance to antiangiogenic agents via hybrid pyridine and thienopyridine-based scaffolds: Design, synthesis and biological evaluation. Bioorganic Chem. 2019, 92, 103189. [Google Scholar] [CrossRef]
- Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Unsupported copper nanoparticles in the 1, 3-dipolar cycloaddition of terminal alkynes and azides. Eur. J. Org. Chem. 2010, 2010, 1875–1884. [Google Scholar] [CrossRef] [Green Version]
- Alkhaldi, A.A.; Abdelgawad, M.A.; Youssif, B.G.; El-Gendy, A.O.; De Koning, H.P. Synthesis, antimicrobial activities and GAPDH docking of novel 1, 2, 3-triazole derivatives. Trop. J. Pharm. Res. 2019, 18, 1101–1108. [Google Scholar] [CrossRef]
- Youssif, B.G.; Abdelrahman, M.H. Synthesis and Biological Evaluation of Some New 1, 2, 3-Triazole Derivatives As Anti-microbial Agents. J. Adv. Chem. 2015, 11, 3473–3484. [Google Scholar] [CrossRef]
- Aouad, M.R.; Messali, M.; Rezki, N.; Al-Zaqri, N.; Warad, I. Single proton intramigration in novel 4-phenyl-3-((4-phenyl-1H-1, 2, 3-triazol-1-yl) methyl)-1H-1, 2, 4-triazole-5 (4H)-thione: XRD-crystal interactions, physicochemical, thermal, Hirshfeld surface, DFT realization of thiol/thione tautomerism. J. Mol. Liq. 2018, 264, 621–630. [Google Scholar] [CrossRef]
- Prayong, P.; Barusrux, S.; Weerapreeyakul, N. Cytotoxic activity screening of some indigenous Thai plants. Fitoterapia 2008, 79, 598–601. [Google Scholar] [CrossRef]
- Ayoup, M.S.; Wahby, Y.; Abdel-Hamid, H.; Teleb, M.; Abu-Serie, M.M.; Noby, A. Design, synthesis and biological evaluation of novel α-acyloxy carboxamides via Passerini reaction as caspase 3/7 activators. Eur. J. Med. Chem. 2019, 168, 340–356. [Google Scholar] [CrossRef] [PubMed]
- Aubrey, B.J.; Kelly, G.L.; Janic, A.; Herold, M.J.; Strasser, A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018, 25, 104–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güllülü, Ö.; Hehlgans, S.; Rödel, C.; Fokas, E.; Rödel, F. Tumor Suppressor Protein p53 and Inhibitor of Apoptosis Proteins in Colorectal Cancer—A Promising Signaling Network for Therapeutic Interventions. Cancers 2021, 13, 624. [Google Scholar] [CrossRef] [PubMed]
- Sp, N.; Kang, D.Y.; Lee, J.-M.; Bae, S.W.; Jang, K.-J. Potential Antitumor Effects of 6-Gingerol in p53-Dependent Mitochondrial Apoptosis and Inhibition of Tumor Sphere Formation in Breast Cancer Cells. Int. J. Mol. Sci. 2021, 22, 4660. [Google Scholar] [CrossRef]
- Di Minin, G.; Bellazzo, A.; Dal Ferro, M.; Chiaruttini, G.; Nuzzo, S.; Bicciato, S.; Piazza, S.; Rami, D.; Bulla, R.; Sommaggio, R. Mutant p53 reprograms TNF signaling in cancer cells through interaction with the tumor suppressor DAB2IP. Mol. Cell 2014, 56, 617–629. [Google Scholar] [CrossRef] [Green Version]
- Junk, D.J.; Vrba, L.; Watts, G.S.; Oshiro, M.M.; Martinez, J.D.; Futscher, B.W. Different mutant/wild-type p53 combinations cause a spectrum of increased invasive potential in nonmalignant immortalized human mammary epithelial cells. Neoplasia 2008, 10, 450–461. [Google Scholar] [CrossRef] [Green Version]
- Laka, K.; Mapheto, K.; Mbita, Z. Selective in vitro cytotoxicity effect of Drimia calcarata bulb extracts against p53 mutant HT-29 and p53 wild-type Caco-2 colorectal cancer cells through STAT5B regulation. Toxicol. Rep. 2021, 8, 1265–1279. [Google Scholar] [CrossRef]
- Montalto, F.I.; De Amicis, F. Cyclin D1 in cancer: A molecular connection for cell cycle control, adhesion and invasion in tumor and stroma. Cells 2020, 9, 2648. [Google Scholar] [CrossRef]
- Molecular Operating Environment (MOE) CCG. Montreal, Canada. Available online: http://www.chemcomp.com (accessed on 10 July 2021).
- Feng, Y.; Likos, J.J.; Zhu, L.; Woodward, H.; Munie, G.; McDonald, J.J.; Stevens, A.M.; Howard, C.P.; De Crescenzo, G.A.; Welsch, D. Solution structure and backbone dynamics of the catalytic domain of matrix metalloproteinase-2 complexed with a hydroxamic acid inhibitor. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2002, 1598, 10–23. [Google Scholar] [CrossRef]
- Rowsell, S.; Hawtin, P.; Minshull, C.A.; Jepson, H.; Brockbank, S.M.; Barratt, D.G.; Slater, A.M.; McPheat, W.L.; Waterson, D.; Henney, A.M. Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. J. Mol. Biol. 2002, 319, 173–181. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 1–13. [Google Scholar]
- Available online: https://preadmet.bmdrc.kr/adme (accessed on 20 July 2021).
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef] [Green Version]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef] [PubMed]
- Yee, S. In Vitro Permeability Across Caco-2 Cells (Colonic) Can Predict In Vivo (Small Intestinal) Absorption in Man—Fact or Myth. Pharm. Res. 1997, 14, 763–766. [Google Scholar] [CrossRef]
- Al-Hamdani, U.J.; Abbo, H.S.; Al-Jaber, A.A.; Titinchi, S.J. New azo-benzothiazole based liquid crystals: Synthesis and study of the effect of lateral substituents on their liquid crystalline behaviour. Liq. Cryst. 2020, 47, 2257–2267. [Google Scholar] [CrossRef]
- Ma, X.-L.; Chen, C.; Yang, J. Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacol. Sin. 2005, 26, 500–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashita, S.; Furubayashi, T.; Kataoka, M.; Sakane, T.; Sezaki, H.; Tokuda, H. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur. J. Pharm. Sci. 2000, 10, 195–204. [Google Scholar] [CrossRef]
- Irvine, J.D.; Takahashi, L.; Lockhart, K.; Cheong, J.; Tolan, J.W.; Selick, H.E.; Grove, J.R. MDCK (Madin–Darby canine kidney) cells: A tool for membrane permeability screening. J. Pharm. Sci. 1999, 88, 28–33. [Google Scholar] [CrossRef]
- Yazdanian, M.; Glynn, S.L.; Wright, J.L.; Hawi, A. Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm. Res. 1998, 15, 1490. [Google Scholar] [CrossRef] [PubMed]
Compound | [Ref.] Mp (°C) | Time | Yield (%) | ||
---|---|---|---|---|---|
CM (hr) | MW (min) | CM | MW | ||
3 | 102–103 [60] 104 | 6 | 3 | 91 | 98 |
4 | 200–201 [61] 203–205 | 4 | 2 | 89 | 97 |
5 | 241–242 [62] 238–240 | 4 | 3 | 88 | 96 |
6 | 212–214 [62] 224–226 | 4 | 3 | 86 | 95 |
7 | 267–269 [63] 269–270 | 6 | 4 | 91 | 97 |
8 | 218–219 | 6 | 4 | 90 | 96 |
9 | 188–189 | 16 | 5 | 85 | 92 |
10 | 160–161 | 16 | 5 | 86 | 90 |
11 | 204–205 | 16 | 5 | 85 | 94 |
12 | 178–179 | 16 | 5 | 84 | 94 |
13 | 228–229 | 20 | 6 | 83 | 96 |
14 | 194–195 | 20 | 6 | 83 | 96 |
15 | 293–294 | 20 | 6 | 81 | 92 |
16 | 259–260 | 20 | 6 | 82 | 92 |
Compound No. | Wi-38 | MDA-MB 231 | Caco-2 | |||
---|---|---|---|---|---|---|
EC100 (µM) * | EC50 (µM) | IC50 (µM) | SI | IC50 (µM) | SI | |
9 | 0.638 ± 0.029 | 1.324 ± 0.024 | 1.733 ± 0.068 | 0.763 | 2.292 ± 0.084 | 0.577 |
10 | 1.460 ± 0.026 | 2.250 ± 0.048 | 1.388 ± 0.082 | 1.621 | 1.628 ± 0.006 | 1.382 |
11 | 0.653 ± 0.036 | 1.755 ± 0.039 | 2.354 ± 0.022 | 0.745 | 2.121 ± 0.009 | 0.827 |
12 | 0.984 ± 0.034 | 2.745 ± 0.054 | 1.146 ± 0.093 | 2.395 | 3.313 ± 0.110 | 0.828 |
13 | 0.591 ± 0.048 | 1.145 ± 0.042 | 0.733 ± 0.056 | 1.562 | 0.609 ± 0.016 | 1.880 |
14 | 0.850 ± 0.036 | 1.721 ± 0.056 | 2.037 ± 0.044 | 0.844 | 1.727 ± 0.028 | 0.996 |
15 | 0.804 ± 0.016 | 1.089 ± 0.007 | 0.306 ± 0.010 | 3.558 | 0.264 ± 0.001 | 4.125 |
16 | 0.463 ± 0.034 | 0.779 ± 0.033 | 0.404 ± 0.015 | 1.928 | 0.390 ± 0.001 | 1.997 |
5-Fluorouracil | 1.067 ± 0.002 | 2.915 ± 0.052 | 21.019 ± 0.032 | - | 0.437 ± 0.016 | - |
Compound No. | MMP-2 | MMP-9 | MMP-2/MMP-9 Selectivity | ||
---|---|---|---|---|---|
% Inhibition at Anticancer IC50 | IC50 (μM) | % Inhibition at Anticancer IC50 | IC50 (μM) | ||
15 | 46.015 ± 1.290 | 0.468 | 64.936 ± 1.603 | 0.143 | 3.27 |
16 | 54.630 ± 0.997 | 0.376 | 55.090 ± 2.053 | 0.387 | 0.97 |
NNGH | 60.855 ± 1.714 | 0.298 | 56.463 ± 1.990 | 0.349 | 0.85 |
Cpd No. | Physiochemical Parameters | ADMET | Drug-Likeness | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LogP a | MW b | HBA c | HBD d | NROTB e | TPSA f | S g | HIA h | PPB i | BBB j | Caco2 k | MDCK l | CYP3A4 Inhibitor | CYP2D6 Inhibitor | LD50 m | Lipinski n | Veber o | Egan p | |
15 | 4.02 | 778.95 | 8 | 0 | 12 | 177.58 | 5.57 × 10−6 | 98.10 | 100 | 1.88 | 34.90 | 1.49 | Yes | Non | 1000 | 1 violation: MW > 500 | 2 violations: Rotors > 10, TPSA > 140 | 1 violation: TPSA > 131.6 |
16 | 2.44 | 682.87 | 8 | 0 | 12 | 177.58 | 0.004 | 99.19 | 93.48 | 0.515 | 32.69 | 0.04 | Yes | Non | 1000 | 1 violation: MW > 500 | 2 violations: Rotors > 10, TPSA > 140 | 1 violation: TPSA > 131.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albelwi, F.F.; Teleb, M.; Abu-Serie, M.M.; Moaty, M.N.A.A.; Alsubaie, M.S.; Zakaria, M.A.; El Kilany, Y.; Aouad, M.R.; Hagar, M.; Rezki, N. Halting Tumor Progression via Novel Non-Hydroxamate Triazole-Based Mannich Bases MMP-2/9 Inhibitors; Design, Microwave-Assisted Synthesis, and Biological Evaluation. Int. J. Mol. Sci. 2021, 22, 10324. https://doi.org/10.3390/ijms221910324
Albelwi FF, Teleb M, Abu-Serie MM, Moaty MNAA, Alsubaie MS, Zakaria MA, El Kilany Y, Aouad MR, Hagar M, Rezki N. Halting Tumor Progression via Novel Non-Hydroxamate Triazole-Based Mannich Bases MMP-2/9 Inhibitors; Design, Microwave-Assisted Synthesis, and Biological Evaluation. International Journal of Molecular Sciences. 2021; 22(19):10324. https://doi.org/10.3390/ijms221910324
Chicago/Turabian StyleAlbelwi, Fawzia Faleh, Mohamed Teleb, Marwa M. Abu-Serie, Mohamed Nabil Abd Al Moaty, Mai S. Alsubaie, Mohamed A. Zakaria, Yeldez El Kilany, Mohamed Reda Aouad, Mohamed Hagar, and Nadjet Rezki. 2021. "Halting Tumor Progression via Novel Non-Hydroxamate Triazole-Based Mannich Bases MMP-2/9 Inhibitors; Design, Microwave-Assisted Synthesis, and Biological Evaluation" International Journal of Molecular Sciences 22, no. 19: 10324. https://doi.org/10.3390/ijms221910324
APA StyleAlbelwi, F. F., Teleb, M., Abu-Serie, M. M., Moaty, M. N. A. A., Alsubaie, M. S., Zakaria, M. A., El Kilany, Y., Aouad, M. R., Hagar, M., & Rezki, N. (2021). Halting Tumor Progression via Novel Non-Hydroxamate Triazole-Based Mannich Bases MMP-2/9 Inhibitors; Design, Microwave-Assisted Synthesis, and Biological Evaluation. International Journal of Molecular Sciences, 22(19), 10324. https://doi.org/10.3390/ijms221910324