Placental Expression of Bile Acid Transporters in Intrahepatic Cholestasis of Pregnancy
Abstract
:1. Introduction
2. Results
2.1. Study Participants
2.2. Expression of Selected Solute Carriers and ATP-Dependent Transporter Genes with Affinity for BA- and Cholestasis-Related Molecules in Control Placentae and Trophoblast Cells
2.3. Comparison of Transporter Expression in Patients and Healthy Controls
2.4. Correlation between Placental BA Transport Proteins and Clinical Parameters
3. Discussion
3.1. Screening of Transporters in Placental Tissues and Trophoblast Cells
3.2. Summary of the BA Transport Machinery in Human Placenta
3.3. Comparison of ICP Versus Controls
4. Conclusions
5. Materials and Methods
5.1. Human Placental Tissue and Trophoblast Cells
5.2. RNA Extraction and Quantitative RT-PCR
5.3. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dann, A.T.; Kenyon, A.P.; Wierzbicki, A.S.; Seed, P.T.; Shennan, A.H.; Tribe, R.M. Plasma lipid profiles of women with intrahepatic cholestasis of pregnancy. Obstet. Gynecol. 2006, 107, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Martineau, M.G.; Raker, C.; Dixon, P.H.; Chambers, J.; Machirori, M.; King, N.M.; Hooks, M.L.; Manoharan, R.; Chen, K.; Powrie, R.; et al. The metabolic profile of intrahepatic cholestasis of pregnancy is associated with impaired glucose tolerance, dyslipidemia, and increased fetal growth. Diabetes Care 2015, 38, 243–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovadia, C.; Seed, P.T.; Sklavounos, A.; Geenes, V.; Di Illio, C.; Chambers, J.; Kohari, K.; Bacq, Y.; Bozkurt, N.; Brun-Furrer, R.; et al. Association of adverse perinatal outcomes of intrahepatic cholestasis of pregnancy with biochemical markers: Results of aggregate and individual patient data meta-analyses. Lancet 2019, 393, 899–909. [Google Scholar] [CrossRef] [Green Version]
- Fisk, N.; Storey, G. Fetal outcome in obsteric cholestasis. BJOG 1988, 95, 1137–1143. [Google Scholar] [CrossRef] [PubMed]
- Williamson, C.; Geenes, V.L. Intrahepatic Cholestasis of Pregnancy. Obs. Gynecol. 2014, 88, 13–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, R.; Ivey, K.J.; Rencoret, R.H.; Storey, B. Fetal complications of obstetric cholestasis. Br. Med. J. 1976, 1, 870–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombo, C.; Roda, A.; Roda, E.; Buscaglia, M.; Albert, C.; Agnola, D.; Filippetti, P.; Ronchi, M. Correlation between Fetal and Maternal Serum Bile Acid Concentrations. Pediatr. Res. 1984, 19, 227–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombo, C.; Zuliani, G.; Ronchi, M.; Breidenstein, J.; Setchell, K.D.R. Biliary Bile Acid Composition of the Human Fetus in Early Gestation. Pediatr. Res. 1987, 2, 68–71. [Google Scholar] [CrossRef] [Green Version]
- Geenes, V.; Lövgren-Sandblom, A.; Benthin, L.; Lawrence, D.; Chambers, J.; Gurung, V.; Thornton, J.; Chappell, L.; Khan, E.; Dixon, P.; et al. The Reversed Feto-Maternal Bile Acid Gradient in Intrahepatic Cholestasis of Pregnancy Is Corrected by Ursodeoxycholic Acid. PLoS ONE 2014, 9, e83828. [Google Scholar] [CrossRef]
- Laatikainen, T.; Lehtonen, P.; Hesso, A. Fetal sulfated and nonsulfated bile acids in intrahepatic cholestasis of pregnancy. J. Lab. Clin. Med. 1978, 92, 681810. [Google Scholar]
- Hagenbuch, B.; Dawson, P. The sodium bile salt cotransport family SLC10. Pflügers Arch. 2004, 447, 566–570. [Google Scholar] [CrossRef]
- Hruz, P.; Zimmermann, C.; Gutmann, H.; Degen, L.; Beuers, U.; Terracciano, L.; Drewe, J.; Beglinger, C. Adaptive regulation of the ileal apical sodium dependent bile acid transporter (ASBT) in patients with obstructive cholestasis. Gut 2006, 55, 395–402. [Google Scholar] [CrossRef]
- Serrano, M.A.; Macias, R.I.R.; Briz, O.; Monte, M.J.; Blazquez, A.G.; Williamson, C.; Kubitz, R.; Marin, J.J.G. Expression in Human Trophoblast and Choriocarcinoma Cell Lines, BeWo, Jeg-3 and JAr of Genes Involved in the Hepatobiliary-like Excretory Function of the Placenta. Placenta 2007, 28, 107–117. [Google Scholar] [CrossRef]
- Wang, W.; Seward, D.J.; Li, L.; Boyer, J.L.; Ballatori, N. Expression cloning of two genes that together mediate organic solute and steroid transport in the liver of a marine vertebrate. Proc. Natl. Acad. Sci. USA 2001, 98, 9431–9436. [Google Scholar] [CrossRef] [Green Version]
- Dawson, P.A.; Hubbert, M.; Haywood, J.; Craddock, A.L.; Zerangue, N.; Christian, W.V.; Ballatori, N. The Heteromeric Organic Solute Transporter OST-alpha-OST-beta, Is an Ileal Basolateral Bile Acid Transporter. J. Biol. Chem. 2005, 280, 6960–6968. [Google Scholar] [CrossRef] [Green Version]
- Coller, J.K.; Fritz, P.; Zanger, U.M.; Siegle, I.; Eichelbaum, M.; Kroemer, H.K.; Thomas, E.M. Distribution of microsomal epoxide hydrolase in humans: An immunohistochemical study in normal tissues, and benign and malignant tumours. Histochem. J. 2001, 33, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Von Dippe, P.; Xing, W.; Levy, D. Membrane Topology and Cell Surface Targeting of Microsomal. J. Biol. Chem. 1999, 274, 27898–27904. [Google Scholar] [CrossRef] [Green Version]
- Von Dippe, P.; Amoui, M.; Stellwagen, R.H.; Levy, D. The Functional Expression of Sodium-dependent Bile Acid Transport in Madin-Darby Canine Kidney Cells Transfected with the cDNA for Microsomal Epoxide Hydrolase. J. Biol Chem. 1996, 271, 18176–18180. [Google Scholar] [CrossRef] [Green Version]
- Leazer, T.M.; Klaassen, C.D. The presence of xenobiotic transporters in rat placenta. Drug. Metab. Dispos. 2003, 31, 153–167. [Google Scholar] [CrossRef] [Green Version]
- König, J.; Cui, Y.; Nies, A.T.; Keppler, D. Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J. Biol. Chem. 2000, 275, 23161–23168. [Google Scholar] [CrossRef] [Green Version]
- Tamai, I.; Nezu, J.I.; Uchino, H.; Sai, Y.; Oku, A.; Shimane, M.; Tsuji, A. Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem. Biophys. Res. Commun. 2000, 273, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Weerasekera, N.; Hitchins, M.; Boyd, C.; Johnston, D.; Williamson, C. Semi Quantitative Expression Analysis of MDR3, OATP-D, OATP-E, NTCP Gene Transcripts in 1st and 3rd Trimester Human Placenta. Placenta 2003, 24, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yan, Z.; Dong, M.; Zhu, X.; Wang, H.; Wang, Z. Alteration in placental expression of bile acids transporters OATP1A2, OATP1B1, OATP1B3 in intrahepatic cholestasis of pregnancy. Arch. Gynecol. Obstet. 2012, 285, 1535–1540. [Google Scholar] [CrossRef] [PubMed]
- Huber, R.D.; Gao, B.; Pfändler, M.S.; Zhang-fu, W.; Leuthold, S.; Hagenbuch, B.; Folkers, G.; Meier, P.J.; Stieger, B. Characterization of two splice variants of human organic anion transporting polypeptide 3A1 isolated from human brain. Am. J. Physiol. Cell Physiol. 2006, 292, 795–806. [Google Scholar] [CrossRef]
- Olson, D.M.; Zaragoza, D.B.; Shallow, M.C.; Cook, J.L.; Mitchell, B.F.; Grigsby, P.; Hirst, J. Myometrial Activation and Preterm Labour: Evidence Supporting a Role for the Prostaglandin F Receptor—A Review. Placenta 2003, 17, A47–A52. [Google Scholar] [CrossRef] [Green Version]
- Azzaroli, F.; Mennone, A.; Feletti, V.; Simoni, P.; Baglivo, E.; Montagnani, M.; Rizzo, N.; Pelusi, G.; De Aloysio, D.; Lodato, F.; et al. Modulation of human placental multidrug resistance proteins in cholestasis of pregnancy by ursodeoxycholic acid. Aliment. Pharmacol. Ther. 2007, 26, 1139–1146. [Google Scholar] [CrossRef]
- Kallol, S.; Moser-Haessig, R.; Ontsouka, C.E.; Albrecht, C. Comparative expression patterns of selected membrane transporters in differentiated BeWo and human primary trophoblast cells. Placenta 2018, 72–73, 48–52. [Google Scholar] [CrossRef]
- Huang, X.; Baumann, M.; Nikitina, L.; Wenger, F.; Surbek, D.; Körner, M.; Albrecht, C. RNA degradation differentially affects quantitative mRNA measurements of endogenous reference genes in human placenta. Placenta 2013, 34, 544–547. [Google Scholar] [CrossRef]
Membrane Protein Class | Entry Number | Gene Name 1 | Previous Symbols/Aliases 1 | Approved Name 1 |
---|---|---|---|---|
Solute carriers | Q14973 (NTCP_HUMAN) | SLC10A1 | NTCP | Solute carrier family 10 member 1 |
P46721 (SO1A2_HUMAN) | SLCO1A2 | OATP, OATP1A2, OATP-A | Solute carrier organic anion transporter family member 1A2 | |
Q9Y6L6 (SO1B1_HUMAN) | SLCO1B1 | SLC21A6/OATP1B1, OATP-C, LST-1 | Solute carrier organic anion transporter family member 1B1 | |
Q9NPD5 (SO1B3_HUMAN) | SLCO1B3 | SLC21A8/OATP1B3 OATP8, | Solute carrier organic anion transporter family member 1B3 | |
O94956 (SO2B1_HUMAN) | SLCO2B1 | SLC21A9/ OATP2B1, OATP-B | Solute carrier organic anion transporter family member 2B1 | |
Q9UIG8 (SO3A1_HUMAN) | SLCO3A1 | SLC21A11/ OATP3A1, OATP-D | Solute carrier organic anion transporter family member 3A1 | |
Q96BD0 (SO4A1_HUMAN) | SLCO4A1 | SLC21A12/ OATP4A1, OATP-E | Solute carrier organic anion transporter family member 4A1 | |
P07099 (HYEP_HUMAN) | EPHX1 | EPOX/EPHX1/ mEH | Epoxide hydrolase 1 | |
Q86UW1 (OSTA_HUMAN) | SLC51A | OST-α | Organic solute transporter subunit alpha | |
Q86UW2 (OSTB_HUMAN) | SLC51B | OST-β | Organic solute transporter subunit beta | |
Q12908 (NTCP2_HUMAN) | SLC10A2 | ISBT/ASBT | Solute carrier family 10 member 2 | |
ABC transporters | O95342 (ABCBB_HUMAN) | ABCB11 | BSEP, PFIC2/ ABC16 | ATP-binding cassette subfamily B member 11 |
P08183 (MDR1_HUMAN) | ABCB1 | MDR1/P-gp; CD243 | ATP-binding cassette subfamily B member 1 | |
Q92887 (MRP2_HUMAN) | ABCC2 | MRP2/CMOAT1 | ATP-binding cassette subfamily C member 2 | |
Q9UNQ0 (ABCG2_HUMAN) | ABCG2 | BCRP, MXR, ABCP, CD338 | ATP-binding cassette subfamily G member 2 | |
P21439 (MDR3_HUMAN) | ABCB4 | MDR3, PGY3/ MDR2, PFIC-3 | ATP-binding cassette subfamily B member 4 | |
O43520 (AT8B1_HUMAN) | ATP8B1 | FIC1, PFIC1/ATPIC, PFIC | ATPase phospholipid transporting 8B1 | |
Q9H222 (ABCG5_HUMAN) | ABCG5 | STSL | ATP-binding cassette subfamily G member 5 | |
P33527 (MRP1_HUMAN) | ABCC1 | MRP1/GS-X | ATP-binding cassette subfamily C member 1 | |
O15438 (MRP3_HUMAN) | ABCC3 | MRP3, MOAT-D, cMOAT2, MLP2 | ATP-binding cassette subfamily C member 3 | |
O15439 (MRP4_HUMAN) | ABCC4 | MRP4/CFTR MOAT-B | ATP-binding cassette subfamily C member 4 |
Parameters | Controls (n = 12) | ICP (n = 12) |
---|---|---|
Maternal age, years | 33.1 ± 4.1 | 30.5 ± 6.7 |
Gravidity | 2.5 ± 1.4 | 2.5 ± 1.2 |
Parity | 1.9 ± 0.9 | 1.5 ± 1.2 |
Gestational age, weeks | 39.2 ± 0.8 | 37.9 ± 1.9 |
BMI, kg/m2 | 22.1 ± 2.4 | 23.1 ± 6.5 |
Baby gender (male/female) | 6/6 | 6/6 |
Bile acid levels, μmol/L | n.a. | 55.5 ± 61.7 |
De-Ursil® treatment applied | n = 0 | n = 12 |
Gene | Forward Primer (5′-3′) | Reverse Primer (5′-3′) | Accession Number |
---|---|---|---|
SLC10A1/NTCP | GGAGGGAACCTGTCCAATGTC | CATGCCAAGGGCACAGAAG | NM_003049.3 |
SLCO1A2/OATP1A2 | CACCACCTTCAGATACAT | GTAGATGACACTTCCTCAA | NM_005630.2 |
SLCO1B1/OATP1B1 | CTTGTATTTAGGTAGTTTGA | CTTAGGAGTTATTCTGATAG | NM_019844.3 |
SLCO1B3/OATP1B3 | ATAGAGCATCACCTGAGA | TCCACGAAGCATATTACC | NM_006446.4 |
SLCO2B1/OATP2B1 | CACGAAGAAGCAGGATGG | CTGGGGAAGACTTTAATGAACT | NM_007256.4 |
SLCO3A1/OATP3A1 | TTGTTGGGCTTCATCCCTCC | CGAAGGATTTGAGCGCGATG | NM_013272.3 |
SLCO4A1/OATP4A1 | GAATACTAGGGGGCATCCCG | ATGGCAAAGAAGAGGACGCC | NM_016354.3 |
EPHX1/EPOX/mEH | CCCAAGGAGTAATCAGAGGGTG | ACATGGCTCCTGTACCTCAG | NM_000120.3 |
SLC51A/OST-α | CAGGTCTCAAGTGATGAA | CTTCGGTAGTACATTCGT | NM_152672.5 |
SLC51B/OST-β | GCTGCTGGAAGAGATGCTTTG | TTTCTTTTCTGCTTGCCTGGATG | NM_178859.3 |
SLC10A2/ASBT | CCTGGTACAGGTGCCGAAC | TGAGCGGGAAGGTGAATACG | NM_000452.2 |
ABCB11/BSEP | GACATGCTTGCGAGGACCTT | GGTTCGTGCACCAGGTAAGAA | NM_003742.2 |
ABCB1/MDR1 | GCCAGAAACAACGCATTGCC | GGGCTTCTTGGACAACCTTTTC | NM_000927.4 |
ABCC2/MRP2 | GATGCACAAAAGGCCTTCACC | GGAAACACTGGCCTGGAGCAT | NM_000392.4 |
ABCG2/BCRP | TGTGTTTATGATGGTCTGTTGGTC | GCTGCAAAGCCGTAAATCCA | NM_001257386.1 |
ABCB4/MDR3 | GGACAGTGCTTCTCGATGGTC | TACAACCCGGCTGTTGTCTC | NM_000443.3 |
ATP8B1/FIC1 | AGCAGTTTAAGAGAGCAGCC | TATGGCGAGCCACATCGTC | NM_005603.4 |
ACGG5/STSL | CCTCTCATCTTTGACCCCCG | CTCACGCGGTGGCTGAC | NM_022436.2 |
ABCC1/MRP1 | TTAAGGTGTTATACAAGAC | GATGAGCAACTTTAAGAT | NM_004996.3 |
ABCC3/MRP3 | GATACGCTCGCCACAGTCC | CAGTTGCCGTGATGTGGCTG | NM_003786.3 |
ABCC4/MRP4 | CCATTGAAGATCTTCCTGG | GGTGTTCAATCTGTGTGC | NM_005845.4 |
β-actin | AACTCCATCATGAAGTGTGACG | GATCCACATCTGCTGGAAGG | NM_001101.5 |
YWHAZ | CCGTTACTTGGCTGAGGTTG | AGTTAAGGGCCAGACCCAGT | NM_145690.3 |
GAPDH | GCTCCTCCTGTTCGACAGTCA | ACCTTCCCCATGGTGTCTGA | NM_002046.7 |
Ubiquitin | TCGCAGCCGGGATTTG | GCATTGTCAAGTGACGATCACA | NM_021009 |
Membrane Protein | mRNA Transcripts Detectable in | |||
---|---|---|---|---|
Class | Protein Name | Gene Name | Placental Tissue (n = 12) | Trophoblasts (n = 3) |
Solute carriers | NTCP | SLC10A1 | 3/12 | all |
OATP1A2 | SLCO1A2 | all | n.d. | |
OATP1B1 | SLCO1B1 | 2/12 | n.d. | |
OATP1B3 | SLCO1B3 | 2/12 | n.d. | |
OATP2B1 | SLCO2B1 | all | all | |
OATP3A1 | SLCO3A1 | all | all | |
OATP4A1 | SLCO4A1 | all | all | |
EPOX/mEH | EPHX1 | all | all | |
OST-α | SLC51A | 9/12 | all | |
OST-β | SLC51B | all | all | |
ASBT | SLC10A2 | all | all | |
ABC transporters | BSEP | ABCB11 | Ct > 35 | all |
MDR1 | ABCB1 | all | all | |
MRP2 | ABCC2 | all | all | |
BCRP | ABCG2 | all | all | |
MDR3 | ABCB4 | all | all | |
FIC1 | ATP8B1 | all | all | |
ABCG5 | ABCG5 | n.d. | n.d. | |
MRP1 | ABCC1 | 5/12 | n.d. | |
MRP3 | ABCC3 | all | all | |
MRP4 | ABCC4 | 6/12 | all |
Gene | SLC10A2 | ABCB1 | ABCB4 | ABCG2 | ABCC2 | ABCC3 | ATP8B1 | SLC51A | EPHX1 | SLCO2B1 | SLCO4A1 | SLCO1A2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
p-value | 0.99 | 0.86 | 0.73 | 0.84 | 0.37 | 0.47 | 0.78 | 0.33 | 0.37 | 0.71 | 0.43 | 0.44 |
SLC10A2 | SLCO4A1 | ABCC2 | |
---|---|---|---|
BMI * | R2 = 0.27; p = 0.013 | ||
Serum bile acids ** | R2 = 0.58; p = 0.004 | R2 = 0.34; p = 0.047 | R2 = 0.70; p = 0.0007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ontsouka, E.; Epstein, A.; Kallol, S.; Zaugg, J.; Baumann, M.; Schneider, H.; Albrecht, C. Placental Expression of Bile Acid Transporters in Intrahepatic Cholestasis of Pregnancy. Int. J. Mol. Sci. 2021, 22, 10434. https://doi.org/10.3390/ijms221910434
Ontsouka E, Epstein A, Kallol S, Zaugg J, Baumann M, Schneider H, Albrecht C. Placental Expression of Bile Acid Transporters in Intrahepatic Cholestasis of Pregnancy. International Journal of Molecular Sciences. 2021; 22(19):10434. https://doi.org/10.3390/ijms221910434
Chicago/Turabian StyleOntsouka, Edgar, Alessandra Epstein, Sampada Kallol, Jonas Zaugg, Marc Baumann, Henning Schneider, and Christiane Albrecht. 2021. "Placental Expression of Bile Acid Transporters in Intrahepatic Cholestasis of Pregnancy" International Journal of Molecular Sciences 22, no. 19: 10434. https://doi.org/10.3390/ijms221910434
APA StyleOntsouka, E., Epstein, A., Kallol, S., Zaugg, J., Baumann, M., Schneider, H., & Albrecht, C. (2021). Placental Expression of Bile Acid Transporters in Intrahepatic Cholestasis of Pregnancy. International Journal of Molecular Sciences, 22(19), 10434. https://doi.org/10.3390/ijms221910434