A Novel GUCA1A Variant Associated with Cone Dystrophy Alters cGMP Signaling in Photoreceptors by Strongly Interacting with and Hyperactivating Retinal Guanylate Cyclase
Abstract
:1. Introduction
2. Results
2.1. Clinical Phenotype and Disease Progression
2.1.1. Patient 1
2.1.2. Patient 2
2.1.3. Patient 3
2.2. Identification of a Novel Variant of GUCA1A in Heterozygosis
- PM1: Located in a mutational hot spot and/or critical and well-established functional domain (e.g., active site of an enzyme) without benign variation.
- PM2: Absent from controls (or at extremely low frequency if recessive) in the Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium.
- PM5: Novel missense change at an amino acid residue where a different missense change determined to be pathogenic has been seen before. Alternative variant chr6:42146128 C⇒A (Asn104Lys) is classified as Likely Pathogenic, one star, by ClinVar (and confirmed using ACMG).
- PP2: Missense variant in a gene that has a low rate of benign missense variation and in which missense variants are a common mechanism of disease.
- PP3: Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.).
2.3. Retinal Guanylate Cyclase Is Hyperactivated by N104H-GCAP1
2.4. Ca2+-Affinity Is Slightly Reduced in N104H-GCAP1
2.5. Protein Secondary, Tertiary and Quaternary Structure Are Slightly Affected by the N104H Mutation
2.6. Exhaustive Molecular Dynamics Simulations Show Altered Structural Flexibility for N104H-GCAP1 in Different GC1-Activating States
3. Discussion
4. Materials and Methods
4.1. Clinical and Ophthalmological Examinations
4.2. Genetic Testing
4.3. Cloning, Protein Expression and Purification of N104H-GCAP1
4.4. Guanylate Cyclase Enzymatic Activity Assays
4.5. Gel mobility Shift Assay and Limited Proteolysis
4.6. Ca2+-Binding Assays
4.7. Circular Dichroism Spectroscopy and Thermal Denaturation Studies
4.8. Analytical Gel Filtration
4.9. Dynamic Light Scattering Analyses
4.10. Protein Modeling and Molecular Dynamics Simulations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koch, K.-W.; Dell’Orco, D. Protein and signaling networks in vertebrate photoreceptor cells. Front. Mol. Neurosci. 2015, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Koch, K.-W.; Dell’Orco, D. A calcium-relay mechanism in vertebrate phototransduction. ACS Chem. Neurosci. 2013, 4, 909–917. [Google Scholar] [CrossRef] [Green Version]
- Korenbrot, J.I. Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: Facts and models. Prog. Retin. Eye Res. 2012, 31, 442–466. [Google Scholar] [CrossRef] [Green Version]
- Avesani, A.; Marino, V.; Zanzoni, S.; Koch, K.-W.; Dell’Orco, D. Molecular properties of human guanylate cyclase–activating protein 2 (GCAP2) and its retinal dystrophy–associated variant G157R. J. Biol. Chem. 2021, 296, 100619. [Google Scholar] [CrossRef] [PubMed]
- Dell’Orco, D.; Dal Cortivo, G. Normal GCAPs partly compensate for altered cGMP signaling in retinal dystrophies associated with mutations in GUCA1A. Sci. Rep. 2019, 9, 20105. [Google Scholar] [CrossRef]
- Peshenko, I.V.; Dizhoor, A.M. Guanylyl cyclase-activating proteins (GCAPs) are Ca2+/Mg2+ sensors: Implications for photoreceptor guanylyl cyclase (RetGC) regulation in mammalian photoreceptors. J. Biol. Chem. 2004, 279, 16903–16906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peshenko, I.V.; Dizhoor, A.M. Ca2+ and Mg2+ binding properties of GCAP-Evidence that Mg2+-bound form is the physiological activator of photoreceptor guanylyl cyclase. J. Biol. Chem. 2006, 281, 23830–23841. [Google Scholar] [CrossRef] [Green Version]
- Koch, K.-W.; Duda, T.; Sharma, R.K. Ca2+-modulated vision-linked ROS-GC guanylate cyclase transduction machinery. Mol. Cell. Biochem. 2009, 334, 105–115. [Google Scholar] [CrossRef]
- Dizhoor, A.M.; Olshevskaya, E.V.; Peshenko, I.V. Mg2+/Ca2+ cation binding cycle of guanylyl cyclase activating proteins (GCAPs): Role in regulation of photoreceptor guanylyl cyclase. Mol. Cell. Biochem. 2009, 334, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Peshenko, I.V.; Olshevskaya, E.V.; Savchenko, A.B.; Karan, S.; Palczewski, K.; Baehr, W.; Dizhoor, A.M. Enzymatic properties and regulation of the native isozymes of retinal membrane guanylyl cyclase (RetGC) from mouse photoreceptors. Biochemistry 2011, 50, 5590–5600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manes, G.; Mamouni, S.; Hérald, E.; Richard, A.-C.; Sénéchal, A.; Aouad, K.; Bocquet, B.; Meunier, I.; Hamel, C.P. Cone dystrophy or macular dystrophy associated with novel autosomal dominant GUCA1A mutations. Mol. Vis. 2017, 23, 198–209. [Google Scholar] [PubMed]
- Abbas, S.; Marino, V.; Weisschuh, N.; Kieninger, S.; Solaki, M.; Dell’Orco, D.; Koch, K.-W. The neuronal calcium sensor GCAP1 encoded by GUCA1A exhibits heterogeneous functional properties in two cases of retinitis pigmentosa. ACS Chem. Neurosci. 2020, 11, 1458–1470. [Google Scholar] [CrossRef] [PubMed]
- Marino, V.; Dal Cortivo, G.; Oppici, E.; Maltese, P.E.; D’Esposito, F.; Manara, E.; Ziccardi, L.; Falsini, B.; Magli, A.; Bertelli, M.; et al. A novel p. (Glu111Val) missense mutation in GUCA1A associated with cone-rod dystrophy leads to impaired calcium sensing and perturbed second messenger homeostasis in photoreceptors. Hum. Mol. Genet. 2018, 27, 4204–4217. [Google Scholar] [CrossRef]
- Marino, V.; Scholten, A.; Koch, K.-W.; Dell’Orco, D. Two retinal dystrophy-associated missense mutations inGUCA1Awith distinct molecular properties result in a similar aberrant regulation of the retinal guanylate cyclase. Hum. Mol. Genet. 2015, 24, 6653–6666. [Google Scholar] [CrossRef] [Green Version]
- Dizhoor, A.M.; Boikov, S.G.; Olshevskaya, E.V. Constitutive activation of photoreceptor guanylate cyclase by Y99C mutant of GCAP-1: Possible role in causing human autosomal dominant cone degeneration. J. Biol. Chem. 1998, 273, 17311–17314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sokal, I.; Li, N.; Surgucheva, I.; Warren, M.; Payne, A.; Bhattacharya, S.S.; Baehr, W.; Palczewski, K. GCAP1(Y99C) Mutant is constitutively active in autosomal dominant cone dystrophy. Mol. Cell 1998, 2, 129–133. [Google Scholar] [CrossRef]
- Wilkie, S.E.; Li, Y.; Deery, E.C.; Newbold, R.J.; Garibaldi, D.; Bateman, J.B.; Zhang, H.; Lin, W.; Zack, D.; Bhattacharya, S.S.; et al. Identification and functional consequences of a new mutation (E155G) in the gene for GCAP1 that causes autosomal dominant cone dystrophy. Am. J. Hum. Genet. 2001, 69, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Nishiguchi, K.M.; Sokal, I.; Yang, L.; Roychowdhury, N.; Palczewski, K.; Berson, E.L.; Dryja, T.P.; Baehr, W. A novel mutation (I143NT) in guanylate cyclase-activating protein 1 (GCAP1) associated with autosomal dominant cone degeneration. Investig. Opthalmol. Vis. Sci. 2004, 45, 3863–3870. [Google Scholar] [CrossRef]
- Sokal, I.; Dupps, W.J.; Grassi, M.A.; Brown, J.; Affatigato, L.M.; Roychowdhury, N.; Yang, L.; Filipek, S.; Palczewski, K.; Stone, E.M.; et al. A novel GCAP1 missense mutation (L151F) in a large family with autosomal dominant cone-rod dystrophy (adCORD). Investig. Opthalmol. Vis. Sci. 2005, 46, 1124–1132. [Google Scholar] [CrossRef]
- Jiang, L.; Wheaton, D.; Bereta, G.; Zhang, K.; Palczewski, K.; Birch, D.G.; Baehr, W. A novel GCAP1(N104K) mutation in EF-hand 3 (EF3) linked to autosomal dominant cone dystrophy. Vis. Res. 2008, 48, 2425–2432. [Google Scholar] [CrossRef] [Green Version]
- Dell’Orco, D.; Behnen, P.; Linse, S.; Koch, K.-W. Calcium binding, structural stability and guanylate cyclase activation in GCAP1 variants associated with human cone dystrophy. Cell. Mol. Life Sci. 2010, 67, 973–984. [Google Scholar] [CrossRef] [PubMed]
- Kamenarova, K.; Corton, M.; Garcia-Sandoval, B.; Fernandez-San Jose, P.; Panchev, V.; Avila-Fernandez, A.; Lopez-Molina, M.I.; Chakarova, C.; Ayuso, C.; Bhattacharya, S.S. Novel GUCA1A mutations suggesting possible mechanisms of pathogenesis in cone, cone-rod, and macular dystrophy patients. Biomed. Res. Int. 2013, 2013, 517570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitiratschky, V.B.; Behnen, P.; Kellner, U.; Heckenlively, J.R.; Zrenner, E.; Jagle, H.; Kohl, S.; Wissinger, B.; Koch, K.W. Mutations in the GUCA1A gene involved in hereditary cone dystrophies impair calcium-mediated regulation of guanylate cyclase. Hum. Mutat. 2009, 30, E782–E796. [Google Scholar] [CrossRef]
- Vocke, F.; Weisschuh, N.; Marino, V.; Malfatti, S.; Jacobson, S.G.; Reiff, C.M.; Dell’Orco, D.; Koch, K.-W. Dysfunction of cGMP signalling in photoreceptors by a macular dystrophy-related mutation in the calcium sensor GCAP1. Hum. Mol. Genet. 2016, 26, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Peshenko, I.V.; Cideciyan, A.V.; Sumaroka, A.; Olshevskaya, E.V.; Scholten, A.; Abbas, S.; Koch, K.-W.; Jacobson, S.G.; Dizhoor, A.M. A G86R mutation in the calcium-sensor protein GCAP1 alters regulation of retinal guanylyl cyclase and causes dominant cone-rod degeneration. J. Biol. Chem. 2019, 294, 3476–3488. [Google Scholar] [CrossRef] [Green Version]
- Gill, J.S.; Georgiou, M.; Kalitzeos, A.; Moore, A.T.; Michaelides, M. Progressive cone and cone-rod dystrophies: Clinical features, molecular genetics and prospects for therapy. Br. J. Ophthalmol. 2019, 103, 711–720. [Google Scholar] [CrossRef] [Green Version]
- Dal Cortivo, G.; Marino, V.; Bonì, F.; Milani, M.; Dell’Orco, D. Missense mutations affecting Ca2+-coordination in GCAP1 lead to cone-rod dystrophies by altering protein structural and functional properties. Biochim Biophys Acta Mol Cell Res. 2020, 1867, 118794. [Google Scholar] [CrossRef]
- Marino, V.; Dal Cortivo, G.; Maltese, P.; Placidi, G.; De Siena, E.; Falsini, B.; Bertelli, M.; Dell’Orco, D. Impaired Ca2+ sensitivity of a novel GCAP1 variant causes cone dystrophy and leads to abnormal Synaptic transmission between photoreceptors and bipolar cells. Int. J. Mol. Sci. 2021, 22, 4030. [Google Scholar] [CrossRef]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Aguilera, M.A.; Meyer, R.; Massouras, A. VarSome: The human genomic variant search engine. Bioinformatics 2019, 35, 1978–1980. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef]
- André, I.; Linse, S. Measurement of Ca2+-binding constants of proteins and presentation of the CaLigator software. Anal. Biochem. 2002, 305, 195–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viviano, J.; Krishnan, A.; Wu, H.; Venkataraman, V. Electrophoretic mobility shift in native gels indicates calcium-dependent structural changes of neuronal calcium sensor proteins. Anal. Biochem. 2016, 494, 93–100. [Google Scholar] [CrossRef]
- Dell’Orco, D.; Sulmann, S.; Linse, S.; Koch, K.-W. Dynamics of conformational Ca2+ -switches in signaling Networks Detected by a Planar Plasmonic Device. Anal. Chem. 2012, 84, 2982–2989. [Google Scholar] [CrossRef]
- Linse, S. Calcium binding to proteins studied via competition with chromophoric chelators. Methods Mol. Biol. 2002, 173, 15–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.; Roseman, G.; Peshenko, I.; Manchala, G.; Cudia, D.; Dizhoor, A.; Millhauser, G.; Ames, J.B. Retinal guanylyl cyclase activating protein 1 forms a functional dimer. PLoS ONE 2018, 13, e0193947. [Google Scholar] [CrossRef] [Green Version]
- Bonì, F.; Marino, V.; Bidoia, C.; Mastrangelo, E.; Barbiroli, A.; Dell’Orco, D.; Milani, M. Modulation of guanylate cyclase activating protein 1 (GCAP1) dimeric assembly by Ca2+ or Mg2+: Hints to understand protein activity. Biomolecules 2020, 10, 1408. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Peshenko, I.V.; Dizhoor, A.; Ames, J.B. Structural insights for activation of retinal guanylate cyclase by GCAP1. PLoS ONE 2013, 8, e81822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peshenko, I.V.; Olshevskaya, E.V.; Lim, S.; Ames, J.B.; Dizhoor, A.M. Identification of target binding site in photoreceptor guanylyl cyclase-activating protein 1 (GCAP1). J. Biol. Chem. 2014, 289, 10140–10154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrem, A.; Lange, C.; Beyermann, M.; Koch, K.-W. Identification of a domain in guanylyl cyclase-activating protein 1 that interacts with a complex of guanylyl cyclase and tubulin in photoreceptors. J. Biol. Chem. 1999, 274, 6244–6249. [Google Scholar] [CrossRef] [Green Version]
- Behnen, P.; Dell’Orco, D.; Koch, K.-W. Involvement of the calcium sensor GCAP1 in hereditary cone dystrophies. Biol. Chem. 2010, 391, 631–637. [Google Scholar] [CrossRef]
- Das, S.; Chen, Y.; Yan, J.; Christensen, G.; Belhadj, S.; Tolone, A.; Paquet-Durand, F. The role of cGMP-signalling and calcium-signalling in photoreceptor cell death: Perspectives for therapy development. Pflugers Arch 2021, 473, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Power, M.; Das, S.; Schütze, K.; Marigo, V.; Ekström, P.; Paquet-Durand, F. Cellular mechanisms of hereditary photoreceptor degeneration—Focus on cGMP. Prog. Retin. Eye Res. 2019, 74, 100772. [Google Scholar] [CrossRef]
- Marceddu, G.; Dallavilla, T.; Guerri, G.; Manara, E.; Chiurazzi, P.; Bertelli, M. PipeMAGI: An integrated and validated workflow for analysis of NGS data for clinical diagnostics. Eur Rev. Med. Pharmacol. Sci. 2019, 23, 6753–6765. [Google Scholar]
- Hwang, J.-Y.; Koch, K.-W. Calcium- and Myristoyl-Dependent properties of guanylate cyclase-activating protein-1 and protein-2. Biochemistry 2002, 41, 13021–13028. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Zägel, P.; Dell’Orco, D.; Koch, K.-W. The Dimerization domain in outer segment guanylate cyclase is a Ca2+-sensitive control switch module. Biochemistry 2013, 52, 5065–5074. [Google Scholar] [CrossRef] [PubMed]
- Vallone, R.; Dal Cortivo, G.; D’Onofrio, M.; Dell’Orco, D. Preferential Binding of Mg2+ Over Ca2+ to CIB2 triggers an allosteric switch impaired in usher syndrome type 1J. Front. Mol. Neurosci. 2018, 11, 274. [Google Scholar] [CrossRef] [PubMed]
- Marino, V.; Borsatto, A.; Vocke, F.; Koch, K.-W.; Dell’Orco, D. CaF2 nanoparticles as surface carriers of GCAP1, a calcium sensor protein involved in retinal dystrophies. Nanoscale 2017, 9, 11773–11784. [Google Scholar] [CrossRef] [Green Version]
- Stephen, R.; Bereta, G.; Golczak, M.; Palczewski, K.; Sousa, M.C. Stabilizing function for myristoyl group revealed by the crystal structure of a neuronal calcium sensor, guanylate cyclase-activating protein. Structure 2007, 15, 1392–1402. [Google Scholar] [CrossRef] [Green Version]
- Marino, V.; Sulmann, S.; Koch, K.-W.; Dell’Orco, D. Structural effects of Mg2+ on the regulatory states of three neuronal calcium sensors operating in vertebrate phototransduction. Biochim. Biophys. Acta 2015, 1853, 2055–2065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B.L.; Grubmuller, H.; MacKerell, A.D., Jr. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods 2017, 14, 71–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marino, V.; Dell’Orco, D. Allosteric communication pathways routed by Ca2+/Mg2+ exchange in GCAP1 selectively switch target regulation modes. Sci. Rep. 2016, 6, 34277. [Google Scholar] [CrossRef] [PubMed]
Variant | IC50 a (µM) | h b | EC50 c (µM) | X-fold d | logK1 e | logK2 e | logK3 e | Kdapp f (µM) |
---|---|---|---|---|---|---|---|---|
WT g | 0.26 ± 0.01 | 2.05 ± 0.21 | 3.2 ± 0.3 | 7.4 | 7.07 ± 0.13 | 5.55 ± 0.19 | - | 0.49 |
N104H | 0.52 ± 0.1 | 1.77 ± 0.59 | 1.6 ± 0.2 | 3.9 | 5.92 ± 0.09 | 4.7 ± 0.48 | 4.23 ± 0.34 | 11.2 |
Variant | Condition | θ222/θ208 | Δθ/θ a (%) | Tm b (°C) | Unfolding c (%) | d d (nm) [n] e | MW f (kDa) |
---|---|---|---|---|---|---|---|
WT | EGTA | 0.90 g | - | 54.1 h | 24.6 h | - | - |
Mg2+ | 0.91 g | 2.8 g | 58 h | 30.8 h | 6.35 ± 0.07 g [27] | 45.9 g | |
Ca2+ | 0.95 g | 7.7 g | >96 h | 30.4 h | 6.85 ± 0.17 g [20] | 47.8 g | |
N104H | EGTA | 0.89 | - | 48.1 | 24.9 | - | - |
Mg2+ | 0.92 | 1.97 | 53.9 | 26.1 | 6.98 ± 0.1 [30] | 42.9 | |
Ca2+ | 0.92 | 5.41 | >96 | 38.0 | 6.97 ± 0.09 [30] | 41.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biasi, A.; Marino, V.; Dal Cortivo, G.; Maltese, P.E.; Modarelli, A.M.; Bertelli, M.; Colombo, L.; Dell’Orco, D. A Novel GUCA1A Variant Associated with Cone Dystrophy Alters cGMP Signaling in Photoreceptors by Strongly Interacting with and Hyperactivating Retinal Guanylate Cyclase. Int. J. Mol. Sci. 2021, 22, 10809. https://doi.org/10.3390/ijms221910809
Biasi A, Marino V, Dal Cortivo G, Maltese PE, Modarelli AM, Bertelli M, Colombo L, Dell’Orco D. A Novel GUCA1A Variant Associated with Cone Dystrophy Alters cGMP Signaling in Photoreceptors by Strongly Interacting with and Hyperactivating Retinal Guanylate Cyclase. International Journal of Molecular Sciences. 2021; 22(19):10809. https://doi.org/10.3390/ijms221910809
Chicago/Turabian StyleBiasi, Amedeo, Valerio Marino, Giuditta Dal Cortivo, Paolo Enrico Maltese, Antonio Mattia Modarelli, Matteo Bertelli, Leonardo Colombo, and Daniele Dell’Orco. 2021. "A Novel GUCA1A Variant Associated with Cone Dystrophy Alters cGMP Signaling in Photoreceptors by Strongly Interacting with and Hyperactivating Retinal Guanylate Cyclase" International Journal of Molecular Sciences 22, no. 19: 10809. https://doi.org/10.3390/ijms221910809
APA StyleBiasi, A., Marino, V., Dal Cortivo, G., Maltese, P. E., Modarelli, A. M., Bertelli, M., Colombo, L., & Dell’Orco, D. (2021). A Novel GUCA1A Variant Associated with Cone Dystrophy Alters cGMP Signaling in Photoreceptors by Strongly Interacting with and Hyperactivating Retinal Guanylate Cyclase. International Journal of Molecular Sciences, 22(19), 10809. https://doi.org/10.3390/ijms221910809