Sequestration of RBM10 in Nuclear Bodies: Targeting Sequences and Biological Significance
Abstract
:1. Introduction
2. Results
2.1. Sequences Responsible for Targeting of RBM10 to S1-1 NBs
2.2. RBM10 Contains a Second NBTS
2.3. Verification of NBTS1 and NBTS2
2.4. C2H2 ZnF Is Essential for the AS Function of RBM10
2.5. RBM10 Does Not Participate in Structural Organization of S1-1 NBs
2.6. RBM10 Is Sequestered in S1-1 NBs When Transcription Declines
3. Discussion
4. Experimental Procedures
4.1. Cells and Cell Culture
4.2. Immunostaining
4.3. Immunoblotting
4.4. Primers, RBM10 Mutant Plasmids and Transfection
4.5. Constructs and Mutagenesis of RBM10
4.6. RBM10 Knockdown
4.7. Nuclear Injection of ftz pre-mRNA
4.8. RBM10 Knockout
4.9. Generation of Lentiviruses Expressing Wild-Type and Mutant RBM10
4.10. Assessment of Transcriptional Activity
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Inoue, A.; Takahashi, K.P.; Kimura, M.; Watanabe, T.; Morisawa, S. Molecular cloning of an RNA binding protein. S1-1. Nucl. Acids Res. 1996, 24, 2990–2997. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gogol-Döring, A.; Hu, H.; Fröhler, S.; Ma, Y.; Jens, M.; Maaskola, J.; Murakawa, Y.; Quedenau, C.; Landthaler, M.; et al. Integrative analysis revealed the molecular mechanism underlying RBM10-mediated splicing regulation. EMBO Mol. Med. 2013, 5, 1431–1442. [Google Scholar] [CrossRef]
- Zheng, S.; Damoiseaux, R.; Chen, L.; Black, D.L. A broadly applicable high-throughput screening strategy identifies new regulators of Dlg4 (Psd-95) alternative splicing. Genome Res. 2013, 23, 998–1007. [Google Scholar] [CrossRef] [Green Version]
- Bechara, E.G.; Sebestyén, E.; Bernardis, I.; Eyras, E.; Valcárcel, J. RBM5, 6, and 10 differentially regulate NUMB alternative splicing to control cancer cell proliferation. Mol. Cell 2013, 52, 720–733. [Google Scholar] [CrossRef] [Green Version]
- Inoue, A.; Yamamoto, N.; Kimura, M.; Nishio, K.; Yamane, H.; Nakajima, K. RBM10 regulates alternative splicing. FEBS Lett. 2014, 588, 942–947. [Google Scholar] [CrossRef] [Green Version]
- Johnston, J.J.; Teer, J.K.; Cherukuri, P.F.; Hansen, N.F.; Loftus, S.K.; NIH Intramural Sequencing Center (NISC); Chong, K.; Mullikin, J.C.; Biesecker, L.G. Massively parallel sequencing of exons on the X chromosome identifies RBM10 as the gene that causes a syndromic form of cleft palate. Am. J. Hum. Genet. 2010, 14, 743–748. [Google Scholar] [CrossRef] [Green Version]
- Gripp, K.W.; Hopkins, E.; Johnston, J.J.; Krause, C.; Dobyns, W.B.; Biesecker, L.G. Long-term survival in TARP syndrome and confirmation of RBM10 as the disease-causing gene. Am. J. Med. Genet. Part A 2011, 155, 2516–2520. [Google Scholar] [CrossRef] [Green Version]
- Imielinski, M.; Berger, A.H.; Hammerman, P.S.; Hernandez, B.; Pugh, T.J.; Hodis, E.; Cho, J.; Suh, J.; Capelletti, M.; Sivachenko, A.; et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 2012, 150, 1107–1120. [Google Scholar] [CrossRef] [Green Version]
- Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014, 511, 543–550. [Google Scholar] [CrossRef]
- Loiselle, J.J.; Sutherland, L.C. RBM10: Harmful or helpful-many factors to consider. J. Cell. Biochem. 2018, 119, 3809–3818. [Google Scholar] [CrossRef] [Green Version]
- Inoue, A. RBM10: Structure, Functions, and Associated diseases. Gene 2021, 783, 145463. [Google Scholar] [CrossRef]
- Mao, Y.S.; Zhang, B.; Spector, D.L. Biogenesis and function of nuclear bodies. Trends Genet. 2011, 27, 295–306. [Google Scholar] [CrossRef] [Green Version]
- Staněk, D.; Fox, A.H. Nuclear bodies: News insights into structure and function. Curr. Opin. Cell Biol. 2017, 46, 94–101. [Google Scholar] [CrossRef]
- Inoue, A.; Tsugawa, K.; Tokunaga, K.; Takahashi, K.P.; Uni, S.; Kimura, M.; Nishio, K.; Yamamoto, N.; Honda, K.; Watanabe, T.; et al. S1-1 nuclear domains: Characterization and dynamics as a function of transcriptional activity. Biol. Cell 2008, 100, 523–535. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, L.; Kimura, M.; Kojima, H.; Kunimoto, H.; Nishiumi, F.; Yamamoto, N.; Nishio, K.; Fujimoto, S.; Kato, T.; et al. S1-1/RBM10: Multiplicity and cooperativity of nuclear localization domains. Biol. Cell 2013, 105, 162–174. [Google Scholar] [CrossRef]
- Aravind, L.; Koonin, E.V. G-patch: A new conserved domain in eukaryotic RNA-processing proteins and type D retroviral polyproteins. Trends Biochem. Sci. 1999, 24, 342–344. [Google Scholar] [CrossRef]
- Sloan, K.E.; Bohnsack, M.T. Unravelling the Mechanisms of RNA Helicase Regulation. Trends Biochem. Sci. 2018, 43, 237–250. [Google Scholar] [CrossRef]
- Realini, C.; Rogers, S.W.; Rechsteiner, M. KEKE motifs: Proposed roles in protein- protein association and presentation of peptides by MHC Class I receptors. FEBS Lett. 1994, 348, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Martin, B.T.; Serrano, P.; Geralt, M.; Wüthrich, K. Nuclear magnetic resonance structure of a novel globular domain in RBM10 containing OCRE, the Octamer repeat sequence motif. Structure 2016, 24, 158–164. [Google Scholar] [CrossRef] [Green Version]
- Tokunaga, K.; Shibuya, T.; Ishihama, Y.; Tadakuma, H.; Ide, M.; Yoshida, M.; Funatsu, T.; Ohshima, Y.; Tani, T. Nucleocytoplasmic transport of fluorescent mRNA in living mammalian cells: Nuclear mRNA export is coupled to ongoing gene transcription. Genes Cells 2006, 11, 305–317. [Google Scholar] [CrossRef]
- Chao, S.H.; Price, D.H. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J. Biol. Chem. 2001, 276, 31793–31799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meggio, F.; Shugar, D.; Pinna, L.A. Ribofuranosyl-benzimidazole derivatives as inhibitors of casein kinase-2 and casein kinase-1. Eur. J. Biochem. 1990, 187, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Bensaude, O. Inhibiting eukaryotic transcription. Transcription 2011, 2, 103–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharbi, S.I.; Zvelebil, M.J.; Shuttleworth, S.J.; Hancox, T.; Saghir, N.; Timms, J.F.; Waterfield, M.D. Exploring the specificity of the PI3K family inhibitor LY294002. Biochem. J. 2007, 404, 15–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, V.T.; Giannoni, F.; Dubois, M.F.; Seo, S.J.; Vigneron, M.; Kédinger, C.; Bensaude, O. In vivo degradation of RNA polymerase II largest subunit triggered by α-amanitin. Nucl. Acids Res. 1996, 24, 2924–2929. [Google Scholar] [CrossRef]
- Hernández, J.; Bechara, E.; Schlesinger, D.; Delgado, J.; Serrano, L.; Valcárcel, J. Tumor suppressor properties of the splicing regulatory factor RBM10. RNA Biol. 2016, 13, 466–472. [Google Scholar] [CrossRef]
- Coleman, M.P.; Ambrose, H.J.; Carrel, L.; Németh, A.H.; Willard, H.F.; Davies, K.E. A novel gene, DXS8237E, lies within 20 kb upstream of UBE1 in Xp11.23 and has a different X inactivation status. Genomics 1996, 31, 135–138. [Google Scholar] [CrossRef]
- Thiselton, D.L.; McDowall, J.; Brandau, O.; Ramser, J.; d’Esposito, F.; Bhattacharya, S.S.; Ross, M.T.; Hardcastle, A.J.; Meindl, A. An integrated, functionally annotated gene map of the DXS8026–ELK1 interval on human Xp11. 3–Xp11. 23: Potential hotspot for neurogenetic disorders. Genomics 2002, 79, 560–572. [Google Scholar] [CrossRef]
- Goto, Y.; Kimura, H. Inactive X chromosome-specific histone H3 modifications and CpG hypomethylation flank a chromatin boundary between an X-inactivated and an escape gene. Nucl. Acids Res. 2009, 37, 7416–7428. [Google Scholar] [CrossRef] [Green Version]
- Kataoka, N.; Mayeda, A.; Ohno, K. Editorial: RNA diseases in humans—From fundamental research to therapeutic applications. Front. Mol. Biosci. 2019, 6, 53. [Google Scholar] [CrossRef]
- Miyoshi, H.; Takahashi, M.; Gage, F.H.; Verma, I.M. Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc. Natl. Acad. Sci. USA 1997, 94, 10319–10323. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.-Y.; Xiao, S.-J.; Kunimoto, H.; Tokunaga, K.; Kojima, H.; Kimura, M.; Yamamoto, T.; Yamamoto, N.; Zhao, H.; Nishio, K.; et al. Sequestration of RBM10 in Nuclear Bodies: Targeting Sequences and Biological Significance. Int. J. Mol. Sci. 2021, 22, 10526. https://doi.org/10.3390/ijms221910526
Wang L-Y, Xiao S-J, Kunimoto H, Tokunaga K, Kojima H, Kimura M, Yamamoto T, Yamamoto N, Zhao H, Nishio K, et al. Sequestration of RBM10 in Nuclear Bodies: Targeting Sequences and Biological Significance. International Journal of Molecular Sciences. 2021; 22(19):10526. https://doi.org/10.3390/ijms221910526
Chicago/Turabian StyleWang, Ling-Yu, Sheng-Jun Xiao, Hiroyuki Kunimoto, Kazuaki Tokunaga, Hirotada Kojima, Masatsugu Kimura, Takahiro Yamamoto, Naoki Yamamoto, Hong Zhao, Koji Nishio, and et al. 2021. "Sequestration of RBM10 in Nuclear Bodies: Targeting Sequences and Biological Significance" International Journal of Molecular Sciences 22, no. 19: 10526. https://doi.org/10.3390/ijms221910526
APA StyleWang, L. -Y., Xiao, S. -J., Kunimoto, H., Tokunaga, K., Kojima, H., Kimura, M., Yamamoto, T., Yamamoto, N., Zhao, H., Nishio, K., Tani, T., Nakajima, K., Sunami, K., & Inoue, A. (2021). Sequestration of RBM10 in Nuclear Bodies: Targeting Sequences and Biological Significance. International Journal of Molecular Sciences, 22(19), 10526. https://doi.org/10.3390/ijms221910526