Roles of Two Small Leucine-Rich Proteoglycans Decorin and Biglycan in Pregnancy and Pregnancy-Associated Diseases
Abstract
:1. A Brief Review of the Placental Structure and Functions
1.1. Hemochorial Placentation
1.2. Routes of Trophoblast Invasion
2. Proteoglycans
Small Leucine-Rich Proteoglycans
3. Distribution and Functions of DCN in the Pregnant Uterus and the Placenta
3.1. Cellular Source of DCN and Its Role in Trophoblast Functions
3.2. Localization of DCN in the Uterus and Placenta in the Human and Other Species
3.3. Role of DCN in Decidualization during Pregnancy
3.4. Role of DCN in Collagen Fibrillogenesis
3.5. Roles of DCN in Matrix Remodeling and Structural Stability of Fetal Membranes
3.6. Role of DCN in Uterine Cervix and Myometrium
3.7. Role of DCN in Murine Endometrium
3.8. Role of DCN in Human Endometrium
4. Distribution and Functions of BGN in the Pregnant Uterus and the Placenta
4.1. Roles of BGN in Collagen Fibrillogenesis in the Uterus
4.2. Roles of BGN in Matrix Remodeling and Stabilizing the Fetal Membranes
4.3. Role of BGN in the Uterine Cervix, Myometrium, and Endometrium
4.4. Role of BGN in Endometrial Decidualization
5. Mode of Action of DCN
6. Mode of Action of BGN
7. Role of DCN in Pregnancy-Associated Disorders
7.1. Preeclampsia
7.2. Fetal Growth Restriction
7.3. Preterm Birth, Preterm Labor, and PPROM
7.4. Endometrium-Related Disorders
7.5. Invasive Placentas
8. Roles of BGN in Pregnancy-Associated Disorders
8.1. FGR
8.2. PPROM, PTL, and Endometrial-Related Pathologies
9. Compensatory and Functional Overlaps of DCN and BGN
10. Conclusions
Unanswered Questions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Soares, M.J.; Varberg, K.; Iqbal, K. Hemochorial placentation: Development, function, and adaptations. Biol. Reprod. 2018, 99, 196–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, G.; Jauniaux, E.; Charnock-Jones, D.S. Human Early Placental Development: Potential Roles of the Endometrial Glands. Placenta 2007, 28, S64–S69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, C.; Choudhury, R.; Aplin, J. Tracking nutrient transfer at the human maternofetal interface from 4 weeks to term. Placenta 2015, 36, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Bulmer, J.N.; Morrison, L.; Johnson, P.M. Expression of the proliferation markers Ki67 and transferrin receptor by human trophoblast populations. J. Reprod. Immunol. 1988, 14, 291–302. [Google Scholar] [CrossRef]
- Genbacev, O.; McMaster, M.T.; Fisher, S.J. A Repertoire of Cell Cycle Regulators Whose Expression Is Coordinated with Human Cytotrophoblast Differentiation. Am. J. Pathol. 2000, 157, 1337–1351. [Google Scholar] [CrossRef] [Green Version]
- Lala, P.K.; Nandi, P.; Hadi, A.; Halari, C. A crossroad between placental and tumor biology: What have we learnt? Placenta 2021, 12. [Google Scholar] [CrossRef]
- Bulmer, J.N.; Innes, B.A.; Robson, S.C.; Lash, G.E. Transient loss of endothelial cells in human spiral artery remodelling during early pregnancy: Challenging the dogma. Placenta 2020, 101, 230–233. [Google Scholar] [CrossRef]
- Moser, G.; Windsperger, K.; Pollheimer, J.; de Sousa Lopes, S.C.; Huppertz, B. Human trophoblast invasion: New and unexpected routes and functions. Histochem. Cell Biol. 2018, 150, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Huppertz, B. Traditional and New Routes of Trophoblast Invasion and Their Implications for Pregnancy Diseases. Int. J. Mol. Sci. 2019, 21, 289. [Google Scholar] [CrossRef] [Green Version]
- AlLamki, R.S.; Skepper, J.N.; Burton, G. Are human placental bed giant cells merely aggregates of small mononuclear trophoblast cells? An ultrastructural and immunocytochemical study. Hum. Reprod. 1999, 14, 496–504. [Google Scholar] [CrossRef]
- Iozzo, R.V.; Schaefer, L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol. J. Int. Soc. Matrix Biol. 2015, 42, 11–55. [Google Scholar] [CrossRef]
- Elfenbein, A.; Simons, M. Auxiliary and Autonomous Proteoglycan Signaling Networks. Methods Enzymol. 2010, 480, 3–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindahl, U.; Couchman, J.; Kimata, K.; Esko, J.D. Proteoglycans and Sulfated Glycosaminoglycans. In Essentials of Glycobiology, 3rd ed.; Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., et al., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2017; Chapter 17. [Google Scholar]
- Gleeson, L.M.; Chakraborty, C.; McKinnon, T.; Lala, P.K. Insulin-Like Growth Factor-Binding Protein 1 Stimulates Human Trophoblast Migration by Signaling through α5β1 Integrin via Mitogen-Activated Protein Kinase Pathway. J. Clin. Endocrinol. Metab. 2001, 86, 2484–2493. [Google Scholar] [CrossRef] [Green Version]
- Brézillon, S.; Pietraszek-Gremplewicz, K.; Maquart, F.-X.; Wegrowski, Y. Lumican effects in the control of tumour progression and their links with metalloproteinases and integrins. FEBS J. 2013, 280, 2369–2381. [Google Scholar] [CrossRef] [PubMed]
- Henry, S.P.; Takanosu, M.; Boyd, T.C.; Mayne, P.M.; Eberspaecher, H.; Zhou, W.; de Crombrugghe, B.; Höök, M.; Mayne, R. Expression Pattern and Gene Characterization of Asporin: A newly discovered member of the leucine-rich repeat protein family. J. Biol. Chem. 2012, 276, 12212–12221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ameye, L.; Young, M.F. Mice deficient in small leucine-rich proteoglycans: Novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases. Glycobiology 2002, 12, 107R–116R. [Google Scholar] [CrossRef] [PubMed]
- Kalamajski, S.; Oldberg, Å. The role of small leucine-rich proteoglycans in collagen fibrillogenesis. Matrix Biol. 2010, 29, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Moreth, K.; Iozzo, R.V.; Schaefer, L. Small leucine-rich proteoglycans orchestrate receptor crosstalk during inflammation. Cell Cycle 2012, 11, 2084–2091. [Google Scholar] [CrossRef] [Green Version]
- Neill, T.; Schaefer, L.; Iozzo, R.V. Decorin: A guardian from the matrix. Am. J. Pathol. 2012, 181, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, L.; Iozzo, R.V. Biological Functions of the Small Leucine-rich Proteoglycans: From Genetics to Signal Transduction. J. Biol. Chem. 2008, 283, 21305–21309. [Google Scholar] [CrossRef] [Green Version]
- Goldoni, S.; Iozzo, R.V. Tumor microenvironment: Modulation by decorin and related molecules harboring leucine-rich tandem motifs. Int. J. Cancer 2008, 123, 2473–2479. [Google Scholar] [CrossRef]
- Schaefer, L.; Iozzo, R.V. Small leucine-rich proteoglycans, at the crossroad of cancer growth and inflammation. Curr. Opin. Genet. Dev. 2012, 22, 56–57. [Google Scholar] [CrossRef] [Green Version]
- Iozzo, R.V. The Family of the Small Leucine-Rich Proteoglycans: Key Regulators of Matrix Assembly and Cellular Growth. Crit. Rev. Biochem. Mol. Biol. 1997, 32, 141–174. [Google Scholar] [CrossRef]
- McEwan, P.A.; Scott, P.G.; Bishop, P.; Bella, J. Structural correlations in the family of small leucine-rich repeat proteins and proteoglycans. J. Struct. Biol. 2006, 155, 294–305. [Google Scholar] [CrossRef]
- Bengtsson, E.; Neame, P.J.; Heinegård, D.; Sommarin, Y. The Primary Structure of a Basic Leucine-rich Repeat Protein, PRELP, Found in Connective Tissues. J. Biol. Chem. 1995, 270, 25639–25644. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, P.; Aspberg, A.; Onnerfjord, P.; Bayliss, M.T.; Neame, P.J.; Heinegård, D. Identification and Characterization of Asporin: A novel member of the leucine-rich repeat protein family closely related to decorin and biglycan. J. Biol. Chem. 2001, 276, 12201–12211. [Google Scholar] [CrossRef] [Green Version]
- Tillgren, V.; Onnerfjord, P.; Haglund, L.; Heinegård, D. The Tyrosine Sulfate-rich Domains of the LRR Proteins Fibromodulin and Osteoadherin Bind Motifs of Basic Clusters in a Variety of Heparin-binding Proteins, Including Bioactive Factors. J. Biol. Chem. 2009, 284, 28543–28553. [Google Scholar] [CrossRef] [Green Version]
- Bredrup, C.; Knappskog, P.M.; Majewski, J.; Rødahl, E.; Boman, H. Congenital Stromal Dystrophy of the Cornea Caused by a Mutation in the Decorin Gene. Investig. Ophthalmol. Vis. Sci. 2005, 46, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Birk, D.E. Focus on Molecules: Decorin. Exp. Eye Res. 2011, 92, 444–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neame, P.; Sommarin, Y.; Boynton, R.; Heinegård, D. The structure of a 38-kDa leucine-rich protein (chondroadherin) isolated from bovine cartilage. J. Biol. Chem. 1994, 269, 21547–21554. [Google Scholar] [CrossRef]
- Bech-Hansen, N.; Naylor, M.J.; Maybaum, T.A.; Sparkes, R.L.; Koop, B.; Birch, D.; Bergen, A.A.; Prinsen, C.F.; Polomeno, R.C.; Gal, A.; et al. Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nat. Genet. 2000, 26, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Pusch, C.M.; Zeitz, C.; Brandau, O.; Pesch, K.; Achatz, H.; Feil, S.; Scharfe, C.; Maurer, J.; Jacobi, F.K.; Pinckers, A.; et al. The complete form of X-linked congenital stationary night blindness is caused by mutations in a gene encoding a leucine-rich repeat protein. Nat. Genet. 2000, 26, 324–327. [Google Scholar] [CrossRef]
- Ohta, K.; Lupo, G.; Kuriyama, S.; Keynes, R.; Holt, C.E.; Harris, W.A.; Tanaka, H.; Ohnuma, S.-I. Tsukushi Functions as an Organizer Inducer by Inhibition of BMP Activity in Cooperation with Chordin. Dev. Cell 2004, 7, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-D.; Fisher, L.W.; Robey, P.; Young, M.F. The small leucine-rich proteoglycan biglycan modulates BMP-4-induced osteoblast differentiation. FASEB J. 2004, 18, 948–958. [Google Scholar] [CrossRef]
- Moreno, M.; Muñoz, R.; Aroca, F.; Labarca, M.; Brandan, E.; Larraín, J. Biglycan is a new extracellular component of the Chordin–BMP4 signaling pathway. EMBO J. 2005, 24, 1397–1405. [Google Scholar] [CrossRef] [Green Version]
- Ross, M.D.; Bruggeman, L.A.; Hanss, B.; Sunamoto, M.; Marras, D.; Klotman, M.E.; Klotman, P.E. Podocan, a Novel Small Leucine-rich Repeat Protein Expressed in the Sclerotic Glomerular Lesion of Experimental HIV-associated Nephropathy. J. Biol. Chem. 2003, 278, 33248–33255. [Google Scholar] [CrossRef] [Green Version]
- Melrose, J.; Fuller, E.S.; Roughley, P.J.; Smith, M.M.; Kerr, B.; Hughes, C.E.; Caterson, B.; Little, C.B. Fragmentation of decorin, biglycan, lumican and keratocan is elevated in degenerate human meniscus, knee and hip articular cartilages compared with age-matched macroscopically normal and control tissues. Arthritis Res. Ther. 2008, 10, R79. [Google Scholar] [CrossRef] [Green Version]
- Halari, C.D.; Nandi, P.; Jeyarajah, M.J.; Renaud, S.J.; Lala, P.K. Decorin production by the human decidua: Role in decidual cell maturation. Mol. Hum. Reprod. 2020, 26, 784–796. [Google Scholar] [CrossRef]
- Lysiak, J.; Hunt, J.; Pringle, G.; Lala, P. Localization of transforming growth factor β and its natural inhibitor decorin in the human placenta and decidua throughout gestation. Placenta 1995, 16, 221–231. [Google Scholar] [CrossRef]
- Graham, C.H.; Lala, P.K. Mechanisms of placental invasion of the uterus and their control. Biochem. Cell Biol. 1992, 70, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Guimond, M.-J.; Chakraborty, C.; Lala, P.K. Control of Proliferation, Migration, and Invasiveness of Human Extravillous Trophoblast by Decorin, a Decidual Product. Biol. Reprod. 2002, 67, 681–689. [Google Scholar] [CrossRef] [Green Version]
- Iacob, D.; Cai, J.; Tsonis, M.; Babwah, A.; Chakraborty, C.; Bhattacharjee, R.N.; Lala, P.K. Decorin-Mediated Inhibition of Proliferation and Migration of the Human Trophoblast via Different Tyrosine Kinase Receptors. Endocrinology 2008, 149, 6187–6197. [Google Scholar] [CrossRef] [Green Version]
- Khan, G.; Girish, G.V.; Lala, N.; Di Guglielmo, G.M.; Lala, P.K. Decorin Is a Novel VEGFR-2-Binding Antagonist for the Human Extravillous Trophoblast. Mol. Endocrinol. 2011, 25, 1431–1443. [Google Scholar] [CrossRef] [PubMed]
- Lala, N.; Girish, G.V.; Cloutier-Bosworth, A.; Lala, P.K. Mechanisms in Decorin Regulation of Vascular Endothelial Growth Factor-Induced Human Trophoblast Migration and Acquisition of Endothelial Phenotype. Biol. Reprod. 2012, 87, 59. [Google Scholar] [CrossRef] [PubMed]
- Nandi, P.; Siddiqui, M.F.; Lala, P.K. Restraint of Trophoblast Invasion of the Uterus by Decorin: Role in Pre-eclampsia. Am. J. Reprod. Immunol. 2016, 75, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.F.; Nandi, P.; Girish, G.V.; Nygard, K.; Eastabrook, G.; De Vrijer, B.; Han, V.K.; Lala, P.K. Decorin over-expression by decidual cells in preeclampsia: A potential blood biomarker. Am. J. Obstet. Gynecol. 2016, 215, 361.e1–361.e15. [Google Scholar] [CrossRef] [PubMed]
- Lala, P.K.; Nandi, P. Mechanisms of trophoblast migration, endometrial angiogenesis in preeclampsia: The role of decorin. Cell Adhes. Migr. 2016, 10, 111–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nandi, P.; Lim, H.; Torres-Garcia, E.J.; Lala, P.K. Human trophoblast stem cell self-renewal and differentiation: Role of decorin. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, Y.; Sotomaru, Y.; Katsuzawa, Y.; Kono, T.; Meguro, M.; Oshimura, M.; Kawai, J.; Tomaru, Y.; Kiyosawa, H.; Nikaido, I.; et al. Asb4, Ata3, and Dcn Are Novel Imprinted Genes Identified by High-Throughput Screening Using RIKEN cDNA Microarray. Biochem. Biophys. Res. Commun. 2002, 290, 1499–1505. [Google Scholar] [CrossRef] [PubMed]
- Monk, D.; Arnaud, P.; Apostolidou, S.; Hills, F.A.; Kelsey, G.; Stanier, P.; Feil, R.; Moore, G. Limited evolutionary conservation of imprinting in the human placenta. Proc. Natl. Acad. Sci. USA 2006, 103, 6623–6628. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Li, C.; Huo, J.; Zhao, S. Expression and genomic imprinting of DCN, PON2 and PEG3 genes in porcine placenta. Anim. Reprod. Sci. 2011, 123, 70–74. [Google Scholar] [CrossRef]
- Guillomot, M.; Campion, E.; Prézelin, A.; Sandra, O.; Hue, I.; Le Bourhis, D.; Richard, C.; Biase, F.; Rabel, C.; Wallace, R.; et al. Spatial and temporal changes of Decorin, Type I collagen and Fibronectin expression in normal and clone bovine placenta. Placenta 2014, 35, 737–747. [Google Scholar] [CrossRef]
- Franczyk, M.; Wawrzykowski, J.; Kankofer, M. Preliminary results of the placental decorin profile in bovine pregnancy and parturition. Glycoconj. J. 2018, 35, 461–465. [Google Scholar] [CrossRef] [Green Version]
- Batbayal, T.; Ishii, Y.; Nomura, Y.; Watanabe, M.; Yasuko, T.; Nakamura, S. Change in Decorin during Aging of Rat Placenta. Connect. Tissue Res. 2006, 47, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Narita, H.; Takeda, Y.; Takagaki, K.; Nakamura, T.; Harata, S.; Endo, M. Identification of Glycosaminoglycans Using High-Performance Liquid Chromatography on a Hydroxyapatite Column. Anal. Biochem. 1995, 232, 133–136. [Google Scholar] [CrossRef]
- Iwahashi, M.; Ooshima, A.; Nakano, R. Increase in the relative level of type V collagen during development and ageing of the placenta. J. Clin. Pathol. 1996, 49, 916–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gellersen, B.; Brosens, J. Cyclic Decidualization of the Human Endometrium in Reproductive Health and Failure. Endocr. Rev. 2014, 35, 851–905. [Google Scholar] [CrossRef] [PubMed]
- Gellersen, B.; Brosens, I.A.; Brosens, J. Decidualization of the Human Endometrium: Mechanisms, Functions, and Clinical Perspectives. Semin. Reprod. Med. 2007, 25, 445–453. [Google Scholar] [CrossRef]
- Hjelm, A.M.; Barchan, K.; Malmström, A.; Ekman-Ordeberg, G.E. Changes of the uterine proteoglycan distribution at term pregnancy and during labour. Eur. J. Obstet. Gynecol. Reprod. Biol. 2002, 100, 146–151. [Google Scholar] [CrossRef]
- Ansell, J.D.; Barlow, P.W.; McLaren, A. Binucleate and polyploid cells in the decidua of the mouse. J. Embryol. Exp. Morphol. 1974, 31, 223–227. [Google Scholar]
- Alberto-Rincon, M.C.; Zorn, T.M.T.; Abrahamsohn, P.A. Diameter increase of collagen fibrils of the mouse endometrium during decidualization. Am. J. Anat. 1989, 186, 417–429. [Google Scholar] [CrossRef]
- Carbone, K.; Pinto, N.M.; Abrahamsohn, P.A.; Zorn, T.M. Arrangement and fine structure of collagen fibrils in the decidualized mouse endometrium. Microsc. Res. Tech. 2006, 69, 36–45. [Google Scholar] [CrossRef]
- Danielson, K.G.; Baribault, H.; Holmes, D.F.; Graham, H.; Kadler, K.; Iozzo, R.V. Targeted Disruption of Decorin Leads to Abnormal Collagen Fibril Morphology and Skin Fragility. J. Cell Biol. 1997, 136, 729–743. [Google Scholar] [CrossRef] [Green Version]
- Sanches, J.C.T.; Jones, C.J.P.; Aplin, J.D.; Iozzo, R.V.; Zorn, T.M.T.; Oliveira, S.F. Collagen fibril organization in the pregnant endometrium of decorin-deficient mice. J. Anat. 2010, 216, 144–155. [Google Scholar] [CrossRef] [Green Version]
- Ezura, Y.; Chakravarti, S.; Oldberg, Å.; Chervoneva, I.; Birk, D.E. Differential Expression of Lumican and Fibromodulin Regulate Collagen Fibrillogenesis in Developing Mouse Tendons. J. Cell Biol. 2000, 151, 779–788. [Google Scholar] [CrossRef]
- Zhang, G.; Ezura, Y.; Chervoneva, I.; Robinson, P.S.; Beason, D.P.; Carine, E.T.; Soslowsky, L.J.; Iozzo, R.V.; Birk, D.E. Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development. J. Cell. Biochem. 2006, 98, 1436–1449. [Google Scholar] [CrossRef]
- Steer, P. The epidemiology of preterm labour. BJOG 2005, 112, 1–3. [Google Scholar] [CrossRef]
- Barabas, A.P. Ehlers-Danlos syndrome: Associated with prematurity and premature rupture of foetal membranes; possible increase in incidence. Br. Med. J. 1966, 2, 682–684. [Google Scholar] [CrossRef] [Green Version]
- Yen, J.-L.; Lin, S.-P.; Chen, M.-R.; Niu, D.-M. Clinical Features of Ehlers-Danlos Syndrome. J. Formos. Med. Assoc. 2006, 105, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Kresse, H.; Rosthøj, S.; Quentin, E.; Hollmann, J.; Glössl, J.; Okada, S.; Tønnesen, T. Glycosaminoglycan-free small proteoglycan core protein is secreted by fibroblasts from a patient with a syndrome resembling progeroid. Am. J. Hum. Genet. 1987, 41, 436–453. [Google Scholar]
- Quentin, E.; Gladen, A.; Roden, L.; Kresse, H. A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: Galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome. Proc. Natl. Acad. Sci. USA 1990, 87, 1342–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byers, P.H.; Murray, M.L. Ehlers–Danlos syndrome: A showcase of conditions that lead to understanding matrix biology. Matrix Biol. 2014, 33, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Heegaard, A.-M.; Corsi, A.; Danielsen, C.C.; Nielsen, K.L.; Jorgensen, H.L.; Riminucci, M.; Young, M.F.; Bianco, P. Biglycan Deficiency Causes Spontaneous Aortic Dissection and Rupture in Mice. Circulation 2007, 115, 2731–2738. [Google Scholar] [CrossRef] [Green Version]
- Gomez, D.; Zen, A.A.H.; Borges, L.F.; Philippe, M.; Gutierrez, P.S.; Jondeau, G.; Michel, J.-B.; Vranckx, R. Syndromic and non-syndromic aneurysms of the human ascending aorta share activation of the Smad2 pathway. J. Pathol. 2009, 218, 131–142. [Google Scholar] [CrossRef]
- Wu, Z.; Horgan, C.E.; Carr, O.; Owens, R.T.; Iozzo, R.V.; Lechner, B.E. Biglycan and decorin differentially regulate signaling in the fetal membranes. Matrix Biol. 2014, 35, 266–275. [Google Scholar] [CrossRef]
- Helmig, R.; Oxlund, H.; Petersen, L.K.; Uldbjerg, N. Different biomechanical properties of human fetal membranes obtained before and after delivery. Eur. J. Obstet. Gynecol. Reprod. Biol. 1993, 48, 183–189. [Google Scholar] [CrossRef]
- Halaburt, J.T.; Uldbjerg, N.; Helmig, R.; Ohlsson, K. The concentration of collagen and the collagenolytic activity in the amnion and the chorion. Eur. J. Obstet. Gynecol. Reprod. Biol. 1989, 31, 75–82. [Google Scholar] [CrossRef]
- Meinert, M.; Eriksen, G.V.; Petersen, A.C.; Helmig, R.B.; Laurent, C.; Uldbjerg, N.; Malmström, A. Proteoglycans and hyaluronan in human fetal membranes. Am. J. Obstet. Gynecol. 2001, 184, 679–685. [Google Scholar] [CrossRef] [Green Version]
- Meinert, M.; Malmström, A.; Tufvesson, E.; Westergren-Thorsson, G.; Petersen, A.; Laurent, C.; Uldbjerg, N.; Eriksen, G. Labour Induces Increased Concentrations of Biglycan and Hyaluronan in Human Fetal Membranes. Placenta 2007, 28, 482–486. [Google Scholar] [CrossRef] [Green Version]
- El Khwad, M.; Pandey, V.; Stetzer, B.; Mercer, B.M.; Kumar, D.; Moore, R.M.; Fox, J.; Redline, R.W.; Mansour, J.M.; Moore, J.J. Fetal Membranes from Term VAginal Deliveries Have a Zone of Weakness Exhibiting Characteristics of Apoptosis and Remodeling. J. Soc. Gynecol. Investig. 2006, 13, 191–195. [Google Scholar] [CrossRef]
- Moore, R.M.; Mansour, J.M.; Redline, R.W.; Mercer, B.M.; Moore, J.J. The Physiology of Fetal Membrane Rupture: Insight Gained from the Determination of Physical Properties. Placenta 2006, 27, 1037–1051. [Google Scholar] [CrossRef]
- Slater, D.M.; Dennes, W.J.; Campa, J.S.; Poston, L.; Bennett, P.R. Expression of cyclo-oxygenase types-1 and -2 in human myometrium throughout pregnancy. Mol. Hum. Reprod. 1999, 5, 880–884. [Google Scholar] [CrossRef]
- Ogita, K.; Kimura, T.; Nakamura, H.; Koyama, S.; Tsujie, T.; Tomiie, M.; Tsutsui, T.; Shimoya, K.; Wada, Y.; Koyama, M.; et al. Differential Expression and Localization of Decorin in Human Choriodecidual Membrane during Preterm and Term Pregnancy. Am. J. Reprod. Immunol. 2004, 51, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Norman, M.; Ekman, G.; Malmström, A. Changed proteoglycan metabolism in human cervix immediately after spontaneous vaginal delivery. Obstet. Gynecol. 1993, 81, 217–223. [Google Scholar] [PubMed]
- Leppert, P.C.; Kokenyesi, R.; Klemenich, C.A.; Fisher, J. Further evidence of a decorin-collagen interaction in the disruption of cervical collagen fibers during rat gestation. Am. J. Obstet. Gynecol. 2000, 182, 805–812. [Google Scholar] [CrossRef]
- Wu, W.X.; Zhang, Q.; Unno, N.; Derks, J.B.; Nathanielsz, P.W. Characterization of decorin mRNA in pregnant intrauterine tissues of the ewe and regulation by steroids. Am. J. Physiol. Cell Physiol. 2000, 278, C199–C206. [Google Scholar] [CrossRef]
- Salgado, R.M.; Favaro, R.R.; Zorn, T.M. Modulation of small leucine-rich proteoglycans (SLRPs) expression in the mouse uterus by estradiol and progesterone. Reprod. Biol. Endocrinol. 2011, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- San Martin, S.; Soto-Suazo, M.; De Oliveira, S.; Aplin, J.; Abrahamsohn, P.; Zorn, T. Small leucine-rich proteoglycans (SLRPs) in uterine tissues during pregnancy in mice. Reproduction 2003, 125, 585–595. [Google Scholar] [CrossRef]
- Tong, W.; Pollard, J.W. Female sex steroid hormone regulation of cell proliferation in the endometrium. In The Endometrium; Glasser, S.R., Aplin, J.D., Giudice, L.C., Tabibzadeh, S., Eds.; Taylor & Francis: London, UK, 2002; pp. 94–109. [Google Scholar]
- Wu, Z.; Aron, A.W.; Macksoud, E.E.; Iozzo, R.; Hai, C.-M.; Lechner, B.E. Uterine Dysfunction in Biglycan and Decorin Deficient Mice Leads to Dystocia during Parturition. PLoS ONE 2012, 7, e29627. [Google Scholar] [CrossRef]
- Calmus, M.L.; Macksoud, E.E.; Tucker, R.; Iozzo, R.V.; Lechner, B.E. A mouse model of spontaneous preterm birth based on the genetic ablation of biglycan and decorin. Reproduction 2011, 142, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Osteen, K.G.; Rodgers, W.H.; Gaire, M.; Hargrove, J.T.; Gorstein, F.; Matrisian, L.M. Stromal-epithelial interaction mediates steroidal regulation of metalloproteinase expression in human endometrium. Proc. Natl. Acad. Sci. USA 1994, 91, 10129–10133. [Google Scholar] [CrossRef] [Green Version]
- Yanaihara, A.; Otsuka, Y.; Iwasaki, S.; Koide, K.; Aida, T.; Okai, T. Comparison in gene expression of secretory human endometrium using laser microdissection. Reprod. Biol. Endocrinol. 2004, 2, 66. [Google Scholar] [CrossRef] [Green Version]
- Yanaihara, A.; Otsuka, Y.; Iwasaki, S.; Aida, T.; Tachikawa, T.; Irie, T.; Okai, T. Differences in gene expression in the proliferative human endometrium. Fertil. Steril. 2005, 83 (Suppl. S1), 1206–1215. [Google Scholar] [CrossRef] [PubMed]
- Lucariello, A.; Trabucco, E.; Boccia, O.; Perna, A.; Sellitto, C.; Castaldi, M.A.; De Falco, M.; De Luca, A.; Cobellis, L. Small leucine rich proteoglycans are differently distributed in normal and pathological endometrium. In Vivo 2015, 29, 217–222. [Google Scholar] [PubMed]
- Brar, A.; Handwerger, S.; Kessler, C.A.; Aronow, B.J. Gene induction and categorical reprogramming during in vitro human endometrial fibroblast decidualization. Physiol. Genom. 2001, 7, 135–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eyal, O.; Jomain, J.-B.; Kessler, C.; Goffin, V.; Handwerger, S. Autocrine Prolactin Inhibits Human Uterine Decidualization: A Novel Role for Prolactin. Biol. Reprod. 2007, 76, 777–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svensson, L.; Aszódi, A.; Reinholt, F.P.; Fässler, R.; Heinegård, D.; Oldberg, Å. Fibromodulin-null Mice Have Abnormal Collagen Fibrils, Tissue Organization, and Altered Lumican Deposition in Tendon. J. Biol. Chem. 1999, 274, 9636–9647. [Google Scholar] [CrossRef] [Green Version]
- Chakravarti, S.; Petroll, W.M.; Hassell, J.R.; Jester, J.V.; Lass, J.H.; Paul, J.; Birk, D.E. Corneal opacity in lumican-null mice: Defects in collagen fibril structure and packing in the posterior stroma. Investig. Ophthalmol. Vis. Sci. 2000, 41, 3365–3373. [Google Scholar]
- Chakravarti, S.; Zhang, G.; Chervoneva, I.; Roberts, L.; Birk, D.E. Collagen fibril assembly during postnatal development and dysfunctional regulation in the lumican-deficient murine cornea. Dev. Dyn. 2006, 235, 2493–2506. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, S.; Goldoni, S.; Calder, B.W.; Simpson, H.C.; Owens, R.T.; McQuillan, D.J.; Young, M.F.; Iozzo, R.; Birk, D.E. Genetic Evidence for the Coordinated Regulation of Collagen Fibrillogenesis in the Cornea by Decorin and Biglycan. J. Biol. Chem. 2009, 284, 8888–8897. [Google Scholar] [CrossRef] [Green Version]
- Åkerud, A.; Dubicke, A.; Sennström, M.; Ekman-Ordeberg, G.; Malmström, A. Differences in heparan sulfate production in cervical fibroblast cultures from women undergoing term and preterm delivery. Acta Obstet. Gynecol. Scand. 2008, 87, 1220–1228. [Google Scholar] [CrossRef]
- Covarrubias, A.E.C.; Barrence, F.C.; Zorn, T.M.T. The absence of the embryo in the pseudopregnant uterus alters the deposition of some ECM molecules during decidualization in mice. Connect. Tissue Res. 2015, 56, 253–263. [Google Scholar] [CrossRef]
- Ace, C.I.; Okulicz, W.C. Microarray profiling of progesterone-regulated endometrial genes during the rhesus monkey secretory phase. Reprod. Biol. Endocrinol. 2004, 2, 54. [Google Scholar] [CrossRef] [Green Version]
- San Martin, S.; Zorn, T.M. The small proteoglycan biglycan is associated with thick collagen fibrils in the mouse decidua. Cell Mol. Biol. 2003, 49, 673–678. [Google Scholar]
- Douglas, T.; Heinemann, S.; Bierbaum, S.; Scharnweber, D.; Worch, H. Fibrillogenesis of Collagen Types I, II, and III with Small Leucine-Rich Proteoglycans Decorin and Biglycan. Biomacromolecules 2006, 7, 2388–2393. [Google Scholar] [CrossRef]
- Vogel, K.G.; Paulsson, M.; Heinegård, D. Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem. J. 1984, 223, 587–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pins, G.; Christiansen, D.; Patel, R.; Silver, F. Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophys. J. 1997, 73, 2164–2172. [Google Scholar] [CrossRef] [Green Version]
- Reese, S.P.; Underwood, C.J.; Weiss, J.A. Effects of decorin proteoglycan on fibrillogenesis, ultrastructure, and mechanics of type I collagen gels. Matrix Biol. 2013, 32, 414–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merle, B.; Malaval, L.; Lawler, J.; Delmas, P.; Clezardin, P. Decorin inhibits cell attachment to thrombospondin-1 by binding to a KKTR-dependent cell adhesive site present within the N-terminal domain of thrombospondin-1. J. Cell Biochem. 1997, 67, 75–83. [Google Scholar] [CrossRef]
- Winnemöller, M.; Schön, P.; Vischer, P.; Kresse, H. Interactions between thrombospondin and the small proteoglycan decorin: Interference with cell attachment. Eur. J. Cell Biol. 1992, 59, 47–55. [Google Scholar]
- Schmidt, G.; Robenek, H.; Harrach, B.; Glössl, J.; Nolte, V.; Hörmann, H.; Richter, H.; Kresse, H. Interaction of small dermatan sulfate proteoglycan from fibroblasts with fibronectin. J. Cell Biol. 1987, 104, 1683–1691. [Google Scholar] [CrossRef]
- Winnemöller, M.; Schmidt, G.; Kresse, H. Influence of decorin on fibroblast adhesion to fibronectin. Eur. J. Cell Biol. 1991, 54, 10–17. [Google Scholar]
- Hildebrand, A.; Romarís, M.; Rasmussen, L.M.; Heinegård, D.; Twardzik, D.R.; Border, W.A.; Ruoslahti, E. Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor β. Biochem. J. 1994, 302 Pt 2, 527–534. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Mann, D.M.; Ruoslahti, E. Negative regulation of transforming growth factor-β by the proteoglycan decorin. Nature 1990, 346, 281–284. [Google Scholar] [CrossRef]
- Markmann, A.; Hausser, H.; Schönherr, E.; Kresse, H. Influence of decorin expression on transforming growth factor-β-mediated collagen gel retraction and biglycan induction. Matrix Biol. 2000, 19, 631–636. [Google Scholar] [CrossRef]
- Border, W.A.; Noble, N.A.; Yamamoto, T.; Harper, J.R.; Yamaguchi, Y.U.; Pierschbacher, M.D.; Ruoslahti, E. Natural inhibitor of transforming growth factor-β protects against scarring in experimental kidney disease. Nature 1992, 360, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Kolb, M.; Margetts, P.J.; Sime, P.J.; Gauldie, J. Proteoglycans decorin and biglycan differentially modulate TGF-β-mediated fibrotic responses in the lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001, 280, L1327–L1334. [Google Scholar] [CrossRef] [PubMed]
- Imai, K.; Hiramatsu, A.; Fukushima, D.; Pierschbacher, M.D.; Okada, Y. Degradation of decorin by matrix metalloproteinases: Identification of the cleavage sites, kinetic analyses and transforming growth factor-β1 release. Biochem. J. 1997, 322 Pt 3, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Iozzo, R.V.; Moscatello, D.K.; McQuillan, D.J.; Eichstetter, I. Decorin Is a Biological Ligand for the Epidermal Growth Factor Receptor. J. Biol. Chem. 1999, 274, 4489–4492. [Google Scholar] [CrossRef] [Green Version]
- Santra, M.; Reed, C.C.; Iozzo, R. Decorin Binds to a Narrow Region of the Epidermal Growth Factor (EGF) Receptor, Partially Overlapping but Distinct from the EGF-binding Epitope. J. Biol. Chem. 2002, 277, 35671–35681. [Google Scholar] [CrossRef] [Green Version]
- Moscatello, D.K.; Santra, M.; Mann, D.M.; McQuillan, D.J.; Wong, A.J.; Iozzo, R. Decorin suppresses tumor cell growth by activating the epidermal growth factor receptor. J. Clin. Investig. 1998, 101, 406–412. [Google Scholar] [CrossRef]
- Zhu, J.-X.; Goldoni, S.; Bix, G.; Owens, R.T.; McQuillan, D.J.; Reed, C.C.; Iozzo, R.V. Decorin Evokes Protracted Internalization and Degradation of the Epidermal Growth Factor Receptor via Caveolar Endocytosis. J. Biol. Chem. 2005, 280, 32468–32479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csordás, G.; Santra, M.; Reed, C.C.; Eichstetter, I.; McQuillan, D.J.; Gross, D.; Nugent, M.A.; Hajnóczky, G.; Iozzo, R.V. Sustained Down-regulation of the Epidermal Growth Factor Receptor by Decorin: A mechanism for controlling tumor growth in vivo. J. Biol. Chem. 2000, 275, 32879–32887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schönherr, E.; Sunderkötter, C.; Iozzo, R.; Schaefer, L. Decorin, a Novel Player in the Insulin-like Growth Factor System. J. Biol. Chem. 2005, 280, 15767–15772. [Google Scholar] [CrossRef] [Green Version]
- Goldoni, S.; Humphries, A.; Nyström, A.; Sattar, S.; Owens, R.T.; McQuillan, D.J.; Ireton, K.; Iozzo, R.V. Decorin is a novel antagonistic ligand of the Met receptor. J. Cell Biol. 2009, 185, 743–754. [Google Scholar] [CrossRef] [Green Version]
- Neill, T.; Painter, H.; Buraschi, S.; Owens, R.T.; Lisanti, M.; Schaefer, L.; Iozzo, R.V. Decorin Antagonizes the Angiogenic Network: Concurrent inhibition of Met, hypoxia inducible factor 1α, vascular endothelial growth factor A, and induction of thrombos-pondin-1 and TIMP3. J. Biol. Chem. 2012, 287, 5492–5506. [Google Scholar] [CrossRef] [Green Version]
- Sulochana, K.N.; Fan, H.; Jois, S.; Subramanian, V.; Sun, F.; Kini, M.; Ge, R. Peptides Derived from Human Decorin Leucine-rich Repeat 5 Inhibit Angiogenesis. J. Biol. Chem. 2005, 280, 27935–27948. [Google Scholar] [CrossRef] [Green Version]
- Merline, R.; Moreth, K.; Beckmann, J.; Nastase, M.V.; Zeng-Brouwers, J.; Tralhão, J.; Lemarchand, P.; Pfeilschifter, J.; Schaefer, R.M.; Iozzo, R.; et al. Signaling by the Matrix Proteoglycan Decorin Controls Inflammation and Cancer Through PDCD4 and MicroRNA-21. Sci. Signal. 2011, 4, ra75. [Google Scholar] [CrossRef] [Green Version]
- Andrew, M.; Mitchell, L.; Berry, L.; Paes, B.; Delorme, M.; Ofosu, F.; Burrows, R.; Khambalia, B. An anticoagulant dermatan sulfate proteoglycan circulates in the pregnant woman and her fetus. J. Clin. Investig. 1992, 89, 321–326. [Google Scholar] [CrossRef]
- Delorme, M.A.; Xu, L.; Berry, L.; Mitchell, L.; Andrew, M. Anticoagulant Dermatan Sulfate Proteoglycan (Decorin) in the Term Human Placenta. Thromb. Res. 1998, 90, 147–153. [Google Scholar] [CrossRef]
- De Miranda de Araujo, L.B.; Horgan, C.E.; Aron, A.; Iozzo, R.V.; Lechner, B.E. Compensatory fetal membrane mechanisms between biglycan and decorin in inflammation. Mol. Reprod. Dev. 2015, 82, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Horgan, C.E.; Roumimper, H.; Tucker, R.; Lechner, B.E. Altered Decorin and Smad Expression in Human Fetal Membranes in PPROM. Biol. Reprod. 2014, 91, 105. [Google Scholar] [CrossRef] [PubMed]
- Chui, A.; Murthi, P.; Gunatillake, T.; Brennecke, S.; Ignjatovic, V.; Monagle, P.; Whitelock, J.; Said, J. Altered decorin leads to disrupted endothelial cell function: A possible mechanism in the pathogenesis of fetal growth restriction? Placenta 2014, 35, 596–605. [Google Scholar] [CrossRef]
- Guo, X.; Wang, X.-F. Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res. 2008, 19, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Whinna, H.; Choi, H.; Rosenberg, L.; Church, F. Interaction of heparin cofactor II with biglycan and decorin. J. Biol. Chem. 1993, 268, 3920–3924. [Google Scholar] [CrossRef]
- Schaefer, L.; Babelova, A.; Kiss, E.; Hausser, H.-J.; Baliova, M.; Krzyzankova, M.; Marsche, G.; Young, M.F.; Mihalik, D.; Götte, M.; et al. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J. Clin. Investig. 2005, 115, 2223–2233. [Google Scholar] [CrossRef] [PubMed]
- Moreth, K.; Brodbeck, R.; Babelova, A.; Gretz, N.; Spieker, T.; Zeng-Brouwers, J.; Pfeilschifter, J.; Young, M.F.; Schaefer, R.M.; Schaefer, L. The proteoglycan biglycan regulates expression of the B cell chemoattractant CXCL13 and aggravates murine lupus nephritis. J. Clin. Investig. 2010, 120, 4251–4272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreth, K.; Frey, H.; Hubo, M.; Zeng-Brouwers, J.; Nastase, M.-V.; Hsieh, L.T.-H.; Haceni, R.; Pfeilschifter, J.; Iozzo, R.; Schaefer, L. Biglycan-triggered TLR-2- and TLR-4-signaling exacerbates the pathophysiology of ischemic acute kidney injury. Matrix Biol. 2014, 35, 143–151. [Google Scholar] [CrossRef]
- Zeng-Brouwers, J.; Beckmann, J.; Nastase, M.-V.; Iozzo, R.; Schaefer, L. De novo expression of circulating biglycan evokes an innate inflammatory tissue response via MyD88/TRIF pathways. Matrix Biol. 2014, 35, 132–142. [Google Scholar] [CrossRef]
- Hu, L.; Zang, M.-D.; Wang, H.-X.; Li, J.-F.; Su, L.-P.; Yan, M.; Li, C.; Yang, Q.-M.; Liu, B.-Y.; Zhu, Z.-G. Biglycan stimulates VEGF expression in endothelial cells by activating the TLR signaling pathway. Mol. Oncol. 2016, 10, 1473–1484. [Google Scholar] [CrossRef] [Green Version]
- Babelova, A.; Moreth, K.; Tsalastra-Greul, W.; Zeng-Brouwers, J.; Eickelberg, O.; Young, M.F.; Bruckner, P.; Pfeilschifter, J.; Schaefer, R.M.; Gröne, H.-J.; et al. Biglycan, a Danger Signal That Activates the NLRP3 Inflammasome via Toll-like and P2X Receptors. J. Biol. Chem. 2009, 284, 24035–24048. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, L.T.-H.; Frey, H.; Nastase, M.-V.; Tredup, C.; Hoffmann, A.; Poluzzi, C.; Zeng-Brouwers, J.; Manon-Jensen, T.; Schröder, K.; Brandes, R.; et al. Bimodal role of NADPH oxidases in the regulation of biglycan-triggered IL-1β synthesis. Matrix Biol. 2016, 49, 61–81. [Google Scholar] [CrossRef] [PubMed]
- Underhill, L.A.; Avalos, N.; Tucker, R.; Zhang, Z.; Messerlian, G.; Lechner, B. Serum Decorin and Biglycan as Potential Biomarkers to Predict PPROM in Early Gestation. Reprod. Sci. 2020, 27, 1620–1626. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Liu, C.-Y.; Jester, J.; Hayashi, M.; Wang, I.-J.; Funderburgh, J.L.; Saika, S.; Roughley, P.J.; Kao, C.W.-C.; Kao, W.W.-Y. Excess biglycan causes eyelid malformation by perturbing muscle development and TGF-α signaling. Dev. Biol. 2005, 277, 222–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berendsen, A.D.; Pinnow, E.L.; Maeda, A.; Brown, A.C.; McCartney-Francis, N.; Kram, V.; Owens, R.T.; Robey, P.G.; Holmbeck, K.; de Castro, L.F.; et al. Biglycan modulates angiogenesis and bone formation during fracture healing. Matrix Biol. 2014, 35, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Daglar, K.; Kirbas, A.; Timur, H.; Inal, Z.O.; Danisman, N. Placental levels of total oxidative and anti-oxidative status, ADAMTS-12 and decorin in early- and late-onset severe preeclampsia. J. Matern. Fetal Neonatal Med. 2016, 29, 4059–4064. [Google Scholar] [CrossRef]
- Zou, Y.; Yu, X.; Lu, J.; Jiang, Z.; Zuo, Q.; Fan, M.; Huang, S.; Sun, L. Decorin-Mediated Inhibition of Human Trophoblast Cells Proliferation, Migration, and Invasion and Promotion of ApoptosisIn Vitro. BioMed Res. Int. 2015, 2015, 201629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cilingir, I.U.; Varol, F.; Gurkan, H.; Sutcu, H.; Atli, E.; Eker, D.; Inan, C.; Erzincan, S.; Sayin, C. Placental and serum levels of human Klotho in severe preeclampsia: A potential sensitive biomarker. Placenta 2019, 85, 49–55. [Google Scholar] [CrossRef]
- Von Dadelszen, P.; Magee, L.A.; Roberts, J.M. Subclassification of Preeclampsia. Hypertens. Pregnancy 2003, 22, 143–148. [Google Scholar] [CrossRef]
- Caglar, M.; Yavuzcan, A.; Göksu, M.; Bulbul, G.A.; Isenlik, B.S.; Üstün, Y.; Aydin, S.; Kumru, S. Decorin: A possible marker for fetal growth restriction. Gynecol. Endocrinol. 2014, 30, 141–144. [Google Scholar] [CrossRef]
- Swan, B.C.; Murthi, P.; Rajaraman, G.; Pathirage, N.A.; Said, J.; Ignjatovic, V.; Monagle, P.; Brennecke, S. Decorin expression is decreased in human idiopathic fetal growth restriction. Reprod. Fertil. Dev. 2010, 22, 949–955. [Google Scholar] [CrossRef]
- Mongelli, M.; Gardosi, J. Fetal growth. Curr. Opin. Obstet. Gynecol. 2000, 12, 111–115. [Google Scholar] [CrossRef]
- Murthi, P.; van Zanten, D.; Eijsink, J.; Borg, A.; Stevenson, J.; Kalionis, B.; Chui, A.; Said, J.; Brennecke, S.; Erwich, J. Decorin expression is decreased in first trimester placental tissue from pregnancies with small for gestation age infants at birth. Placenta 2016, 45, 58–62. [Google Scholar] [CrossRef]
- Gogiel, T.; Bańkowski, E.; Jaworski, S. Pre-Eclampsia-Associated Differential Expression of Proteoglycans in the Umbilical Cord Arteries. Pathobiology 2001, 69, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Bankowski, E.; Romanowicz, L.; Jaworski, S. Collagen of umbilical cord arteries and its alterations in EPH-gestosis. J. Peérinat. Med. 1993, 21, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Gogiel, T.; Galewska, Z.; Romanowicz, L.; Jaworski, S.; Bańkowski, E. Pre-eclampsia-associated alterations in decorin, biglycan and versican of the umbilical cord vein wall. Eur. J. Obstet. Gynecol. Reprod. Biol. 2007, 134, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Kinzler, W.; Smulian, J.C.; Kistler, C.A.; Hahn, R.A.; Zhou, P.; Gordon, M.K. Extracellular matrix changes in the umbilical arteries of growth-restricted fetuses. Am. J. Obstet. Gynecol. 2005, 192, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Meinert, M.; Malmstrom, A.; Petersen, A.; Eriksen, G.; Uldbjerg, N. Chorioamniontis in preterm delivery is associated with degradation of decorin and biglycan and depletion of hyaluronan in fetal membranes. Placenta 2014, 35, 546–551. [Google Scholar] [CrossRef]
- Atalay, M.A.; Ozmen, T.; Demir, B.C.; Kasapoglu, I.; Ozkaya, G. Serum decorin measurement in prediction of the risk for preterm birth. Taiwan J. Obstet. Gynecol. 2018, 57, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, R.L.; Culhane, J.F.; Iams, J.D.; Romero, R. Epidemiology and causes of preterm birth. Lancet 2008, 371, 75–84. [Google Scholar] [CrossRef]
- Hillier, S.L.; Krohn, M.A.; Kiviat, N.B.; Watts, D.H.; Eschenbach, D.A. Microbiologic causes and neonatal outcomes associated with chorioamnion infection. Am. J. Obstet. Gynecol. 1991, 165 Pt 1, 955–961. [Google Scholar] [CrossRef]
- Simões, R.S.; Soares, J.M., Jr.; Simões, M.J.; Nader, H.; Baracat, M.C.P.; Maciel, G.A.R.; Serafini, P.C.; Azziz, R.; Baracat, E.C. Small leucine-rich proteoglycans (SLRPs) in the endometrium of polycystic ovary syndrome women: A pilot study. J. Ovarian Res. 2017, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sasagawa, S.; Shimizu, Y.; Kami, H.; Takeuchi, T.; Mita, S.; Imada, K.; Kato, S.; Mizuguchi, K. Dienogest is a selective progesterone receptor agonist in transactivation analysis with potent oral endometrial activity due to its efficient pharmacokinetic profile. Steroids 2008, 73, 222–231. [Google Scholar] [CrossRef]
- Sitruk-Ware, R. Reprint of Pharmacological profile of progestins. Maturitas 2008, 61, 151–157. [Google Scholar] [CrossRef]
- Sitruk-Ware, R. New Progestogens: A review of their effects in perimenopausal and postmenopausal women. Drugs Aging 2004, 21, 865–883. [Google Scholar] [CrossRef]
- Ono, Y.J.; Terai, Y.; Tanabe, A.; Hayashi, A.; Hayashi, M.; Yamashita, Y.; Kyo, S.; Ohmichi, M. Decorin induced by progesterone plays a crucial role in suppressing endometriosis. J. Endocrinol. 2014, 223, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Borbely, A.U.; Daher, S.; Ishigai, M.M.; Mattar, R.; Sun, S.Y.; Knöfler, M.; Bevilacqua, E.; Oliveira, S.F. Decorin and biglycan immunolocalization in non-villous structures of healthy and pathological human placentas. Histopathology 2014, 64, 616–625. [Google Scholar] [CrossRef]
- Neill, T.; Schaefer, L.; Iozzo, R.V. Decorin as a multivalent therapeutic agent against cancer. Adv. Drug Deliv. Rev. 2016, 97, 174–185. [Google Scholar] [CrossRef] [Green Version]
- Al-Khan, A.; Youssef, Y.; Feldman, K.; Illsley, N.; Remache, Y.; Alvarez-Perez, J.; Mannion, C.; Alvarez, M.; Zamudio, S. Biomarkers of abnormally invasive placenta. Placenta 2020, 91, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Murthi, P.; Faisal, F.; Rajaraman, G.; Stevenson, J.; Ignjatovic, V.; Monagle, P.; Brennecke, S.; Said, J. Placental Biglycan Expression Is Decreased in Human Idiopathic Fetal Growth Restriction. Placenta 2010, 31, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Chui, A.; Gunatillake, T.; Brennecke, S.P.; Ignjatovic, V.; Monagle, P.T.; Whitelock, J.M.; van Zanten, D.E.; Eijsink, J.; Wang, Y.; Deane, J.; et al. Expression of Biglycan in First Trimester Chorionic Villous Sampling Placental Samples and Altered Function in Telomerase-Immortalized Microvascular Endothelial Cells. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1168–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wray, S. Uterine contraction and physiological mechanisms of modulation. Am. J. Physiol. 1993, 264 Pt 1, C1–C18. [Google Scholar] [CrossRef] [PubMed]
- Erez, Y.; Ezra, Y.; Rojansky, N. Ehlers-Danlos Type IV in Pregnancy: A case report and a literature review. Fetal Diagn. Ther. 2008, 23, 7–9. [Google Scholar] [CrossRef] [PubMed]
- Lind, J.; Wallenburg, H. Pregnancy and the Ehlers-Danlos syndrome: A retrospective study in a Dutch population. Acta Obstet. Gynecol. Scand. 2002, 81, 293–300. [Google Scholar] [CrossRef] [PubMed]
Class | Gene Symbol | Eponym | Predominant GAG | Cys-Rich Cluster Consensus | Chromosome Location |
---|---|---|---|---|---|
I | DCN | Decorin | DS * | CX3CXCX6C | 12q21.33 |
BGN | Biglycan | CS # | Xq28 | ||
ASPN | Asporin | 9q22.31 | |||
ECM2 | Extracellular matrix protein 2 | 9q22.31 | |||
ECMX | ECM2-like protein, X chromosome | Xq28 | |||
II | FMOD | Fibromodulin | KS ** | CX3CXCX9C | 1q32.1 |
LUM | Lumican | KS ** | 12q21.33 | ||
PRELP | PRELP | 1q32.1 | |||
KERA | Keratocan | KS ** | 12q21.33 | ||
OMD | Osteomodulin | KS ** | 9q22.31 | ||
III | EPYC | Epiphycan | DS */CS # | CX2CXCX6C | 12q21.33 |
OPTC | Opticin | 1q32.1 | |||
OGN | Osteoglycin | 9q22.31 | |||
IV | CHAD | Chondroadherin | CX3CXCX6–17C | 17q21.33 | |
NYX | Nyctalopin | Xp11.4 | |||
TSKU | Tsukushi | 11q13.5 | |||
V | PODN | Podocan | CX3–4CXCX9C | 1p32.3 | |
PODNL1 | Podocan like 1 | 19p13.12 |
SLRP | Distribution | Species | Function | Mode of Action |
---|---|---|---|---|
DCN | Decidua | Human | Restraining trophoblast invasion, migration, invasiveness, and endovascular differentiation | EGFR, IGFR-1, and VEGF-2 |
Decidual cell maturation | HAND2 and PGR | |||
Mice | Collagen fibrillogenesis | Collagen | ||
Decidua/placenta (fetal mesenchyme) | Human | Restraining trophoblast stem cell self-renewal and differentiation | N/A * | |
Placenta (fetal mesenchyme) | Cow | Restraining proliferation, migration, and angiogenesis | ||
Rat | Inducing flexibility | Collagen | ||
Fetal membranes | Human | Matrix remodeling and structural stability | N/A | |
Mice | TGFβ, Smad, MMPs, and TIMPs | |||
Cervix | Human | Collagen organization | Collagen | |
Rat | ||||
Myometrium | Ewe | Myometrial activation | N/A * | |
Endometrium | Human | Matrix remodeling during the menstrual cycle | ||
BGN | Decidua | Mice | Collagen fibrillogenesis | Collagen |
Fetal membranes | Human | Matrix remodeling and structural stability | N/A * | |
Mice | TGFβ, Smad, MMPs, and TIMPs | |||
Cervix | Human | Collagen organization | Collagen | |
Myometrium | Mouse | N/A * | N/A * | |
Endometrium | Human | Matrix and tissue organization during the menstrual cycle | ||
Rhesus monkey | ||||
DCN/BGN | Fetal membranes/placenta | Mice | Achievement of term gestation, with compensatory upregulation | |
Uterus | Uterine function during parturition, with partial compensation of DCN by BGN | TGFβ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halari, C.D.; Zheng, M.; Lala, P.K. Roles of Two Small Leucine-Rich Proteoglycans Decorin and Biglycan in Pregnancy and Pregnancy-Associated Diseases. Int. J. Mol. Sci. 2021, 22, 10584. https://doi.org/10.3390/ijms221910584
Halari CD, Zheng M, Lala PK. Roles of Two Small Leucine-Rich Proteoglycans Decorin and Biglycan in Pregnancy and Pregnancy-Associated Diseases. International Journal of Molecular Sciences. 2021; 22(19):10584. https://doi.org/10.3390/ijms221910584
Chicago/Turabian StyleHalari, Chidambra D., Michael Zheng, and Peeyush K. Lala. 2021. "Roles of Two Small Leucine-Rich Proteoglycans Decorin and Biglycan in Pregnancy and Pregnancy-Associated Diseases" International Journal of Molecular Sciences 22, no. 19: 10584. https://doi.org/10.3390/ijms221910584
APA StyleHalari, C. D., Zheng, M., & Lala, P. K. (2021). Roles of Two Small Leucine-Rich Proteoglycans Decorin and Biglycan in Pregnancy and Pregnancy-Associated Diseases. International Journal of Molecular Sciences, 22(19), 10584. https://doi.org/10.3390/ijms221910584