The Molecular Biology of Susceptibility to Post-Traumatic Stress Disorder: Highlights of Epigenetics and Epigenomics
Abstract
:1. Introduction
2. Neurobiology of PTSD
2.1. Neuroanatomical Changes Associated with PTSD
2.2. Biochemical Mediators in PTSD Patients
2.2.1. Norepinephrine
2.2.2. Dopamine
2.2.3. Serotonin
2.2.4. Gamma-Aminobutyric Acid (GABA)
2.2.5. Neuropeptide Y (NPY)
2.2.6. Brain-Derived Neurotrophic Factor (BDNF)
2.2.7. Oxidative Stress in PTSD
2.3. Neuroendocrine Changes: Alterations in the HPA Axis
3. Heritability and Genetic Findings of PTSD
4. Epigenetic Changes
4.1. Histone Modification
4.2. DNA Methylation
4.3. MicroRNA
4.4. Epigenetics Based Pharmacology
4.4.1. HDAC Inhibitors
4.4.2. DNA Methyltransferase (DNMT) Inhibitors
4.5. The Impact of Lifestyle, Psychotherapy, and Behavioural Therapy on Epigenetic Mechanisms
5. Epigenomic Technology Modern Approach
5.1. Recent Developments in Epigenetics of Stress Disorders Research
5.1.1. Modern Technologies Used in Epigenomics PTSD Research
5.1.2. Epigenome-Wide Association Studies Open New Perspectives
Study | Sample | Findings |
---|---|---|
Rutten et al. (2018) [128] | Dutch military members (N = 93) of the PRISMO cohort | Identified 17 loci and 12 genomic regions that underwent DNA methylation changes associated with PTSD |
Rutten et al. (2018) [128] | US marine soldiers (N = 98) of the MRS cohort | Decreasing DNA methylation levels of the regions HIST1H2APS2, RNF39 and ZFP57 were associated with increasing levels of PTSD symptoms, with the first being the only mutual gene position between the two groups |
Logue et al. (2020) [130] | Military veterans of the TRACTS cohort (N = 378) | Locus cg19534438 located within the G0S2 gene methylation was shown to be significantly associated with PTSD |
Mehta et al. (2017) [132] | War veterans and males from Grady Trauma Project (N = 211) | Methylation changes of the DOCK2 gene that connect to immune dysregulation and development of PTSD symptoms |
Mehta et al. (2019) [133] | Australian or New Zealand armed services in Vietnam (N = 299) | Four significant CpG sites (two CpGs within GR and two CpGs within FKBP5) within FKBP5 gene that were correlated with PTSD |
Snijders and Maihofer et al. (2020) [129] | MRS, Army STARRS and PRISMO cohorts (N = 266) | Several differentially methylated positions (DMP) were found, four of which were within the (HLA) region, indicating the importance of immune dysregulation in PTSD |
5.2. Transgenerational Passing of Epigenetic Traits
5.3. Identifying miRNAs as Biomarkers of PTSD
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wittchen, H.U.; Jacobi, F.; Rehm, J.; Gustavsson, A.; Svensson, M.; Jönsson, B.; Olesen, J.; Allgulander, C.; Alonso, J.; Faravelli, C.; et al. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 2011, 21, 655–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giller, E. What Is Psychological Trauma; Sidran Institute: Baltimore, MD, USA, 1999. [Google Scholar]
- De Vries, G.J.; Olff, M. The lifetime prevalence of traumatic events and posttraumatic stress disorder in the Netherlands. J. Trauma Stress 2009, 22, 259–267. [Google Scholar] [CrossRef]
- Zhou, J.; Nagarkatti, P.; Zhong, Y.; Ginsberg, J.P.; Singh, N.P.; Zhang, J.; Nagarkatti, M. Dysregulation in microRNA expression is associated with alterations in immune functions in combat veterans with post-traumatic stress disorder. PLoS ONE 2014, 9, e94075. [Google Scholar] [CrossRef]
- Yehuda, R.; Hoge, C.W.; McFarlane, A.C.; Vermetten, E.; Lanius, R.A.; Nievergelt, C.M.; Hobfoll, S.E.; Koenen, K.C.; Neylan, T.C.; Hyman, S.E. Post-traumatic stress disorder. Nat. Rev. Dis. Primers 2015, 1, 15057. [Google Scholar] [CrossRef] [PubMed]
- Klengel, T.; Binder, E.B. Epigenetics of Stress-Related Psychiatric Disorders and Gene × Environment Interactions. Neuron 2015, 86, 1343–1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steenkamp, M.M.; Litz, B.T.; Hoge, C.W.; Marmar, C.R. Psychotherapy for Military-Related PTSD: A Review of Randomized Clinical Trials. JAMA 2015, 314, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Olesen, J.; Gustavsson, A.; Svensson, M.; Wittchen, H.U.; Jönsson, B. The economic cost of brain disorders in Europe. Eur. J. Neurol. 2012, 19, 155–162. [Google Scholar] [CrossRef]
- Hock, R.S.; Or, F.; Kolappa, K.; Burkey, M.D.; Surkan, P.J.; Eaton, W.W. A new resolution for global mental health. Lancet 2012, 379, 1367–1368. [Google Scholar] [CrossRef] [Green Version]
- Bryant, R.A. Post-traumatic stress disorder: A state-of-the-art review of evidence and challenges. World Psychiatry 2019, 18, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Horn, S.R.; Charney, D.S.; Feder, A. Understanding resilience: New approaches for preventing and treating PTSD. Exp. Neurol. 2016, 284, 119–132. [Google Scholar] [CrossRef]
- Galatzer-Levy, I.R.; Steenkamp, M.M.; Brown, A.D.; Qian, M.; Inslicht, S.; Henn-Haase, C.; Otte, C.; Yehuda, R.; Neylan, T.C.; Marmar, C.R. Cortisol response to an experimental stress paradigm prospectively predicts long-term distress and resilience trajectories in response to active police service. J. Psychiatr. Res. 2014, 56, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Guideline Development Panel for the Treatment of PTSD in Adults, American Psychological Association. Summary of the clinical practice guideline for the treatment of posttraumatic stress disorder (PTSD) in adults. Am. Psychol. 2019, 74, 596–607. [Google Scholar] [CrossRef] [PubMed]
- Alexander, W. Pharmacotherapy for post-traumatic stress disorder in combat veterans: Focus on antidepressants and atypical antipsychotic agents. Pharm. Ther. 2012, 37, 32. [Google Scholar]
- Koek, R.J.; Roach, J.; Athanasiou, N.; van–t Wout-Frank, M.; Philip, N.S. Neuromodulatory treatments for post-traumatic stress disorder (PTSD). Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 92, 148–160. [Google Scholar] [CrossRef]
- Nestler, E.J. Epigenetics: Stress makes its molecular mark. Nature 2012, 490, 171–172. [Google Scholar] [CrossRef] [Green Version]
- Dias, C.; Feng, J.; Sun, H.; Shao, N.Y.; Mazei-Robison, M.S.; Damez-Werno, D.; Scobie, K.; Bagot, R.; LaBonté, B.; Ribeiro, E.; et al. β-catenin mediates stress resilience through Dicer1/microRNA regulation. Nature 2014, 516, 51–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peña, C.J.; Bagot, R.C.; Labonté, B.; Nestler, E.J. Epigenetic signaling in psychiatric disorders. J. Mol. Biol. 2014, 426, 3389–3412. [Google Scholar] [CrossRef] [Green Version]
- Heijmans, B.T.; Tobi, E.W.; Stein, A.D.; Putter, H.; Blauw, G.J.; Susser, E.S.; Slagboom, P.E.; Lumey, L.H. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA 2008, 105, 17046–17049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malan-Müller, S.; Seedat, S.; Hemmings, S.M. Understanding posttraumatic stress disorder: Insights from the methylome. Genes Brain Behav. 2014, 13, 52–68. [Google Scholar] [CrossRef] [Green Version]
- Sherin, J.E.; Nemeroff, C.B. Post-traumatic stress disorder: The neurobiological impact of psychological trauma. Dialogues Clin. Neurosci. 2011, 13, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, V.A.; Samuelson, K.; Lenoci, M.; Studholme, C.; Neylan, T.C.; Marmar, C.R.; Schuff, N.; Weiner, M.W. Changes in brain anatomy during the course of posttraumatic stress disorder. Psychiatry Res. 2011, 193, 93–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavin, C.; Melis, C.; Mikulan, E.; Gelormini, C.; Huepe, D.; Ibañez, A. The anterior cingulate cortex: An integrative hub for human socially-driven interactions. Front. Neurosci. 2013, 7, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bremner, J.D. Neuroimaging in posttraumatic stress disorder and other stress-related disorders. Neuroimaging Clin. N. Am. 2007, 17, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Van Wingen, G.A.; Geuze, E.; Caan, M.W.; Kozicz, T.; Olabarriaga, S.D.; Denys, D.; Vermetten, E.; Fernández, G. Persistent and reversible consequences of combat stress on the mesofrontal circuit and cognition. Proc. Natl. Acad. Sci. USA 2012, 109, 15508–15513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennis, M.; van Rooij, S.J.; van den Heuvel, M.P.; Kahn, R.S.; Geuze, E. Functional network topology associated with posttraumatic stress disorder in veterans. Neuroimage Clin. 2016, 10, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Van Rooij, S.J.; Kennis, M.; Vink, M.; Geuze, E. Predicting Treatment Outcome in PTSD: A Longitudinal Functional MRI Study on Trauma-Unrelated Emotional Processing. Neuropsychopharmacology 2016, 41, 1156–1165. [Google Scholar] [CrossRef]
- Hughes, V. Stress: The roots of resilience. Nature 2012, 490, 165–167. [Google Scholar] [CrossRef] [Green Version]
- Bremner, J.D.; Krystal, J.H.; Southwick, S.M.; Charney, D.S. Noradrenergic mechanisms in stress and anxiety: I. Preclinical studies. Synapse 1996, 23, 28–38. [Google Scholar] [CrossRef]
- Bremner, J.D.; Krystal, J.H.; Southwick, S.M.; Charney, D.S. Noradrenergic mechanisms in stress and anxiety: II. Clinical studies. Synapse 1996, 23, 39–51. [Google Scholar] [CrossRef]
- Strawn, J.R.; Ekhator, N.N.; Horn, P.S.; Baker, D.G.; Geracioti, T.D., Jr. Blood pressure and cerebrospinal fluid norepinephrine in combat-related posttraumatic stress disorder. Psychosom. Med. 2004, 66, 757–759. [Google Scholar] [CrossRef] [Green Version]
- Torda, T.; Kvetnanský, R.; Petríková, M. Effect of repeated immobilization stress on central and peripheral adrenoceptors in rats. Endocrinol. Exp. 1985, 19, 157–163. [Google Scholar] [PubMed]
- Lähdesmäki, J.; Sallinen, J.; MacDonald, E.; Kobilka, B.K.; Fagerholm, V.; Scheinin, M. Behavioral and neurochemical characterization of alpha(2A)-adrenergic receptor knockout mice. Neuroscience 2002, 113, 289–299. [Google Scholar] [CrossRef]
- Lähdesmäki, J.; Sallinen, J.; MacDonald, E.; Scheinin, M. Alpha2A-adrenoceptors are important modulators of the effects of D-amphetamine on startle reactivity and brain monoamines. Neuropsychopharmacology 2004, 29, 1282–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bremner, J.D.; Pearce, B. Neurotransmitter, neurohormonal, and Neuropeptidal Function in Stress and PTSD. Posttraumatic Stress Disorder: From Neurobiology to Treatment; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 181–232. [Google Scholar]
- Comings, D.E.; Muhleman, D.; Gysin, R. Dopamine D2 receptor (DRD2) gene and susceptibility to posttraumatic stress disorder: A study and replication. Biol. Psychiatry 1996, 40, 368–372. [Google Scholar] [CrossRef]
- Young, R.M.; Lawford, B.R.; Noble, E.P.; Kann, B.; Wilkie, A.; Ritchie, T.; Arnold, L.; Shadforth, S. Harmful drinking in military veterans with post-traumatic stress disorder: Association with the D2 dopamine receptor A1 allele. Alcohol Alcohol. 2002, 37, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Gelernter, J.; Southwick, S.; Goodson, S.; Morgan, A.; Nagy, L.; Charney, D.S. No association between D2 dopamine receptor (DRD2) "A" system alleles, or DRD2 haplotypes, and posttraumatic stress disorder. Biol. Psychiatry 1999, 45, 620–625. [Google Scholar] [CrossRef]
- Hamner, M.B.; Diamond, B.I. Elevated plasma dopamine in posttraumatic stress disorder: A preliminary report. Biol. Psychiatry 1993, 33, 304–306. [Google Scholar] [CrossRef]
- Lemieux, A.M.; Coe, C.L. Abuse-related posttraumatic stress disorder: Evidence for chronic neuroendocrine activation in women. Psychosom. Med. 1995, 57, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Hamner, M.B.; Gold, P.B. Plasma dopamine beta-hydroxylase activity in psychotic and non-psychotic post-traumatic stress disorder. Psychiatry Res. 1998, 77, 175–181. [Google Scholar] [CrossRef]
- Roth, R.H.; Tam, S.Y.; Ida, Y.; Yang, J.X.; Deutch, A.Y. Stress and the mesocorticolimbic dopamine systems. Ann. N. Y. Acad. Sci. 1988, 537, 138–147. [Google Scholar] [CrossRef]
- Deutch, A.Y.; Roth, R.H. The determinants of stress-induced activation of the prefrontal cortical dopamine system. Prog. Brain Res. 1990, 85, 367–402, discussion 402–363. [Google Scholar] [CrossRef]
- Arnsten, A.F. Stress impairs prefrontal cortical function in rats and monkeys: Role of dopamine D1 and norepinephrine alpha-1 receptor mechanisms. Prog. Brain Res. 2000, 126, 183–192. [Google Scholar] [CrossRef] [PubMed]
- De Cuyper, H. (Auto)aggression and serotonin. A review of human data. Acta Psychiatr. Belg. 1987, 87, 325–331. [Google Scholar]
- Brown, G.L.; Linnoila, M.I. CSF serotonin metabolite (5-HIAA) studies in depression, impulsivity, and violence. J. Clin. Psychiatry 1990, 51 (Suppl. 31–41). discussion 42–33. [Google Scholar]
- Wu, J.; Kramer, G.L.; Kram, M.; Steciuk, M.; Crawford, I.L.; Petty, F. Serotonin and learned helplessness: A regional study of 5-HT1A, 5-HT2A receptors and the serotonin transport site in rat brain. J. Psychiatr. Res. 1999, 33, 17–22. [Google Scholar] [CrossRef]
- Mann, J.J.; Arango, V.; Marzuk, P.M.; Theccanat, S.; Reis, D.J. Evidence for the 5-HT hypothesis of suicide. A review of post-mortem studies. Br. J. Psychiatry 1989, 155, 7–14. [Google Scholar] [CrossRef]
- Stanley, M.; Stanley, B. Postmortem evidence for serotonin–s role in suicide. J. Clin. Psychiatry 1990, 51 (Suppl. 22–28). discussion 29–30. [Google Scholar]
- Lee, H.J.; Lee, M.S.; Kang, R.H.; Kim, H.; Kim, S.D.; Kee, B.S.; Kim, Y.H.; Kim, Y.K.; Kim, J.B.; Yeon, B.K.; et al. Influence of the serotonin transporter promoter gene polymorphism on susceptibility to posttraumatic stress disorder. Depress. Anxiety 2005, 21, 135–139. [Google Scholar] [CrossRef]
- Koenen, K.C.; Amstadter, A.B.; Nugent, N.R. Gene-environment interaction in posttraumatic stress disorder: An update. J. Trauma Stress 2009, 22, 416–426. [Google Scholar] [CrossRef] [Green Version]
- Kuzelova, H.; Ptacek, R.; Macek, M. The serotonin transporter gene (5-HTT) variant and psychiatric disorders: Review of current literature. Neuro Endocrinol. Lett. 2010, 31, 4–10. [Google Scholar]
- Wang, Z.; Baker, D.G.; Harrer, J.; Hamner, M.; Price, M.; Amstadter, A. The relationship between combat-related posttraumatic stress disorder and the 5-HTTLPR/rs25531 polymorphism. Depress. Anxiety 2011, 28, 1067–1073. [Google Scholar] [CrossRef] [Green Version]
- Kenna, G.A.; Roder-Hanna, N.; Leggio, L.; Zywiak, W.H.; Clifford, J.; Edwards, S.; Kenna, J.A.; Shoaff, J.; Swift, R.M. Association of the 5-HTT gene-linked promoter region (5-HTTLPR) polymorphism with psychiatric disorders: Review of psychopathology and pharmacotherapy. Pharmgenomics Pers. Med. 2012, 5, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, D.; Ali, A.; Margoob, M.A.; Murtaza, I.; Andrade, C. Association between serotonin transporter gene promoter-region polymorphism and 4- and 12-week treatment response to sertraline in posttraumatic stress disorder. J. Affect. Disord. 2012, 136, 955–962. [Google Scholar] [CrossRef]
- Pettitt, A. Genetic Variations in the Serotonergic System Mediate a Combined, Weakened Response to SSRI Treatment: A Proposed Model. eNeuro 2015, 2. [Google Scholar] [CrossRef] [Green Version]
- Bryant, R.A.; Felmingham, K.L.; Falconer, E.M.; Pe Benito, L.; Dobson-Stone, C.; Pierce, K.D.; Schofield, P.R. Preliminary evidence of the short allele of the serotonin transporter gene predicting poor response to cognitive behavior therapy in posttraumatic stress disorder. Biol. Psychiatry 2010, 67, 1217–1219. [Google Scholar] [CrossRef] [PubMed]
- Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M. Repeated swim stress alters brain benzodiazepine receptors measured in vivo. J. Pharmacol. Exp. Ther. 1989, 249, 701–707. [Google Scholar]
- Barros, V.G.; Rodríguez, P.; Martijena, I.D.; Pérez, A.; Molina, V.A.; Antonelli, M.C. Prenatal stress and early adoption effects on benzodiazepine receptors and anxiogenic behavior in the adult rat brain. Synapse 2006, 60, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Robertson, H.A.; Martin, I.L.; Candy, J.M. Differences in benzodiazepine receptor binding in Maudsley reactive and Maudsley non-reactive rats. Eur. J. Pharmacol. 1978, 50, 455–457. [Google Scholar] [CrossRef]
- Bremner, J.D.; Innis, R.B.; Southwick, S.M.; Staib, L.; Zoghbi, S.; Charney, D.S. Decreased benzodiazepine receptor binding in prefrontal cortex in combat-related posttraumatic stress disorder. Am. J. Psychiatry 2000, 157, 1120–1126. [Google Scholar] [CrossRef]
- Sah, R.; Geracioti, T.D. Neuropeptide Y and posttraumatic stress disorder. Mol. Psychiatry 2013, 18, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Morgan, C.A., 3rd; Wang, S.; Southwick, S.M.; Rasmusson, A.; Hazlett, G.; Hauger, R.L.; Charney, D.S. Plasma neuropeptide-Y concentrations in humans exposed to military survival training. Biol. Psychiatry 2000, 47, 902–909. [Google Scholar] [CrossRef]
- Smith, A.K.; Conneely, K.N.; Kilaru, V.; Mercer, K.B.; Weiss, T.E.; Bradley, B.; Tang, Y.; Gillespie, C.F.; Cubells, J.F.; Ressler, K.J. Differential immune system DNA methylation and cytokine regulation in post-traumatic stress disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2011, 156b, 700–708. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Li, X.X.; Hu, X.Z. Post-traumatic stress disorder risk and brain-derived neurotrophic factor Val66Met. World J. Psychiatry 2016, 6, 1–6. [Google Scholar] [CrossRef]
- Smith, M.A.; Makino, S.; Kvetnansky, R.; Post, R.M. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J. Neurosci. 1995, 15, 1768–1777. [Google Scholar] [CrossRef] [Green Version]
- Stein-Behrens, B.; Mattson, M.P.; Chang, I.; Yeh, M.; Sapolsky, R. Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus. J. Neurosci. 1994, 14, 5373–5380. [Google Scholar] [CrossRef]
- Prasad, K.N.; Bondy, S.C. Common biochemical defects linkage between post-traumatic stress disorders, mild traumatic brain injury (TBI) and penetrating TBI. Brain Res. 2015, 1599, 103–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendoza, C.; Barreto, G.E.; Ávila-Rodriguez, M.; Echeverria, V. Role of neuroinflammation and sex hormones in war-related PTSD. Mol. Cell Endocrinol. 2016, 434, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Brinks, V.; de Kloet, E.R.; Oitzl, M.S. Strain specific fear behaviour and glucocorticoid response to aversive events: Modelling PTSD in mice. Prog. Brain Res. 2008, 167, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Seckl, J.R.; Meaney, M.J. Glucocorticoid "programming" and PTSD risk. Ann. N. Y. Acad. Sci. 2006, 1071, 351–378. [Google Scholar] [CrossRef]
- Suurd Ralph, C.; Vartanian, O.; Lieberman, H.R.; Morgan, C.A., 3rd; Cheung, B. The effects of captivity survival training on mood, dissociation, PTSD symptoms, cognitive performance and stress hormones. Int. J. Psychophysiol. 2017, 117, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Goenjian, A.K.; Pynoos, R.S.; Steinberg, A.M.; Endres, D.; Abraham, K.; Geffner, M.E.; Fairbanks, L.A. Hypothalamic-pituitary-adrenal activity among Armenian adolescents with PTSD symptoms. J. Trauma Stress 2003, 16, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Delahanty, D.L.; Nugent, N.R.; Christopher, N.C.; Walsh, M. Initial urinary epinephrine and cortisol levels predict acute PTSD symptoms in child trauma victims. Psychoneuroendocrinology 2005, 30, 121–128. [Google Scholar] [CrossRef]
- Delahanty, D.L.; Raimonde, A.J.; Spoonster, E. Initial posttraumatic urinary cortisol levels predict subsequent PTSD symptoms in motor vehicle accident victims. Biol. Psychiatry 2000, 48, 940–947. [Google Scholar] [CrossRef]
- Olff, M.; de Vries, G.J.; Güzelcan, Y.; Assies, J.; Gersons, B.P. Changes in cortisol and DHEA plasma levels after psychotherapy for PTSD. Psychoneuroendocrinology 2007, 32, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Almli, L.M.; Fani, N.; Smith, A.K.; Ressler, K.J. Genetic approaches to understanding post-traumatic stress disorder. Int. J. Neuropsychopharmacol. 2014, 17, 355–370. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.B.; Morrison, F.G.; Ressler, K.J. Genetic approaches for the study of PTSD: Advances and challenges. Neurosci. Lett. 2017, 649, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Binder, E.B.; Bradley, R.G.; Liu, W.; Epstein, M.P.; Deveau, T.C.; Mercer, K.B.; Tang, Y.; Gillespie, C.F.; Heim, C.M.; Nemeroff, C.B.; et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA 2008, 299, 1291–1305. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Shelton, R.C.; Dwivedi, Y. Interaction between early-life stress and FKBP5 gene variants in major depressive disorder and post-traumatic stress disorder: A systematic review and meta-analysis. J. Affect. Disord. 2018, 225, 422–428. [Google Scholar] [CrossRef]
- Wuchty, S.; Myers, A.J.; Ramirez-Restrepo, M.; Huentelman, M.; Richolt, R.; Gould, F.; Harvey, P.D.; Michopolous, V.; Steven, J.S.; Wingo, A.P. Integration of peripheral transcriptomics, genomics, and interactomics following trauma identifies causal genes for symptoms of post-traumatic stress and major depression. Mol. Psychiatry 2021, 1–16. [Google Scholar]
- Kilaru, V.; Iyer, S.V.; Almli, L.M.; Stevens, J.S.; Lori, A.; Jovanovic, T.; Ely, T.D.; Bradley, B.; Binder, E.B.; Koen, N.; et al. Genome-wide gene-based analysis suggests an association between Neuroligin 1 (NLGN1) and post-traumatic stress disorder. Transl. Psychiatry 2016, 6, e820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logue, M.W.; Amstadter, A.B.; Baker, D.G.; Duncan, L.; Koenen, K.C.; Liberzon, I.; Miller, M.W.; Morey, R.A.; Nievergelt, C.M.; Ressler, K.J.; et al. The Psychiatric Genomics Consortium Posttraumatic Stress Disorder Workgroup: Posttraumatic Stress Disorder Enters the Age of Large-Scale Genomic Collaboration. Neuropsychopharmacology 2015, 40, 2287–2297. [Google Scholar] [CrossRef]
- Nievergelt, C.M.; Maihofer, A.X.; Klengel, T.; Atkinson, E.G.; Chen, C.Y.; Choi, K.W.; Coleman, J.R.I.; Dalvie, S.; Duncan, L.E.; Gelernter, J.; et al. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat. Commun. 2019, 10, 4558. [Google Scholar] [CrossRef] [Green Version]
- Waterland, R.A. Epigenetic mechanisms and gastrointestinal development. J. Pediatrics 2006, 149, S137–S142. [Google Scholar] [CrossRef]
- Gibney, E.R.; Nolan, C.M. Epigenetics and gene expression. Heredity 2010, 105, 4–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, J.J.; Sweatt, J.D. Epigenetic modifications in neurons are essential for formation and storage of behavioral memory. Neuropsychopharmacology 2011, 36, 357–358. [Google Scholar] [CrossRef] [PubMed]
- Boks, M.P.; de Jong, N.M.; Kas, M.J.; Vinkers, C.H.; Fernandes, C.; Kahn, R.S.; Mill, J.; Ophoff, R.A. Current status and future prospects for epigenetic psychopharmacology. Epigenetics 2012, 7, 20–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mill, J.; Heijmans, B.T. From promises to practical strategies in epigenetic epidemiology. Nat. Rev. Genet. 2013, 14, 585–594. [Google Scholar] [CrossRef]
- Vinkers, C.H.; Kalafateli, A.L.; Rutten, B.P.; Kas, M.J.; Kaminsky, Z.; Turner, J.D.; Boks, M.P. Traumatic stress and human DNA methylation: A critical review. Epigenomics 2015, 7, 593–608. [Google Scholar] [CrossRef]
- Monk, C.; Spicer, J.; Champagne, F.A. Linking prenatal maternal adversity to developmental outcomes in infants: The role of epigenetic pathways. Dev. Psychopathol. 2012, 24, 1361–1376. [Google Scholar] [CrossRef] [Green Version]
- Bohacek, J.; Mansuy, I.M. Molecular insights into transgenerational non-genetic inheritance of acquired behaviours. Nat. Rev. Genet. 2015, 16, 641–652. [Google Scholar] [CrossRef]
- Nagy, C.; Turecki, G. Transgenerational epigenetic inheritance: An open discussion. Epigenomics 2015, 7, 781–790. [Google Scholar] [CrossRef]
- Nestler, E.J. Transgenerational Epigenetic Contributions to Stress Responses: Fact or Fiction? PLoS Biol. 2016, 14, e1002426. [Google Scholar] [CrossRef] [Green Version]
- Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 2011, 21, 381–395. [Google Scholar] [CrossRef]
- Blacker, C.J.; Frye, M.A.; Morava, E.; Kozicz, T.; Veldic, M. A Review of Epigenetics of PTSD in Comorbid Psychiatric Conditions. Genes 2019, 10, 140. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, S.A.; Singh, S.; Ranjan, V.; Ugale, R.; Saha, S.; Prakash, A. Enhanced Histone Acetylation in the Infralimbic Prefrontal Cortex is Associated with Fear Extinction. Cell Mol. Neurobiol. 2017, 37, 1287–1301. [Google Scholar] [CrossRef]
- Singh, S.; Siddiqui, S.A.; Tripathy, S.; Kumar, S.; Saha, S.; Ugale, R.; Modi, D.R.; Prakash, A. Decreased level of histone acetylation in the infralimbic prefrontal cortex following immediate extinction may result in deficit of extinction memory. Brain Res. Bull. 2018, 140, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Bam, M.; Yang, X.; Zhou, J.; Ginsberg, J.P.; Leyden, Q.; Nagarkatti, P.S.; Nagarkatti, M. Evidence for Epigenetic Regulation of Pro-Inflammatory Cytokines, Interleukin-12 and Interferon Gamma, in Peripheral Blood Mononuclear Cells from PTSD Patients. J. Neuroimmune Pharmacol. 2016, 11, 168–181. [Google Scholar] [CrossRef] [Green Version]
- Kulis, M.; Merkel, A.; Heath, S.; Queirós, A.C.; Schuyler, R.P.; Castellano, G.; Beekman, R.; Raineri, E.; Esteve, A.; Clot, G.; et al. Whole-genome fingerprint of the DNA methylome during human B cell differentiation. Nat. Genet. 2015, 47, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, X.; Kobayashi, I.; Tsao, D.; Mellman, T.A. Expression and methylation in posttraumatic stress disorder and resilience; evidence of a role for odorant receptors. Psychiatry Res. 2016, 245, 36–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammond, S.M. An overview of microRNAs. Adv. Drug Deliv. Rev. 2015, 87, 3–14. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ardekani, A.M.; Naeini, M.M. The Role of MicroRNAs in Human Diseases. Avicenna J. Med. Biotechnol. 2010, 2, 161–179. [Google Scholar]
- Snijders, C.; de Nijs, L.; Baker, D.G.; Hauger, R.L.; van den Hove, D.; Kenis, G.; Nievergelt, C.M.; Boks, M.P.; Vermetten, E.; Gage, F.H.; et al. MicroRNAs in Post-traumatic Stress Disorder. Curr. Top. Behav. Neurosci. 2018, 38, 23–46. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, U.; Herrmann, L.; Hagl, K.; Novak, B.; Huber, C.; Holsboer, F.; Wotjak, C.T.; Buell, D.R. Therapeutic Action of Fluoxetine is Associated with a Reduction in Prefrontal Cortical miR-1971 Expression Levels in a Mouse Model of Posttraumatic Stress Disorder. Front. Psychiatry 2013, 4, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baudry, A.; Mouillet-Richard, S.; Schneider, B.; Launay, J.M.; Kellermann, O. miR-16 targets the serotonin transporter: A new facet for adaptive responses to antidepressants. Science 2010, 329, 1537–1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyadjieva, N.; Varadinova, M. Epigenetics of psychoactive drugs. J. Pharm. Pharmacol. 2012, 64, 1349–1358. [Google Scholar] [CrossRef]
- Houtepen, L.C.; van Bergen, A.H.; Vinkers, C.H.; Boks, M.P. DNA methylation signatures of mood stabilizers and antipsychotics in bipolar disorder. Epigenomics 2016, 8, 197–208. [Google Scholar] [CrossRef] [Green Version]
- Menke, A.; Klengel, T.; Binder, E.B. Epigenetics, depression and antidepressant treatment. Curr. Pharm. Des. 2012, 18, 5879–5889. [Google Scholar] [CrossRef]
- Hunter, R.G. Epigenetics in Posttraumatic Stress Disorder. In Epigenetics in Psychiatry; Elsevier: Amsterdam, The Netherlands, 2014; pp. 325–341. [Google Scholar]
- Zimmermann, N.; Zschocke, J.; Perisic, T.; Yu, S.; Holsboer, F.; Rein, T. Antidepressants inhibit DNA methyltransferase 1 through reducing G9a levels. Biochem. J. 2012, 448, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Pizzimenti, C.L.; Lattal, K.M. Epigenetics and memory: Causes, consequences and treatments for post-traumatic stress disorder and addiction. Genes Brain Behav. 2015, 14, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Whittle, N.; Singewald, N. HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: Where do we stand? Biochem. Soc. Trans. 2014, 42, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Narayan, P.; Dragunow, M. Pharmacology of epigenetics in brain disorders. Br. J. Pharmacol. 2010, 159, 285–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marek, R.; Coelho, C.M.; Sullivan, R.K.; Baker-Andresen, D.; Li, X.; Ratnu, V.; Dudley, K.J.; Meyers, D.; Mukherjee, C.; Cole, P.A.; et al. Paradoxical enhancement of fear extinction memory and synaptic plasticity by inhibition of the histone acetyltransferase p300. J. Neurosci. 2011, 31, 7486–7491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamou, M.; Puchalska, S.; Plummer, W.; Hale, A.S. Valproate in the treatment of PTSD: Systematic review and meta analysis. Curr. Med. Res. Opin. 2007, 23, 1285–1291. [Google Scholar] [CrossRef]
- Fujita, Y.; Yamamoto, S.; Morinobu, S. [Novel therapeutic approach for the treatment of post-traumatic stress disorder (PTSD): Facilitating fear extinction]. Nihon Shinkei Seishin Yakurigaku Zasshi 2012, 32, 195–201. [Google Scholar]
- De Ruijter, A.J.; van Gennip, A.H.; Caron, H.N.; Kemp, S.; van Kuilenburg, A.B. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J. 2003, 370, 737–749. [Google Scholar] [CrossRef]
- Phiel, C.J.; Zhang, F.; Huang, E.Y.; Guenther, M.G.; Lazar, M.A.; Klein, P.S. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 2001, 276, 36734–36741. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.G.; Wynder, C.; Schmidt, D.M.; McCafferty, D.G.; Shiekhattar, R. Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Chem. Biol. 2006, 13, 563–567. [Google Scholar] [CrossRef] [Green Version]
- Monsey, M.S.; Ota, K.T.; Akingbade, I.F.; Hong, E.S.; Schafe, G.E. Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala. PLoS ONE 2011, 6, e19958. [Google Scholar] [CrossRef] [Green Version]
- Kaliman, P. Epigenetics and meditation. Curr. Opin. Psychol. 2019, 28, 76–80. [Google Scholar] [CrossRef]
- Kaliman, P.; Alvarez-López, M.J.; Cosín-Tomás, M.; Rosenkranz, M.A.; Lutz, A.; Davidson, R.J. Rapid changes in histone deacetylases and inflammatory gene expression in expert meditators. Psychoneuroendocrinology 2014, 40, 96–107. [Google Scholar] [CrossRef] [Green Version]
- Murgatroyd, C. Laboratory techniques in psychiatric epigenetics. In Epigenetics in Psychiatry; Elsevier: Amsterdam, The Netherlands, 2021; pp. 197–231. [Google Scholar]
- Frommer, M.; McDonald, L.E.; Millar, D.S.; Collis, C.M.; Watt, F.; Grigg, G.W.; Molloy, P.L.; Paul, C.L. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 1992, 89, 1827–1831. [Google Scholar] [CrossRef] [Green Version]
- Mehta, D.; Klengel, T.; Conneely, K.N.; Smith, A.K.; Altmann, A.; Pace, T.W.; Rex-Haffner, M.; Loeschner, A.; Gonik, M.; Mercer, K.B.; et al. Childhood maltreatment is associated with distinct genomic and epigenetic profiles in posttraumatic stress disorder. Proc. Natl. Acad. Sci. USA 2013, 110, 8302–8307. [Google Scholar] [CrossRef] [Green Version]
- Rutten, B.P.F.; Vermetten, E.; Vinkers, C.H.; Ursini, G.; Daskalakis, N.P.; Pishva, E.; de Nijs, L.; Houtepen, L.C.; Eijssen, L.; Jaffe, A.E.; et al. Longitudinal analyses of the DNA methylome in deployed military servicemen identify susceptibility loci for post-traumatic stress disorder. Mol. Psychiatry 2018, 23, 1145–1156. [Google Scholar] [CrossRef] [Green Version]
- Snijders, C.; Maihofer, A.X.; Ratanatharathorn, A.; Baker, D.G.; Boks, M.P.; Geuze, E.; Jain, S.; Kessler, R.C.; Pishva, E.; Risbrough, V.B.; et al. Longitudinal epigenome-wide association studies of three male military cohorts reveal multiple CpG sites associated with post-traumatic stress disorder. Clin. Epigenetics 2020, 12, 11. [Google Scholar] [CrossRef]
- Logue, M.W.; Miller, M.W.; Wolf, E.J.; Huber, B.R.; Morrison, F.G.; Zhou, Z.; Zheng, Y.; Smith, A.K.; Daskalakis, N.P.; Ratanatharathorn, A.; et al. An epigenome-wide association study of posttraumatic stress disorder in US veterans implicates several new DNA methylation loci. Clin. Epigenetics 2020, 12, 46. [Google Scholar] [CrossRef]
- Smith, A.K.; Ratanatharathorn, A.; Maihofer, A.X.; Naviaux, R.K.; Aiello, A.E.; Amstadter, A.B.; Ashley-Koch, A.E.; Baker, D.G.; Beckham, J.C.; Boks, M.P. Epigenome-wide meta-analysis of PTSD across 10 military and civilian cohorts identifies novel methylation loci. BioRxiv 2019, 585109. [Google Scholar]
- Mehta, D.; Bruenig, D.; Carrillo-Roa, T.; Lawford, B.; Harvey, W.; Morris, C.P.; Smith, A.K.; Binder, E.B.; Young, R.M.; Voisey, J. Genomewide DNA methylation analysis in combat veterans reveals a novel locus for PTSD. Acta Psychiatr. Scand. 2017, 136, 493–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, D.; Pelzer, E.S.; Bruenig, D.; Lawford, B.; McLeay, S.; Morris, C.P.; Gibson, J.N.; Young, R.M.; Voisey, J. DNA methylation from germline cells in veterans with PTSD. J. Psychiatr. Res. 2019, 116, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Gelernter, J.; Sun, N.; Polimanti, R.; Pietrzak, R.; Levey, D.F.; Bryois, J.; Lu, Q.; Hu, Y.; Li, B.; Radhakrishnan, K.; et al. Genome-wide association study of post-traumatic stress disorder reexperiencing symptoms in >165,000 US veterans. Nat. Neurosci. 2019, 22, 1394–1401. [Google Scholar] [CrossRef] [PubMed]
- Vinkers, C.H.; Geuze, E.; van Rooij, S.J.; Kennis, M.; Schür, R.R.; Nispeling, D.M.; Smith, A.K.; Nievergelt, C.M.; Uddin, M.; Rutten, B.P. Successful treatment of post-traumatic stress disorder reverses DNA methylation marks. Mol. Psychiatry 2021, 26, 1264–1271. [Google Scholar] [CrossRef] [PubMed]
- Bond, D.M.; Finnegan, E.J. Passing the message on: Inheritance of epigenetic traits. Trends Plant Sci. 2007, 12, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Monk, M. Epigenetic programming of differential gene expression in development and evolution. Dev. Genet. 1995, 17, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Morgan, H.D.; Sutherland, H.G.; Martin, D.I.; Whitelaw, E. Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 1999, 23, 314–318. [Google Scholar] [CrossRef]
- Anway, M.D.; Cupp, A.S.; Uzumcu, M.; Skinner, M.K. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005, 308, 1466–1469. [Google Scholar] [CrossRef] [Green Version]
- Rakyan, V.K.; Chong, S.; Champ, M.E.; Cuthbert, P.C.; Morgan, H.D.; Luu, K.V.; Whitelaw, E. Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc. Natl. Acad. Sci. USA 2003, 100, 2538–2543. [Google Scholar] [CrossRef] [Green Version]
- Cropley, J.E.; Suter, C.M.; Beckman, K.B.; Martin, D.I. Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc. Natl. Acad. Sci. USA 2006, 103, 17308–17312. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, J.; Sen, S. MicroRNA as Biomarkers and Diagnostics. J. Cell. Physiol. 2016, 231, 25–30. [Google Scholar] [CrossRef]
- Androvic, P.; Valihrach, L.; Elling, J.; Sjoback, R.; Kubista, M. Two-tailed RT-qPCR: A novel method for highly accurate miRNA quantification. Nucleic Acids Res. 2017, 45, e144. [Google Scholar] [CrossRef]
- Nair, V.S.; Pritchard, C.C.; Tewari, M.; Ioannidis, J.P. Design and Analysis for Studying microRNAs in Human Disease: A Primer on -Omic Technologies. Am. J. Epidemiol. 2014, 180, 140–152. [Google Scholar] [CrossRef]
- Volk, N.; Pape, J.C.; Engel, M.; Zannas, A.S.; Cattane, N.; Cattaneo, A.; Binder, E.B.; Chen, A. Amygdalar MicroRNA-15a Is Essential for Coping with Chronic Stress. Cell Rep. 2016, 17, 1882–1891. [Google Scholar] [CrossRef] [Green Version]
- Bam, M.; Yang, X.; Zumbrun, E.E.; Zhong, Y.; Zhou, J.; Ginsberg, J.P.; Leyden, Q.; Zhang, J.; Nagarkatti, P.S.; Nagarkatti, M. Dysregulated immune system networks in war veterans with PTSD is an outcome of altered miRNA expression and DNA methylation. Sci. Rep. 2016, 6, 31209. [Google Scholar] [CrossRef]
- Guardado, P.; Olivera, A.; Rusch, H.L.; Roy, M.; Martin, C.; Lejbman, N.; Lee, H.; Gill, J.M. Altered gene expression of the innate immune, neuroendocrine, and nuclear factor-kappa B (NF-κB) systems is associated with posttraumatic stress disorder in military personnel. J. Anxiety Disord. 2016, 38, 9–20. [Google Scholar] [CrossRef]
- Martin, C.G.; Kim, H.; Yun, S.; Livingston, W.; Fetta, J.; Mysliwiec, V.; Baxter, T.; Gill, J.M. Circulating miRNA associated with posttraumatic stress disorder in a cohort of military combat veterans. Psychiatry Res. 2017, 251, 261–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snijders, C.; Krauskopf, J.; Pishva, E.; Eijssen, L.; Machiels, B.; Kleinjans, J.; Kenis, G.; van den Hove, D.; Kim, M.O.; Boks, M.P.M.; et al. Circulating Serum MicroRNAs as Potential Diagnostic Biomarkers of Posttraumatic Stress Disorder: A Pilot Study. Front. Genet. 2019, 10, 1042. [Google Scholar] [CrossRef] [PubMed]
- Wingo, A.P.; Almli, L.M.; Stevens, J.S.; Klengel, T.; Uddin, M.; Li, Y.; Bustamante, A.C.; Lori, A.; Koen, N.; Stein, D.J.; et al. DICER1 and microRNA regulation in post-traumatic stress disorder with comorbid depression. Nat. Commun. 2015, 6, 10106. [Google Scholar] [CrossRef] [PubMed]
- Daskalakis, N.P.; Provost, A.C.; Hunter, R.G.; Guffanti, G. Noncoding RNAs: Stress, Glucocorticoids, and Posttraumatic Stress Disorder. Biol. Psychiatry 2018, 83, 849–865. [Google Scholar] [CrossRef] [Green Version]
- Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA 2011, 108, 5003–5008. [Google Scholar] [CrossRef] [Green Version]
- Vickers, K.C.; Palmisano, B.T.; Shoucri, B.M.; Shamburek, R.D.; Remaley, A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 2011, 13, 423–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato-Kuwabara, Y.; Melo, S.A.; Soares, F.A.; Calin, G.A. The fusion of two worlds: Non-coding RNAs and extracellular vesicles--diagnostic and therapeutic implications (Review). Int. J. Oncol. 2015, 46, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Samanta, S.; Rajasingh, S.; Drosos, N.; Zhou, Z.; Dawn, B.; Rajasingh, J. Exosomes: New molecular targets of diseases. Acta Pharmacol. Sin. 2018, 39, 501–513. [Google Scholar] [CrossRef]
- Larssen, P.; Wik, L.; Czarnewski, P.; Eldh, M.; Löf, L.; Ronquist, K.G.; Dubois, L.; Freyhult, E.; Gallant, C.J.; Oelrich, J.; et al. Tracing Cellular Origin of Human Exosomes Using Multiplex Proximity Extension Assays. Mol. Cell Proteom. 2017, 16, 502–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo, J.; Bernard, V.; San Lucas, F.A.; Allenson, K.; Capello, M.; Kim, D.U.; Gascoyne, P.; Mulu, F.C.; Stephens, B.M.; Huang, J.; et al. Surfaceome profiling enables isolation of cancer-specific exosomal cargo in liquid biopsies from pancreatic cancer patients. Ann. Oncol. 2018, 29, 223–229. [Google Scholar] [CrossRef]
- Mustapic, M.; Eitan, E.; Werner, J.K., Jr.; Berkowitz, S.T.; Lazaropoulos, M.P.; Tran, J.; Goetzl, E.J.; Kapogiannis, D. Plasma Extracellular Vesicles Enriched for Neuronal Origin: A Potential Window into Brain Pathologic Processes. Front. Neurosci. 2017, 11, 278. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Dalvi, P.; Abadjian, L.; Tang, N.; Pulliam, L. Blood neuron-derived exosomes as biomarkers of cognitive impairment in HIV. Aids 2017, 31, F9–F17. [Google Scholar] [CrossRef] [PubMed]
- Winston, C.N.; Goetzl, E.J.; Akers, J.C.; Carter, B.S.; Rockenstein, E.M.; Galasko, D.; Masliah, E.; Rissman, R.A. Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2016, 3, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Ficz, G.; Branco, M.R.; Seisenberger, S.; Santos, F.; Krueger, F.; Hore, T.A.; Marques, C.J.; Andrews, S.; Reik, W. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 2011, 473, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Hahn, M.A.; Qiu, R.; Wu, X.; Li, A.X.; Zhang, H.; Wang, J.; Jui, J.; Jin, S.G.; Jiang, Y.; Pfeifer, G.P.; et al. Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis. Cell Rep. 2013, 3, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Booth, M.J.; Ost, T.W.; Beraldi, D.; Bell, N.M.; Branco, M.R.; Reik, W.; Balasubramanian, S. Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat. Protoc. 2013, 8, 1841–1851. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Han, D.; Hon, G.C.; He, C. Tet-Assisted Bisulfite Sequencing (TAB-seq). Methods Mol. Biol. 2018, 1708, 645–663. [Google Scholar] [CrossRef]
- Lardenoije, R.; Roubroeks, J.A.Y.; Pishva, E.; Leber, M.; Wagner, H.; Iatrou, A.; Smith, A.R.; Smith, R.G.; Eijssen, L.M.T.; Kleineidam, L.; et al. Alzheimer’s disease-associated (hydroxy)methylomic changes in the brain and blood. Clin. Epigenetics 2019, 11, 164. [Google Scholar] [CrossRef] [PubMed]
- Gusev, F.E.; Reshetov, D.A.; Mitchell, A.C.; Andreeva, T.V.; Dincer, A.; Grigorenko, A.P.; Fedonin, G.; Halene, T.; Aliseychik, M.; Filippova, E.; et al. Chromatin profiling of cortical neurons identifies individual epigenetic signatures in schizophrenia. Transl. Psychiatry 2019, 9, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrira, A.; Ayalon, L.; Bensimon, M.; Bodner, E.; Rosenbloom, T.; Yadid, G. Parental Post-traumatic Stress Disorder Symptoms Are Related to Successful Aging in Offspring of Holocaust Survivors. Front. Psychol. 2017, 8, 1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yehuda, R.; Daskalakis, N.P.; Bierer, L.M.; Bader, H.N.; Klengel, T.; Holsboer, F.; Binder, E.B. Holocaust Exposure Induced Intergenerational Effects on FKBP5 Methylation. Biol. Psychiatry 2016, 80, 372–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youssef, N.A.; Lockwood, L.; Su, S.; Hao, G.; Rutten, B.P.F. The Effects of Trauma, with or without PTSD, on the Transgenerational DNA Methylation Alterations in Human Offsprings. Brain Sci. 2018, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Jowf, G.I.; Snijders, C.; Rutten, B.P.F.; de Nijs, L.; Eijssen, L.M.T. The Molecular Biology of Susceptibility to Post-Traumatic Stress Disorder: Highlights of Epigenetics and Epigenomics. Int. J. Mol. Sci. 2021, 22, 10743. https://doi.org/10.3390/ijms221910743
Al Jowf GI, Snijders C, Rutten BPF, de Nijs L, Eijssen LMT. The Molecular Biology of Susceptibility to Post-Traumatic Stress Disorder: Highlights of Epigenetics and Epigenomics. International Journal of Molecular Sciences. 2021; 22(19):10743. https://doi.org/10.3390/ijms221910743
Chicago/Turabian StyleAl Jowf, Ghazi I., Clara Snijders, Bart P. F. Rutten, Laurence de Nijs, and Lars M. T. Eijssen. 2021. "The Molecular Biology of Susceptibility to Post-Traumatic Stress Disorder: Highlights of Epigenetics and Epigenomics" International Journal of Molecular Sciences 22, no. 19: 10743. https://doi.org/10.3390/ijms221910743
APA StyleAl Jowf, G. I., Snijders, C., Rutten, B. P. F., de Nijs, L., & Eijssen, L. M. T. (2021). The Molecular Biology of Susceptibility to Post-Traumatic Stress Disorder: Highlights of Epigenetics and Epigenomics. International Journal of Molecular Sciences, 22(19), 10743. https://doi.org/10.3390/ijms221910743