Electron Spin Resonance Evaluation of Buccal Membrane Fluidity Alterations by Sodium Caprylate and L-Menthol
Abstract
:1. Introduction
1.1. Using ESR to Understand Membrane Fluidity
1.2. Measurement of Membrane Fluidity from ESR Spectra
1.2.1. Order Parameter (S)
1.2.2. Rotational Correlation Times (τc)
2. Results and Discussion
2.1. Effect of Permeation Enhancers on ESR Spectra from 5-DSA
2.2. Effect of Permeation Enhancers on ESR Spectra from 16-DSA
2.3. Comparison of Effects of Permeation Enhancers in Polar and Hydrophobic (Acyl) Regions in a Prototype Buccal Phospholipid Membrane
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of Bilayer Model for Electron Spin Resonance Spectroscopy
3.3. Electron Spin Resonance Measurements
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sudhakar, Y.; Kuotsu, K.; Bandyopadhyay, A. Buccal bioadhesive drug delivery—A promising option for orally less efficient drugs. J. Control. Release 2006, 114, 15–40. [Google Scholar] [CrossRef]
- Dixit, R.; Puthli, S. Oral strip technology: Overview and future potential. J. Control. Release 2009, 139, 94–107. [Google Scholar] [CrossRef]
- Patel, V.F.; Liu, F.; Brown, M.B. Advances in oral transmucosal drug delivery. J. Control. Release 2011, 153, 106–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Squier, C.; Rooney, L. The permeability of keratinized and nonkeratinized oral epithelium to lanthanum in vivo. J. Ultrastruct. Res. 1976, 54, 286–295. [Google Scholar] [CrossRef]
- Squier, C.A.; Cox, P.; Wertz, P.W. Lipid content and water permeability of skin and oral mucosa. J. Investig. Dermatol. 1991, 96, 123–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Squier, C.A.; Kremer, M.J. Biology of oral mucosa and esophagus. J. Natl. Cancer Inst. Monogr. 2000, 29, 7–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Squier, C.A.; Wertz, P.W. Structure and function of the oral mucosa and implications for drug delivery. Drugs Pharm. Sci. 1996, 74, 1–26. [Google Scholar]
- Hoogstraate, J.A.; Wertz, P.W. Drug delivery via the buccal mucosa. Pharm. Sci. Technol. Today 1998, 1, 309–316. [Google Scholar] [CrossRef]
- Squier, C.; Hopps, R.M. A study of the permeability barrier in epidermis and oral epithelium using horseradish peroxidase as a tracer in vitro. Br. J. Dermatol. 1976, 95, 123–129. [Google Scholar] [CrossRef]
- Squier, C.; Cox, P.; Wertz, P.; Downing, D. The lipid composition of porcine epidermis and oral epithelium. Arch. Oral Biol. 1986, 31, 741–747. [Google Scholar] [CrossRef]
- Hassan, N.; Ahad, A.; Ali, M.; Ali, J. Chemical permeation enhancers for transbuccal drug delivery. Expert Opin. Drug Deliv. 2010, 7, 97–112. [Google Scholar] [CrossRef]
- Nicolazzo, J.A.; Reed, B.L.; Finnin, B.C. Buccal penetration enhancers—How do they really work? J. Control. Release 2005, 105, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Morales, J.O.; McConville, J.T. Manufacture and characterization of mucoadhesive buccal films. Eur. J. Pharm. Biopharm. 2011, 77, 187–199. [Google Scholar] [CrossRef]
- Eleftheriadis, G.K.; Ritzoulis, C.; Bouropoulos, N.; Tzetzis, D.; Andreadis, D.A.; Boetker, J.; Rantanen, J.; Fatouros, D.G. Unidirectional drug release from 3D printed mucoadhesive buccal films using FDM technology: In vitro and ex vivo evaluation. Eur. J. Pharm. Biopharm. 2019, 144, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.A.; Bawazir, A.O.; Alharbi, W.S.; Safo, M.K. Enhancement of simvastatin ex vivo permeation from mucoadhesive buccal films loaded with dual drug release carriers. Int. J. Nanomed. 2020, 15, 4001–4020. [Google Scholar] [CrossRef] [PubMed]
- AbouSamra, M.M.; Salama, A.H.; Awad, G.E.A.; Mansy, S.S. Formulation and evaluation of novel hybridized nanovesicles for enhancing buccal delivery of ciclopirox olamine. AAPS Pharm. Sci. Tech. 2020, 21, 283. [Google Scholar] [CrossRef]
- Barry, B.W. Mode of action of penetration enhancers in human skin. J. Control. Release 1987, 6, 85–97. [Google Scholar] [CrossRef]
- Williams, A.C.; Barry, B.W. Terpenes and the lipid-protein-partitioning theory of skin penetration enhancement. Pharm. Res. 1991, 8, 17–24. [Google Scholar] [CrossRef]
- Leopold, C.S.; Lippold, B.C. An attempt to clarify the mechanism of the penetration enhancing effects of lipophilic vehicles with differential scanning calorimetry (DSC). J. Pharm. Pharmacol. 1995, 47, 276–281. [Google Scholar] [CrossRef]
- Cotte, M.; Dumas, P.; Besnard, M.; Tchoreloff, P.; Walter, P. Synchrotron FT-IR microscopic study of chemical enhancers in transdermal drug delivery: Example of fatty acids. J. Control. Release 2004, 97, 269–281. [Google Scholar] [CrossRef]
- Winkler, A.; Müller-Goymann, C.C. The influence of topical formulations on the permeation of 5-aminolevulinic acid and its n-butyl ester through excised human stratum corneum. Eur. J. Pharm. Biopharm. 2005, 60, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lui, H.; McLean, D.I.; Zeng, H. Integrated real-time Raman system for clinical in vivo skin analysis. Ski. Res. Technol. 2008, 14, 484–492. [Google Scholar] [CrossRef]
- Morton, J. Electron spin resonance spectra of oriented radicals. J. Chem. Rev. 1964, 64, 453–471. [Google Scholar] [CrossRef]
- Borbat, P.; Costa-Filho, A.; Earle, K.; Moscicki, J.; Freed, J. Electron spin resonance in studies of membranes and proteins. Science 2001, 291, 266–269. [Google Scholar] [CrossRef] [Green Version]
- Dragicevic-Curic, N.; Friedrich, M.; Petersen, S.; Scheglmann, D.; Douroumis, D.; Plass, W.; Fahr, A. Assessment of fluidity of different invasomes by electron spin resonance and differential scanning calorimetry. Int. J. Pharm. 2011, 412, 85–94. [Google Scholar] [CrossRef]
- Quan, D.; Maibach, H.I. An electron spin resonance study: I. Effect of Azone® on 5-doxyl stearic acid-labeled human stratum corneum. J. Int. J. Pharm. 1994, 104, 61–72. [Google Scholar] [CrossRef]
- Subczynski, W.K.; Raguz, M.; Widomska, J. Studying lipid organization in biological membranes using liposomes and EPR spin labeling. In Liposomes; Springer: Berlin/Heidelberg, Germany, 2010; pp. 247–269. [Google Scholar]
- Yin, J.; Xia, Q.; Lutterodt, H.; Wamer, W.; Fu, P. Application of electron spin resonance spectroscopy to study dietary ingredients and supplements-dual antioxidant and prooxidant functions of retinyl palmitate. In Magnetic Resonance in Food Science; Royal Society of Chemistry: London, UK, 2011; pp. 126–135. [Google Scholar]
- Hubbell, W.L.; McConnell, H.M. Orientation and motion of amphiphilic spin labels in membranes. In Proceedings of the National Academy of Sciences, Washington, DC, USA, 15 January 1969; Volume 64, pp. 20–27. [Google Scholar]
- McConnell, H.M.; Hubbell, W.L. Molecular motion in spin-labeled phospholipids and membranes. J. Am. Chem. Soc. 1971, 93, 314–326. [Google Scholar] [CrossRef]
- Marsh, D.; Kurad, D.; Livshits, V.A. High-field spin-label EPR of lipid membranes. Magn. Reson. Chem. 2005, 43, S20–S25. [Google Scholar] [CrossRef]
- 5-DSA and 16-DSA spin labels, Toronto Research Chemicals. Available online: https://www.trc-canada.com/product-detail/?D535528 (accessed on 9 July 2021).
- dos Anjos, J.L.V.; de Sousa Neto, D.; Alonso, A. Effects of ethanol/l-menthol on the dynamics and partitioning of spin-labeled lipids in the stratum corneum. Eur. J. Pharm. Biopharm. 2007, 67, 406–412. [Google Scholar] [CrossRef]
- Weil, J.A.; Bolton, J.R. Electron. Paramagnetic Resonance: Elementary Theory and Practical Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Karunakaran, C.B. (Ed.) Murugesan. Chapter Four—Electron paramagnetic resonance spectroscopy. In Spin Resonance Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2018; pp. 169–228. [Google Scholar] [CrossRef]
- Allen, B.T.; Bond, A. The hyperfine structure of the electron spin resonance spectrum of semiquinone phosphates. J. Phys. Chem. 1964, 68, 2439–2444. [Google Scholar] [CrossRef]
- Lindon, J.; Tranter, G.E.; Koppenaal, D. Encyclopedia of Spectroscopy and Spectrometry; Academic Press: Oxford, UK, 2016. [Google Scholar]
- Poole, C.P. Electron. Spin Resonance: A Comprehensive Treatise on Experimental Techniques; Dover Publications: New York, NY, USA, 1996. [Google Scholar]
- van den Bergh, B.A.; Wertz, P.W.; Junginger, H.E.; Bouwstra, J.A. Elasticity of vesicles assessed by electron spin resonance, electron microscopy and extrusion measurements. Int. J. Pharm. 2001, 217, 13–24. [Google Scholar] [CrossRef]
- Gaffney, B. Practical considerations for the calculation of order parameters for fatty acid or phospholipid spin labels in membranes. In Spin Labeling: Theory and Applications; Academic Press: New York, NY, USA, 1976; pp. 567–571. [Google Scholar]
- Seelig, J. Spin label studies of oriented smectic liquid crystals (a model system for bilayer membranes). J. Am. Chem. Soc. 1970, 92, 3881–3887. [Google Scholar] [CrossRef]
- Gordon, L.M.; Sauerheber, R.D.; Esgate, J.A. Spin label studies on rat liver and heart plasma membranes: Effects of temperature, calcium, and lanthanum on membrane fluidity. J. Cell. Biochem. 1978, 9, 299–326. [Google Scholar] [CrossRef]
- Keith, A.; Bulfield, G.; Snipes, W. Spin-labeled neurospora mitochondria. Biophys. J. 1970, 10, 618–629. [Google Scholar]
- Brayden, D.J.; Gleeson, J.; Walsh, E.G. A head-to-head multi-parametric high content analysis of a series of medium chain fatty acid intestinal permeation enhancers in Caco-2 cells. Eur. J. Pharm. Biopharm. 2014, 88, 830–839. [Google Scholar] [CrossRef] [PubMed]
- Bhyan, B.; Jangra, S.; Kaur, M.; Singh, H. Orally fast dissolving films: Innovations in formulation and technology. Int. J. Pharm. Sci. Rev. Res. 2011, 9, 9–15. [Google Scholar]
- Hanif, M.; Zaman, M.; Chaurasiya, V. Polymers used in buccal film: A review. J. Des. Monomers Polym. 2015, 18, 105–111. [Google Scholar] [CrossRef]
- Chede, L.S. Bioadhesive Systems Targeting the Buccal and Esophageal Mucosa to Improve Site Specific Delivery System ; University of Iowa: Iowa, IA, USA, 2021. [Google Scholar]
- Bangham, A.; Hill, M.; Miller, N. Preparation and use of liposomes as models of biological membranes. In Methods in Membrane Biology; Springer: Berlin/Heidelberg, Germany, 1974; pp. 1–68. [Google Scholar]
- Sharma, P.; Varma, M.V.; Chawla, H.P.; Panchagnula, R. Absorption enhancement, mechanistic and toxicity studies of medium chain fatty acids, cyclodextrins and bile salts as peroral absorption enhancers. Il Farm. 2005, 60, 884–893. [Google Scholar] [CrossRef] [PubMed]
- Subongkot, T.; Ngawhirunpat, T. Effect of liposomal fluidity on skin permeation of sodium fluorescein entrapped in liposomes. Int. J. Nanomed. 2015, 10, 4581. [Google Scholar]
- Narishetty, S.T.; Panchagnula, R. Effect of L-menthol and 1,8-cineole on phase behavior and molecular organization of SC lipids and skin permeation of zidovudine. J. Control. Release 2005, 102, 59–70. [Google Scholar] [CrossRef]
- Ogiso, T.; Ogiso, H.; Paku, T.; Iwaki, M.J.B.e.B.A.-L.; Metabolism, L. Phase transitions of rat stratum corneum lipids by an electron paramagnetic resonance study and relationship of phase states to drug penetration. Biochim. Biophys. Acta (BBA)-Lipids Lipid Metab. 1996, 1301, 97–104. [Google Scholar] [CrossRef]
- Ogiso, T.; Hirota, T.; Iwaki, M.; Hino, T.; Tanino, T. Effect of temperature on percutaneous absorption of terodiline, and relationship between penetration and fluidity of the stratum corneum lipids. Int. J. Pharm. 1998, 176, 63–72. [Google Scholar] [CrossRef]
- Gay, C.L.; Murphy, T.M.; Hadgraft, J.; Kellaway, I.W.; Evans, J.C.; Rowlands, C.C. An electron spin resonance study of skin penetration enhancers. Int. J. Pharm. 1989, 49, 39–45. [Google Scholar] [CrossRef]
Formulation | 2T’II (Gauss) | 2T’⊥ (Gauss) | Order Parameter (S) |
---|---|---|---|
Liposome (control) | 70.0 ± 2.5 | 25 ± 1 | 0.62 ± 0.02 |
Liposomes + 5% sodium caprylate | 49 ± 1 | 23.4 ± 0.5 | 0.42 ± 0.02 * |
Liposomes + 1% l-menthol | 65.0 ± 1.8 | 22.7 ± 0.8 | 0.61 ± 0.01 |
Liposomes + 5% sodium caprylate + 1% l-menthol | 37 ± 1 | 24.3 ± 0.7 | 0.20 ± 0.01 * |
5-DSA probe in chloroform | 37 ± 0.05 | 26.01 ± 0.02 | ND a |
Formulation | 2T’II (Gauss) | 2T’⊥ (Gauss) | Order Parameter (S) | Correlation Time (Ns) |
---|---|---|---|---|
Liposome (control) | 70.1 ± 1.5 | 18.9 ± 0.5 | 0.64 ± 0.02 | 3.1 ± 0.05 |
Liposomes + 5% sodium caprylate | 46.7 ± 1.0 | 13.3 ± 0.5 | 0.41 ± 0.02 * | 1.46 ± 0.04 * |
Liposomes + 1% l-menthol | 45.0 ± 1.8 | 18.7 ± 0.8 | 0.40 ± 0.01 * | 1.51 ± 0.04 * |
Liposomes + 5% sodium caprylate +1% l-menthol | 40.0 ± 1.0 | 17.6 ± 0.7 | 0.21 ± 0.01 * | 0.42 ± 0.02 * |
16-DSA probe in chloroform | 36 ± 0.05 | 26.0 ± 0.01 | ND a | 0.34 ± 0.01 * |
Formulation | Lipid Components | Sodium Caprylate (25% w/v) in 50% v/v Propylene Glycol (μL) | L-Menthol (10% w/v) in 50% v/v Propylene Glycol (μL) | 5-DSA b (2 mg/mL) (μL) | 16-DSA b (2 mg/mL) (μL) | PBS | ||||
---|---|---|---|---|---|---|---|---|---|---|
PC b (5 mg/mL) (μL) | SA b (5 mg/mL) (μL) | CH b (5 mg/mL) (μL) | CE b (5 mg/mL) (μL) | 50% v/v Propylene Glycol (μL) | ||||||
5-DSA liposomes (Control) | 140 | 57 | 77 | 121 | 300 | - | - | 8 | Qs to 1 mL | |
5-DSA liposomes + 5% sodium caprylate | 140 | 57 | 77 | 121 | 200 | - | 8 | Qs to 1 mL | ||
5-DSA liposomes + 1% L-menthol | 140 | 57 | 77 | 121 | - | 100 | 8 | Qs to 1 mL | ||
5-DSA liposomes + 5% sodium caprylate + 1% L-menthol | 140 | 57 | 77 | 121 | 200 | 100 | 8 | Qs to 1 mL | ||
16-DSA liposomes (Control) | 140 | 57 | 77 | 121 | 300 | - | - | 8 | Qs to 1 mL | |
16-DSA liposomes + 5% sodium caprylate | 140 | 57 | 77 | 121 | 200 | - | 8 | Qs to 1 mL | ||
16-DSA liposomes + 1% L-menthol | 140 | 57 | 77 | 121 | - | 100 | 8 | Qs to 1 mL | ||
16-DSA liposomes + 5% sodium caprylate + 1% l-menthol | 140 | 57 | 77 | 34 | 200 | 100 | 16 | Qs to 1 mL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chede, L.S.; Wagner, B.A.; Buettner, G.R.; Donovan, M.D. Electron Spin Resonance Evaluation of Buccal Membrane Fluidity Alterations by Sodium Caprylate and L-Menthol. Int. J. Mol. Sci. 2021, 22, 10708. https://doi.org/10.3390/ijms221910708
Chede LS, Wagner BA, Buettner GR, Donovan MD. Electron Spin Resonance Evaluation of Buccal Membrane Fluidity Alterations by Sodium Caprylate and L-Menthol. International Journal of Molecular Sciences. 2021; 22(19):10708. https://doi.org/10.3390/ijms221910708
Chicago/Turabian StyleChede, Laxmi Shanthi, Brett A. Wagner, Garry R. Buettner, and Maureen D. Donovan. 2021. "Electron Spin Resonance Evaluation of Buccal Membrane Fluidity Alterations by Sodium Caprylate and L-Menthol" International Journal of Molecular Sciences 22, no. 19: 10708. https://doi.org/10.3390/ijms221910708
APA StyleChede, L. S., Wagner, B. A., Buettner, G. R., & Donovan, M. D. (2021). Electron Spin Resonance Evaluation of Buccal Membrane Fluidity Alterations by Sodium Caprylate and L-Menthol. International Journal of Molecular Sciences, 22(19), 10708. https://doi.org/10.3390/ijms221910708