Uracil Derivatives for Halogen-Bonded Cocrystals
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spectroscopic Characterization
2.2. Thermal Analysis
2.3. Crystal Structure Analysis
2.3.1. Thymine–TFDIB (2:1) Cocrystal
2.3.2. 1-Ethyluracil–TFDIB (2:1) Cocrystal
2.3.3. 5-Fluorouracil–TFDIB (4:1) Cocrystal
2.4. Theoretical Study
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Synthesis of the Cocrystal thymine–1,2,4,5-tetrafluoro-3,6-diiodobenzene (2:1)
3.2.2. Synthesis of the Cocrystal 1-Ethyluracil–1,2,4,5-tetrafluoro-3,6-diiodobenzene (2:1)
3.2.3. Synthesis of the Cocrystal 5-Fluorouracil–1,2,4,5-tetrafluoro-3,6-diiodobenzene (4:1)
3.3. Characterization
3.4. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desiraju, G.R.; Ho, P.S.; Kloo, L.; Legon, A.C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Definition of the halogen bond (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1711–1713. [Google Scholar] [CrossRef]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, P.J. The halogen bond: Nature and applications. Phys. Sci. Rev. 2017, 2, 20170136. [Google Scholar] [CrossRef]
- Bulfield, D.; Huber, S.M. Halogen Bonding in Organic Synthesis and Organocatalysis. Chem. Eur. J. 2016, 22, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Gilday, L.C.; Robinson, S.; Barendt, T.; Langton, M.J.; Mullaney, B.R.; Beer, P.D. Halogen bonding in supramolecular chemistry. Chem. Rev. 2015, 115, 7118–7195. [Google Scholar] [CrossRef]
- Christopherson, J.-C.; Topic, F.; Barret, C.J.; Friscic, T. Halogen-bonded cocrystals as optical materials: Next-generation control over light–matter interactions. Cryst. Growth Des. 2018, 18, 1245–1259. [Google Scholar] [CrossRef]
- Baldrighi, M.; Cavallo, G.; Chierotti, M.R.; Gobetto, R.; Metrangolo, P.; Pilati, T.; Resnati, G.; Terraneo, G. Halogen bonding and pharmaceutical cocrystals: The case of a widely used preservative. Mol. Pharm. 2013, 10, 1760–1772. [Google Scholar] [CrossRef]
- Baldrighi, M.; Bartesaghi, D.; Cavallo, G.; Chierotti, M.R.; Gobetto, R.; Metrangolo, P.; Pilati, T.; Resnati, G.; Terraneo, G. Polymorphs and co-crystals of haloprogin: An antifungal agent. CrystEngComm 2014, 16, 5897–5904. [Google Scholar] [CrossRef] [Green Version]
- Aakeröy, C.B.; Welideniya, D.; Desper, J.; Moore, C. Halogen-bond driven co-crystallization of potential anti-cancer compounds: A structural study. CrystEngComm 2014, 16, 10203–10209. [Google Scholar] [CrossRef]
- Miroslaw, B.; Plech, T.; Wujec, M. Halogen bonding in the antibacterial 1,2,4-triazole-3-thione derivative—Spectroscopic properties, crystal structure. J. Mol. Struct. 2015, 1083, 187–193. [Google Scholar] [CrossRef]
- Choquesillo-Lazarte, D.; Nemec, V.; Cinčić, D. Halogen bonded cocrystals of active pharmaceutical ingredients: Pyrazinamide, lidocaine and pentoxifylline in combination with haloperfluorinated compounds. CrystEngComm 2017, 19, 5293–5299. [Google Scholar] [CrossRef]
- Berger, G.; Soubhye, J.; Meyer, F. Halogen bonding in polymer science: From crystal engineering to functional supramolecular polymers and materials. Polym. Chem. 2015, 6, 3559–3580. [Google Scholar] [CrossRef]
- Berger, G.; Frangville, P.; Meyer, F. Halogen bonding for molecular recognition: New developments in materials and biological sciences. Chem. Commun. 2020, 56, 4970–4981. [Google Scholar] [CrossRef]
- Auffinger, P.; Hays, F.A.; Westhof, E.; Ho, P. Halogen bonds in biological molecules. Proc. Natl. Acad. Sci. USA 2004, 101, 16789–16794. [Google Scholar] [CrossRef] [Green Version]
- Persch, D.E.; Dumele, O.; Diederich, F. Molecular recognition in chemical and biological systems. Angew. Chem. Int. Ed. 2015, 54, 3290–3327. [Google Scholar] [CrossRef]
- Wilcken, R.; Zimmermann, M.O.; Lange, A.; Joerger, A.C.; Boeckler, F.M. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J. Med. Chem. 2013, 56, 1363–1388. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Y.; Zhu, W. Nonbonding interactions of organic halogens in biological systems: Implications for drug discovery and biomolecular design. Phys. Chem. Chem. Phys. 2010, 12, 4543–4551. [Google Scholar] [CrossRef]
- Rowe, R.K.; Ho, S. Relationships between hydrogen bonds and halogen bonds in biological systems. Acta Cryst. 2017, B73, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Kolář, M.H.; Tabarrini, O. Halogen bonding in nucleic acid complexes. J. Med. Chem. 2017, 60, 8681–8690. [Google Scholar] [CrossRef] [PubMed]
- Hardegger, L.A.; Kuhn, B.; Spinnler, B.; Anselm, L.; Ecabert, R.; Stihle, M.; Gsell, B.; Thoma, R.; Diez, J.; Benz, J.; et al. Systematic Investigation of Halogen Bonding in Protein–Ligand Interactions. Angew. Chem. Int. Ed. 2011, 50, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Marín-Luna, M.; Alkorta, I.; Elguero, J. The influence of intermolecular halogen bonds on the tautomerism of nucleobases. I. Guanine. Tetrahedron 2015, 71, 5260–5266. [Google Scholar] [CrossRef]
- Marín-Luna, M.; Alkorta, I.; Elguero, J. The effect of cytosine methylation on its halogen-bonding properties. Comput. Theor. Chem. 2016, 1076, 101–108. [Google Scholar] [CrossRef]
- Valkonen, A.; Chukhlieb, M.; Moilanen, J.O.; Tuononen, H.M.; Rissanen, K. Halogen and Hydrogen bonded complexes of 5-iodouracil. Cryst. Growth Des. 2013, 13, 4769–4775. [Google Scholar] [CrossRef] [Green Version]
- Gerhardt, V.; Egert, E. Cocrystals of 6-chlorouracil and 6-chloro-3-methyluracil: Exploring their hydrogen-bond-based synthon motifs with several triazine and pyrimidine derivatives. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2015, 71, 209–220. [Google Scholar] [CrossRef]
- Howard, J.L.; Cao, Q.; Browne, D.L. Mechanochemistry as an emerging tool for molecular synthesis: What can it offer? Chem. Sci. 2018, 9, 3080–3094. [Google Scholar] [CrossRef] [Green Version]
- Roselló, Y.; Benito, M.; Molins, E.; Barceló-Oliver, M.; Frontera, A. Adenine as a halogen bond acceptor: A combined experimental and DFT study. Crystals 2019, 9, 224. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.; Kulkarni, G. A hydrogen-bonded channel structure formed by a complex of uracil and melamine. Beilstein, J. Org. Chem. 2007, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Madden, J.J. The unit cell of a mixed crystal of guanine and 8-azaguanine. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1973, 29, 914–915. [Google Scholar] [CrossRef]
- Eccles, K.S.; Morrison, R.E.; Daly, C.A.; O’Mahony, G.E.; Maguire, A.; Lawrence, S. Co-crystallisation through halogen bonding with racemic or enantiopure sulfinamides. CrystEngComm 2013, 15, 7571–7575. [Google Scholar] [CrossRef]
- Wang, H.; Jin, W.J. Cocrystal assembled by 1,4-diiodotetrafluorobenzene and phenothiazine based on C-I···p/N/S halogen bond and other assisted interactions. Acta Cryst. Sect. B 2017, B73, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Braun, D.E.; Gelbrich, T.; Wurst, K.; Griesser, U.J. Computational and Experimental Characterization of Five Crystal Forms of Thymine: Packing Polymorphism, Polytypism/Disorder, and Stoichiometric 0.8-Hydrate. Cryst. Growth Des. 2016, 16, 3480–3496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sridhar, B.; Babu Nanubolu, J.; Ravikumar, K. Four cocrystals of thymine with phenolic coformers: Influence of the conformer on hydrogen bonding. Acta Cryst. 2015, C71, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.S.; Athimoolam, S.; Sridhar, B. Structural, spectral, theoretical and anticancer studies on new co-crystal of the drug 5-fluorouracil. J. Mol. Struct. 2018, 1173, 951–958. [Google Scholar] [CrossRef]
- Roselló, Y.; Benito, M.; Barceló-Oliver, M.; Frontera, A.; Molins, E. 1-Ethyluracil, a New Scaffold for Preparing Multicomponent Forms: Synthesis, Characterization, and Computational Studies. Crystallogr. Growth Des. 2021, 21, 4857–4870. [Google Scholar] [CrossRef]
- Blessing, R.H. An empirical correction for absorption anisotropy. Acta Crystallogr. Sect. A Found. Crystallogr. 1995, 51, 33–38. [Google Scholar] [CrossRef]
- Bruker, A.P.E.X.; Saint, A.X.S. Inc., Madison, WI, 2004 Search PubMed; (b) GM Sheldrick. 2004. Acta Crystallogr. Sect. A Fundam. Crystallogr. 2008, 64, 112. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.E.A.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.; et al. Gaussian 09, Revision d. 01, Gaussian; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6169. [Google Scholar] [CrossRef]
- Rozhkov, A.; Eliseeva, A.A.; Baykov, S.V.; Galmés, B.; Frontera, A.; Kukushkin, V.Y. One-Pot Route to X-perfluoroarenes (X = Br, I) Based on FeIII-Assisted C–F Functionalization and utilization of these arenes as building blocks for crystal engineering involving halogen bonding. Cryst. Growth Des. 2020, 20, 5908–5921. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Keith, T.A. AIMAll (Version 13.05.06); TK Gristmill Software: Overland Park, KS, USA, 2013. [Google Scholar]
Compound | Mp (°C) * | νC=O (cm−1) | Cocrystal | Mp (°C) | νC=O (cm−1) | dO···I (Å) | ΔE (kcal/mol) |
---|---|---|---|---|---|---|---|
1,4-TFDIB | 108–110 | - | - | - | - | - | - |
THY | 320 | 1720/1667 | 1 | 139.7 | 1717 | 3.15 | −10.1 |
1ETURA | 144.9 | 1707/1645 | 2 | 154.7 | 1704 | 2.849; 2.910 | −14.0 |
5FU | 282–286 | 1720/1648 | 3 | 161.8 | 1710; 1672 | 3.097; 3.575 | −4.3 |
1 | 2 | 3 | |
---|---|---|---|
Empirical Formula | C16H12F4I2N4O4 | C18H16F4I2N4 | C22H12F8I2N8O8 |
Mr | 654.11 | 682.15 | 922.20 |
Crystal system | Triclinic | Triclinic | Monoclinic |
Space group | P-1 | P-1 | P 21/n |
a/Å | 4.6812(15) | 8.2094(7) | 6.837(3) |
b/Å | 5.7924(19) | 8.4322(7) | 15.423(6) |
c/Å | 18.787(6) | 16.4377(13) | 13.611(5) |
α/° | 86.472(6) | 87.684(2) | 90 |
β/° | 86.409(6) | 87.889(2) | 92.662(8) |
γ/° | 84.697(5) | 83.752(2) | 90 |
V/Å3 | 505.4(3) | 1129.59(16) | 1433.7(9) |
Z | 1 | 2 | 2 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
μ/mm−1 | 3.179 | 2.849 | 2.309 |
Temperature/K | 294(2) | 294(2) | 294(2) |
Crystal size/mm | 0.27 × 0.26 × 0.15 | 0.330 × 0.130 × 0.100 | 0.340 × 0.080 × 0.080 |
Dcalc/g·cm−3 | 2.149 | 2.006 | 2.136 |
Reflections collected | 10,285 | 33,259 | 31,225 |
Independent Reflections | 2601 [R(int) = 0.0448] | 5642 [R(int) = 0.0235] | 3621 [R(int) = 0.0450] |
Completeness to θ = 25.242° | 99.8% | 100.0% | 99.7% |
F(000) | 310 | 652 | 884 |
Data/restraints/parameters | 2601/0/137 | 5642/0/291 | 3621/0/241 |
Goodness-of-fit | 1.277 | 1.039 | 1.065 |
Final R indices [I < 2d(I)] | R1 = 0.0607, wR2 = 0.1384 | R1 = 0.0240, wR2 = 0.0573 | R1 = 0.0434, wR2 = 0.0917 |
R indices (all data) | R1 = 0.0649, wR2 = 0.14 | R1 = 0.0280, wR2 = 0.0599 | R1 = 0.0563, wR2 = 0.0981 |
Largest diff. peak and hole/eÅ−3 | 1.505 and −1.394 | 0.847 and −0.551 | 1.468 and −1.280 |
CCDC n° | 2,101,095 | 2,101,094 | 2,101,096 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benito, M.; Roselló, Y.; Barceló-Oliver, M.; Frontera, A.; Molins, E. Uracil Derivatives for Halogen-Bonded Cocrystals. Int. J. Mol. Sci. 2021, 22, 10663. https://doi.org/10.3390/ijms221910663
Benito M, Roselló Y, Barceló-Oliver M, Frontera A, Molins E. Uracil Derivatives for Halogen-Bonded Cocrystals. International Journal of Molecular Sciences. 2021; 22(19):10663. https://doi.org/10.3390/ijms221910663
Chicago/Turabian StyleBenito, Mónica, Yannick Roselló, Miquel Barceló-Oliver, Antonio Frontera, and Elies Molins. 2021. "Uracil Derivatives for Halogen-Bonded Cocrystals" International Journal of Molecular Sciences 22, no. 19: 10663. https://doi.org/10.3390/ijms221910663
APA StyleBenito, M., Roselló, Y., Barceló-Oliver, M., Frontera, A., & Molins, E. (2021). Uracil Derivatives for Halogen-Bonded Cocrystals. International Journal of Molecular Sciences, 22(19), 10663. https://doi.org/10.3390/ijms221910663