Electroencephalography as a Non-Invasive Biomarker of Alzheimer’s Disease: A Forgotten Candidate to Substitute CSF Molecules?
Abstract
:1. The Search for Biomarkers in Alzheimer’s Disease
2. The Need of New Peripheral Biomarkers
3. The EEG as a Result of Brain Activity
4. EEG Anomalies in AD
4.1. Change of Frequency Pattern on EEG
4.2. Complexity Reduction in EEG Signals
4.3. Perturbation in EEG Synchrony and Directionality
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahmed, R.M.; Paterson, R.W.; Warren, J.D.; Zetterberg, H.; O’brien, J.T.; Fox, N.C.; Halliday, G.M.; Schott, J.M. Biomarkers in dementia: Clinical utility and new directions. J. Neurol. Neurosurg. Psychiatry 2014, 85, 1426–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossini, P.M.; Dal Forno, G. Integrated technology for evaluation of brain function and neural plasticity. Phys. Med. Rehabil. Clin. N. Am. 2004, 15, 263–306. [Google Scholar] [CrossRef]
- Tierney, M.C.; Fisher, R.H.; Lewis, A.J.; Zorzitto, M.L.; Snow, W.G.; Reid, D.W.; Nieuwstraten, P. The NINCDS-ADRDA Work Group criteria for the clinical diagnosis of probable Alzheimer’s disease: A clinicopathologic study of 57 cases. Neurology 1988, 38, 359–364. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental Disorders Book, 4th ed.; American Psychiatric Association: Washington, DC, USA, 1994. [Google Scholar]
- Varma, A.; Snowden, J.; Lloyd, J.; Talbot, P.; Mann, D.; Neary, D. Evaluation of the NINCDS-ADRDA criteria in the diferentiation of Alzheimer’s disease and fronto temporal dementia. J. Neurol. Neurosurg. Psychiatry 1999, 66, 184–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubois, B.; Feldman, H.H.; Jacova, C.; DeKosky, S.T.; Barberger-Gateau, P.; Cummings, J.; Delacourte, A.; Galasko, D.; Gauthier, S.; Jicha, G.; et al. Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS–ADRDA criteria. Lancet Neurol. 2007, 6, 734–746. [Google Scholar] [CrossRef]
- Mattson, M.P. Pathways towards and away from Alzheimer’s disease. Nature 2004, 430, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, W.J.; Ossenkoppele, R.; Knol, D.L.; Tijms, B.M.; Scheltens, P.; Verhey, F.R.; Visser, P.J.; Aalten, P.; Aarsland, D.; Alcolea, D. Prevalence of cerebral amyloid pathology in persons without dementia: A meta-analysis. JAMA 2015, 313, 1924–1938. [Google Scholar] [CrossRef] [PubMed]
- Dubois, B.; Feldman, H.H.; Jacova, C.; Hampel, H.; Molinuevo, J.L.; Blennow, K.; DeKosky, S.T.; Gauthier, S.; Selkoe, D.; Bateman, R.; et al. Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria. Lancet Neurol. 2014, 13, 614–629. [Google Scholar] [CrossRef]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Petersen, R.C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 2004, 256, 183–194. [Google Scholar] [CrossRef]
- Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R., Jr.; Kaye, J.; Montine, T.J.; et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the 46 National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011, 7, 280–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubois, B.; Feldman, H.H.; Jacova, C.; Cummings, J.L.; DeKosky, S.T.; Barberger-Gateau, P.; Delacourte, A.; Frisoni, G.; Fox, N.C.; Galasko, D.; et al. Revising the definition of Alzheimer’s disease: A new lexicon. Lancet Neurol. 2010, 9, 1118–1127. [Google Scholar] [CrossRef]
- Petersen, R.C.; Caracciolo, B.; Brayne, C.; Gauthier, S.; Jelic, V.; Fratiglioni, L. Mild cognitive impairment: A concept in evolution. J. Intern. Med. 2014, 275, 214–228. [Google Scholar] [CrossRef] [PubMed]
- Cerami, C.; Dubois, B.; Boccardi, M.; Monsch, A.U.; Demonet, J.F.; Cappa, S.F. Geneva Task Force for the Roadmap of Alzheimer’s Biomarkers. Clinical validity of delayed recall tests as a gateway biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol. Aging 2017, 52, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Rossini, P.M.; Di Iorio, R.; Vecchio, F.; Anfossi, M.; Babiloni, C.; Bozzali, M.; Bruni, A.C.; Cappa, S.F.; Escudero, J.; Fraga, F.J.; et al. Early diagnosis of Alzheimer’s disease: The role of biomarkers including advanced EEG signal analysis. Report from the IFCN-sponsored panel of experts. Clin. Neurophysiol 2020, 131, 1287–1310. [Google Scholar] [CrossRef]
- Lehmann, S.; Teunissen, C.E. Biomarkers of Alzheimer’s disease: The present and the future. Front. Neurol. 2016, 7, 158. [Google Scholar] [CrossRef] [Green Version]
- Humpel, C. Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol. 2011, 29, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Babiloni, C.; Blinowska, K.; Bonanni, L.; Cichocki, A.; De Haan, W.; Del Percio, C.; Dubois, B.; Escudero, J.; Fernández, A.; Frisoni, G.; et al. What electrophysiology tells us about Alzheimer’s disease: A window into the synchronization and connectivity of brain neurons. Neurobiol. Aging 2020, 85, 58–73. [Google Scholar] [CrossRef]
- Ahmed, S.V.; Jayawarna, C.; Jude, E. Post lumbar puncture headache: Diagnosis and management. Postgrad. Med. J. 2006, 82, 713–716. [Google Scholar] [CrossRef]
- Proitsi, P.; Kim, M.; Whiley, L.; Simmons, A.; Sattlecker, M.; Velayudhan, L.; Lupton, M.K.; Soininen, H.; Kloszewska, I.; Mecocci, P. Association of blood lipids with Alzheimer’s disease: A comprehensive lipidomics analysis. Alzheimers Demen. 2017, 13, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Kosicek, M.; Hecimovic, S. Phospholipids and Alzheimer’s disease: Alterations, mechanisms and potential biomarkers. Int. J. Mol. Sci. 2013, 14, 1310–1322. [Google Scholar] [CrossRef]
- Monllor, P.; Giraldo, E.; Badia, M.C.; de la Asuncion, J.G.; Alonso, M.D.; Lloret, A.; Vina, J. Serum Levels of Clusterin, PKR, and RAGE Correlate with Amyloid Burden in Alzheimer’s Disease. J. Alzheimers Dis. 2021, 80, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, A.; Kaneko, N.; Villemagne, V.L.; Kato, T.; Doecke, J.; Dor´e, V.; Fowler, C.; Li, Q.; Martins, R.; Rowe, C. High performance plasma amyloid-biomarkers for Alzheimer’s disease. Nature 2018, 554, 249–254. [Google Scholar] [CrossRef]
- Palmqvist, S.; Janelidze, S.; Stomrud, E.; Zetterberg, H.; Karl, J.; Zink, K.; Bittner, T.; Mattsson, N.; Eichenlaub, U.; Blennow, K.; et al. Performance of Fully Automated Plasma Assays as Screening Tests for Alzheimer Disease–Related β-Amyloid Status. JAMA Neurol. 2019, 76, 1060–1069. [Google Scholar] [CrossRef] [PubMed]
- Zetterberg, H. Blood-based biomarkers for Alzheimer’s disease—An update. J. Neurosci. Methods 2019, 319, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Lewczuk, P.; Ermann, N.; Andreasson, U.; Schultheis, C.; Podhorna, J.; Spitzer, P.; Maler, J.M.; Kornhuber, J.; Blennow, K.; Zetterberg, H. Plasma neurofilament light as a potential biomarker of neurodegeneration in Alzheimer’s disease. Alzheimers Res. Ther. 2018, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Oeckl, P.; Halbgebauer, S.; Anderl-Straub, S.; Steinacker, P.; Huss, A.M.; Neugebauer, H.; von Arnim, C.A.F.; Diehl-Schmid, J.; Grimmer, T.; Kornhuber, J.; et al. Glial Fibrillary Acidic Protein in Serum is Increased in Alzheimer’s Disease and Correlates with Cognitive Impairment. J. Alzheimers Dis. 2019, 67, 481–488. [Google Scholar] [CrossRef]
- Khalil, M.; Teunissen, C.E.; Otto, M.; Piehl, F.; Sormani, M.P.; Gattringer, T.; Barro, C.; Kappos, L.; Comabella, M.; Fazekas, F. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 2018, 14, 577–589. [Google Scholar] [CrossRef]
- Verberk, I.M.W.; Laarhuis, M.B.; van den Bosch, K.A.; Ebenau, J.L.; van Leeuwenstijn, M.; Prins, N.D.; Scheltens, P.; Teunissen, C.E.; van der Flier, W.M. Serum markers glial fibrillary acidic protein and neurofilament light for prognosis and monitoring in cognitively normal older people: A prospective memory clinic-based cohort study. Lancet Health Long. 2021, 2, E87–E95. [Google Scholar] [CrossRef]
- Watson, B.O.; Buzsáki, G. Neural syntax in mental disorders. Biol. Psychiatry 2015, 77, 998–1000. [Google Scholar] [CrossRef]
- Mathalon, D.H.; Sohal, V.S. Neural Oscillations and Synchrony in Brain Dysfunction and Neuropsychiatric Disorders: It’s About Time. JAMA Psychiatry 2015, 72, 840–844. [Google Scholar] [CrossRef]
- Buzsaki, G.; Draguhn, A. Neuronal oscillations in cortical networks. Science 2004, 25, 304. [Google Scholar] [CrossRef] [Green Version]
- Buzsáki, G.; Watson, B.O. Brain rhythms and neural syntax: Implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin. Neurosci. 2012, 14, 345–367. [Google Scholar]
- Ivanov, V.A.; Polykretis, I.E.; Michmizos, K.P. Axonal Conduction Velocity Impacts Neuronal Network Oscillations. arXiv 2019, arXiv:1903.09671. [Google Scholar]
- Pike, F.G.; Goddard, R.S.; Suckling, J.M.; Ganter, P.; Kasthuri, N.; Paulsen, O. Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillato-ry input currents. J. Physiol. 2000, 529, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, D. Dendritic resonance in rat neocortical pyramidal cells. J. Neurophysiol. 2002, 87, 2753–2759. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-J. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 2010, 90, 1195–1268. [Google Scholar] [CrossRef]
- Skinne, F.K. Cellular-based modeling of oscillatory dynamics in brain networks. Curr. Opin. Neurobiol. 2012, 22, 660–669. [Google Scholar] [CrossRef]
- Buzsáki, G.; Wang, X.-J. Mechanisms of Gamma Oscillations. Annu Rev Neurosci. 2012, 35, 203–225. [Google Scholar] [CrossRef] [Green Version]
- Atallah, B.V.; Scanziani, M. Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron 2009, 62, 566–577. [Google Scholar] [CrossRef] [Green Version]
- Massimini, M.; Huber, R.; Ferrarelli, F.; Hill, S.; Tononi, G. The sleep slow oscillation as a traveling wave. J. Neurosci. 2004, 24, 6862–6870. [Google Scholar] [CrossRef] [PubMed]
- Lubenov, E.V.; Siapas, A.G. Hippocampal theta oscillations are travelling waves. Nature 2009, 459, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Watrous, A.J.; Patel, A.; Jacobs, J. Theta and Alpha Oscillations Are Traveling Waves in the Human Neocortex. Neuron 2018, 98, 1269–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, R.; van Driel, J.; de Boer, M.; Talamini, L.M. Slow oscillations during sleep coordinate interregional communication in cortical networks. J. Neurosci. 2014, 34, 16890–16901. [Google Scholar] [CrossRef] [PubMed]
- Nunez, P.L.; Srinivasan, R. Electric Fields of the Brain: The neurophysics of EEG, 2nd ed.; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Goldman, R.I.; Stern, J.M.; Engel, J., Jr.; Cohen, M.S. Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 2002, 13, 2487. [Google Scholar] [CrossRef] [PubMed]
- Lopes da Silva, F.H.; Niedermeyer, E. Electroencephalography, Basic Principles, Clinical Applications and Related Fields, 5th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005. [Google Scholar]
- Rangaswamy, M.; Porjesz, B.; Chorlian, D.B.; Wang, K.; Jones, K.A.; Bauer, L.O.; Rohrbaugh, J.; O’Connor, S.J.; Kuperman, S.; Reich, T.; et al. Beta power in the EEG of alcoholics. Biol. Psychiatry 2002, 52, 831–842. [Google Scholar] [CrossRef]
- Britton, J.W.; Frey, L.C.; Hopp, J.L.; Korb, P.; Koubeissi, M.Z.; Lievens, W.E.; Pestana-Knight, E.M.; St. Louis, E.K. Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants; St. Louis, E.K., Frey, L.C., Eds.; American Epilepsy Society: Chicago, IL, USA, 2016. [Google Scholar]
- Kropotov, J.D. Quantitative EEG, Event-Related Potentials and Neurotherapy; Academic Press: San Diego, CA, USA, 2009. [Google Scholar]
- Lloret, M.A.; Cervera-Ferri, A.; Nepomuceno, M.; Monllor, P.; Esteve, D.; Lloret, A. Is sleep disruption a cause or consequence of Alzheimer’s disease? Reviewing its possible role as a biomarker. IJMS 2020, 21, 1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murty, D.V.P.S.; Manikandan, K.; Kumar, W.S.; Ramesh, R.G.; Purokayastha, S.; Javali, M.; Rao, N.P.; Ray, S. Gamma oscillations weaken with age in healthy elderly in human EEG. Neuroimage 2020, 215, 116826. [Google Scholar] [CrossRef]
- Pastor, J.; Vega-Zelaya, L.; Martín, E. Necessity of quantitative EEG in daily clinical practice. In Electroencephalography—From Basic Research to Clinical Applications; Nakano, H., Ed.; IntechOpen: London, UK, 2021. [Google Scholar]
- Gasser, U.; Rousson, V.; Hentschel, F.; Sattel, H.; Gasser, T. Alzheimer disease versus mixed dementias: An EEG perspective. Clin. Neurophysiol. 2008, 119, 2255–2259. [Google Scholar] [CrossRef] [PubMed]
- Ishii, R.; Canuet, L.; Aoki, Y.; Hata, M.; Iwase, M.; Ikeda, S.; Nishida, K.; Ikeda, M. Healthy and Pathological Brain Aging: From the Perspective of Oscillations, Functional Connectivity, and Signal Complexity. Neuropsychobiology 2017, 75, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Cantor, D.; Evans, J. Clinical Neurotherapy; Academic Press: San Diego, CA, USA, 2014. [Google Scholar]
- Babiloni, C.; Binetti, G.; Cassarino, A.; Dal Forno, G.; Del Percio, C.; Ferreri, F.; Ferri, R.; Frisoni, G.; Galderisi, S.; Hirata, K.; et al. Sources of cortical rhythms in adults during physiological aging: A multicentric EEG study. Hum Brain Mapp. 2006, 27, 162–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obrist. Electroencephalographic changes in normal aging and dementia. In Brain Function in Old Age; Hoffmeister, F., Müller, C., Eds.; Springer: Berlin/Heidelberg, Germany, 1979; Volume 7, pp. 102–111. [Google Scholar]
- Prinz, P.N.; Vitaliano, P.P.; Vitiello, M.V.; Bokan, J.; Raskind, M.; Peskind, E.; Gerber, C. Sleep, EEG and mental function changes in senile dementia of the Alzheimer’s type. Neurobiol Aging. 1982, 3, 361–370. [Google Scholar] [CrossRef]
- Coben, L.A.; Danziger, W.L.; Berg, L. Frequency analysis of the resting awake EEG in mild senile dementia of Alzheimer type. Electroencephalogr. Clin. Neurophysiol. 1983, 55, 372–380. [Google Scholar] [CrossRef]
- Babiloni, C.; Lizio, R.; Del Percio, C.; Marzano, N.; Soricelli, A.; Salvatore, E.; Ferri, R.; Cosentino, F.I.; Tedeschi, G.; Montella, P.; et al. Cortical sources of resting state EEG rhythms are sensitive to the progression of early stage Alzheimer’s disease. J. Alzheimers Dis. 2013, 34, 1015–1035. [Google Scholar] [CrossRef] [Green Version]
- Coben, L.A.; Danziger, W.; Storandt, M. A longitudinal EEG study of mild senile dementia of Alzheimer type: Changes at 1 year and at 2.5 years. Electroenceph. Clin. Neurophysiol. 1985, 61, 101–112. [Google Scholar] [CrossRef]
- Rae-Grant, A.; Blume, W.; Lau, C.; Hachinski, V.C.; Fisman, M.; Merskey, H. The electroencephalogram in Alzheimer-type dementia. A sequential study correlating the electroencephalogram with psychometric and quantitative pathologic data. Arch Neurol. 1987, 44, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Claus, J.J.; Strijers, R.L.; Jonkman, E.J.; Ongerboer de Visser, B.W.; Jonker, C.; Walstra, G.J.; Scheltens, P.; van Gool, W.A. The diagnostic value of electroencephalography in mild senile Alzheimer’s disease. Clin. Neurophysiol. 1999, 110, 825–832. [Google Scholar] [CrossRef]
- Dierks, T.; Becker, T.; Maurer, K. Brain electrical activity in depression described by equivalent dipoles. J. Affect. Disord. 1993, 28, 95–104. [Google Scholar] [CrossRef]
- Kowalski, J.W.; Gawel, M.; Pfeffer, A.; Barcikowska, M. The diagnostic value of EEG in Alzheimer disease: Correlation with the severity of mental impairment. J. Clin. Neurophysiol. 2001, 18, 570–575. [Google Scholar] [CrossRef]
- Katz, R.I.; Harner, R.N. Electroencephalography in aging. In Clinical Neurology of Aging; Albert, M., Ed.; Oxford University Press: Oxford, UK, 1984; pp. 114–138. [Google Scholar]
- Van der Hiele, K.; Vein, A.A.; Reijntjes, R.H.; Westendorp, R.G.; Bollen, E.L.; van Buchem, M.A.; van Dijk, J.G.; Middelkoop, H.A. EEG correlates in the spectrum of cognitive decline. Clin. Neurophysiol. 2007, 118, 1931–1939. [Google Scholar] [CrossRef] [PubMed]
- Lizio, R.; Del Percio, C.; Marzano, N.; Soricelli, A.; Yener, G.G.; Başar, E.; Mundi, C.; De Rosa, S.; Triggiani, A.I.; Ferri, R.; et al. Neurophysiological assessment of Alzheimer’s disease individuals by a single electroencephalographic marker. J. Alzheimers Dis. 2016, 49, 159–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dringenberg, H.C. Alzheimer’s disease: More than a ‘cholinergic disorder’—evidence that cholinergic–monoaminergic interactions contribute to EEG slowing and dementia. Behav. Brain Res. 2000, 115, 235–249. [Google Scholar] [CrossRef]
- McAdam, W.; Robinson, R.A. Senile intellectual deterioration and the electroencephalogram: A quantitative correlation. J. Ment. Health 1956, 102, 819–825. [Google Scholar] [CrossRef]
- Cockrell, J.R.; Folstein, M.F. Mini-mental state examination. In Principles and Practice of Geriatric Psychiatry; Copeland, J.R.M., Abou-Saleh, M.T., Blazer, D.G., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2002; pp. 140–141. [Google Scholar]
- Strijers, R.L.M.; Scheltens, P.; Jonkman, E.J.; De Rijke, W.; Hooijer, C.H.; Jonker, C. Diagnosing Alzheimer’s disease in community-dwelling elderly: A comparison of EEG and MRI. Dement. Geriatr. Cogn. Disord. 1997, 8, 198–202. [Google Scholar] [CrossRef]
- Passero, S.; Rocchi, R.; Vatti, G.; Burgalassi, L.; Battistini, N. Quantitative EEG mapping, regional cerebral blood flow, and neuropsychological function in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 1995, 6, 148–156. [Google Scholar] [CrossRef]
- Babiloni, C.; Del Percio, C.; Caroli, A.; Salvatore, E.; Nicolai, E.; Marzano, N.; Lizio, R.; Cavedo, E.; Landau, S.; Chen, K.; et al. Cortical sources of resting state EEG rhythms are related to brain hypometabolism in subjects with Alzheimer’s disease: An EEG-PET study. Neurobiol. Aging. 2016, 48, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Stomrud, E.; Hansson, O.; Minthon, L.; Blennow, K.; Rosén, I.; Londos, E. Slowing of EEG correlates with CSF biomarkers and reduced cognitive speed in elderly with normal cognition over 4 years. Neurobiol. Aging 2010, 31, 215–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hata, M.; Tanaka, T.; Kazui, H.; Ishii, R.; Canuet, L.; Pascual-Marqui, R.D.; Aoki, Y.; Ikeda, S.; Sato, S.; Suzuki, Y.; et al. Cerebrospinal fluid biomarkers of Alzheimer’s disease correlate with electroencephalography parameters assessed by Exact Low-Resolution Electromagnetic Tomography (eLORETA). Clin. EEG Neurosci. 2017, 48, 338–347. [Google Scholar] [CrossRef]
- Jovicich, J.; Babiloni, C.; Ferrari, C.; Marizzoni, M.; Moretti, D.V.; Del Percio, C.; Lizio, R.; Lopez, S.; Galluzzi, S.; Albani, D.; et al. Two-year longitudinal monitoring of amnestic mild cognitive impairment patients with prodromal Alzheimer’s disease using topographical biomarkers derived from functional magnetic resonance imaging and electroencephalographic activity. J. Alzheimers Dis. 2019, 69, 15–35. [Google Scholar] [CrossRef] [Green Version]
- Smailovic, U.; Koenig, T.; Kåreholt, I.; Andersson, T.; Kramberger, M.G.; Winblad, B.; Jelic, V. Quantitative EEG power and synchronization correlate with Alzheimer’s disease CSF biomarkers. Neurobiol. Aging 2018, 63, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.; Akrofi, K.; Schiffer, R.; O’Boyle, M.W. EEG patterns in mild cognitive impairment (MCI) patients. Open Neuroim. J. 2008, 2, 52. [Google Scholar] [CrossRef] [PubMed]
- Prichep, L.S.; John, E.R.; Ferris, S.H.; Reisberg, B.; Almas, M.; Alper, K.; Cancro, R. Quantitative EEG correlates of cognitive deterioration in the elderly. Neurobiol. Aging 1994, 15, 85–90. [Google Scholar] [CrossRef]
- Prichep, L.S.; John, E.R.; Ferris, S.H.; Rausch, L.; Fang, Z.; Cancro, R.; Torossian, C.; Reisberg, B. Prediction of longitudinal cognitive decline in normal elderly with subjective complaints using electrophysiological imaging. Neurobiol. Aging 2006, 27, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J. EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 2004, 115, 1490–1505. [Google Scholar] [CrossRef] [PubMed]
- Babiloni, C.; Frisoni, G.B.; Pievani, M.; Vecchio, F.; Lizio, R.; Buttiglione, M.; Geroldi, C.; Fracassi, C.; Eusebi, F.; Ferri, R.; et al. Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease. Neuroimage 2009, 44, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Lizio, R.; Vecchio, F.; Frisoni, G.B.; Ferri, R.; Rodriguez, G.; Babiloni, C. Electroencephalographic rhythms in Alzheimer’s disease. Int. J. Alzheimers Dis. 2011, 2011, 927573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jelic, V.; Blomberg, M.; Dierks, T.; Basun, H.; Shigeta, M.; Julin, P.; Jensen, M.; Lannfelt, L.; Winblad, B.; Wahlund, L.O. EEG slowing and cerebrospinal fluid tau levels in patients with cognitive decline. Neuroreport 1998, 9, 157–160. [Google Scholar] [CrossRef]
- Mahato, S.; Paul, S. Detection of major depressive disorder using linear and non-linear features from EEG signals. Microsyst. Technol. 2018, 25, 1065–1076. [Google Scholar] [CrossRef]
- Thuraisingham, R.A. Examining nonlinearity using complexity and entropy. Chaos 2019, 29, 063109. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez-Molina, A.J.; Lozano, V.; Soriano, M.F.; Aznarte, J.I.; Gómez-Ariza, C.J.; Bajo, M.T. EEG Multiscale Complexity in Schizophrenia During Picture Naming. Front. Physiol. 2018, 9, 1213. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, K.; Acharya, U.R.; Alias, F.; Tiboleng, T.; Puthusserypady, S.K. Nonlinear analysis of EEG signals at different mental states. Biomed. Eng. Online 2004, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Čukić, M.; Stokić, M.; Radenković, S.; Ljubisavljević, M.; Simić, S.; Savić, D. Nonlinear analysis of EEG complexity in episode and remission phase of recurrent depression. Int. J. Methods Psychiatr. Res. 2019, 29, e1816. [Google Scholar] [CrossRef] [Green Version]
- Bosl, W.; Tierney, A.; Tager-Flusberg, H.; Nelson, C. EEG complexity as a biomarker for autism spectrum disorder risk. BMC Med. 2011, 9, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivabalan, K.R.; Brototo, D.; Shivam, G.; Sivanesan, S. Discriminating cognitive performance using biomarkers extracted from linear and nonlinear analysis of EEG signals by machine learning. medRxiv 2020. [Google Scholar] [CrossRef]
- Tononi, G.; Edelman, G.M.; Sporns, O. Complexity and coherency: Integrating information in the brain. Trends Cogn. Sci. 1998, 2, 474–484. [Google Scholar] [CrossRef]
- Al-Nuaimi, A.H.H.; Jammeh, E.; Sun, L.; Ifeachor, E. Complexity measures for quantifying changes in electroencephalogram in Alzheimer’s disease. Complexity 2018, 2018, 1–12. [Google Scholar] [CrossRef]
- Houmani, N.; Vialatte, F.; Gallego-Jutglà, E.; Dreyfus, G.; Nguyen-Michel, V.-H.; Mariani, J.; Kinugawa, K. Diagnosis of Alzheimer’s disease with Electroencephalography in a differential framework. PLoS ONE 2018, 13, e0193607. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.; Gore, J.C.; Peterson, B.S. Mutual information analysis of the EEG in patients with Alzheimer’s disease. Clin Neurophysiol. 2001, 112, 827–835. [Google Scholar] [CrossRef]
- Abásolo, D.; Escudero, J.; Hornero, R.; Gómez, C.; Espino, P. Approximate entropy and auto mutual information analysis of the electroencephalogram in Alzheimer’s disease patients. Med. Biol. Eng. Comput 2008, 46, 1019–1028. [Google Scholar] [CrossRef] [Green Version]
- Hornero, R.; Abásolo, D.; Escudero, J.; Gómez, C. Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer’s disease. Philos. Trans. Royal Soc. A 2009, 367, 317–336. [Google Scholar]
- Srinivasan, V.; Eswaran, C.; Sriraam, N. Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans. Inf. Technol. Biomed. 2007, 11, 288–295. [Google Scholar] [CrossRef]
- Abásolo, D.; Hornero, R.; Espino, P.; Poza, J.; Sánchez, C.I.; de la Rosa, R. Analysis of regularity in the EEG background activity of Alzheimer’s disease patients with Approximate Entropy. Clin. Neurophysiol. 2005, 116, 1826–1834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abásolo, D.; Hornero, R.; Espino, P.; Alvarez, D.; Poza, J. Entropy analysis of the EEG background activity in Alzheimer’s disease patients. Physiol. Meas. 2006, 27, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dauwels, J.; Srinivasan, K.; Ramasubba Reddy, M.; Musha, T.; Vialatte, F.B.; Latchoumane, C.; Jeong, J.; Cichocki, A. Slowing and loss of complexity in Alzheimer’s EEG: Two sides of the same coin? Int. J. Alzheimers Dis. 2011, 2011, 539621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pikovsky, A.; Rosenblum, M.; Kurths, J. Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge Nonlinear Science Series); Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Adler, G.; Brassen, S.; Jajcevic, A. EEG coherence in Alzheimer’s dementia. J. Neural Transm. Suppl. 2003, 110, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wang, J.; Yu, H.; Wei, X.; Yang, C.; Deng, B. Power spectral density and coherence analysis of Alzheimer’s EEG. Cogn. Neurodynamics 2015, 9, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Sankari, Z.; Adeli, H.; Adeli, A. Wavelet coherence model for diagnosis of Alzheimer disease. Clin EEG Neurosci. 2012, 43, 268–278. [Google Scholar] [CrossRef]
- Besthorn, C.; Förstl, H.; Geiger-Kabisch, C.; Sattel, H.; Gasser, T.; Schreiter-Gasser, U. EEG coherence in Alzheimer disease. Electroencephalogr. Clin. Neurophysiol. 1994, 90, 242–245. [Google Scholar] [CrossRef]
- Stam, C.J.; van der Made, Y.; Pijnenburg, Y.A.; Scheltens, P. EEG synchronization in mild cognitive impairment and Alzheimer’s disease. Acta Neurol. Scand. 2003, 108, 90–96. [Google Scholar] [CrossRef]
- Pijnenburg, Y.A.L.; Vd Made, Y.; Van Walsum, A.V.C.; Knol, D.L.; Scheltens, P.; Stam, C.J. EEG synchronization likelihood in mild cognitive impairment and Alzheimer’s disease during a working memory task. Clin. Neurophysiol. 2004, 115, 1332–1339. [Google Scholar] [CrossRef]
- Handayani, S.; Diansari, Y.; Bahar, E.; Novantina, W. EEG changes in patients with intracranial tumors and seizures symptom at Mohammad Hoesin Hospital Palembang. J. Phys. Conf. Ser. 2019, 1246, 012014. [Google Scholar] [CrossRef] [Green Version]
- Koelewijn, L.; Lancaster, T.M.; Linden, D.; Dima, D.C.; Routley, B.C.; Magazzini, L.; Barawi, K.; Brindley, L.; Adams, R.; Tansey, K.E.; et al. Oscillatory hyperactivity and hyperconnectivity in young APOE-ɛ4 carriers and hypoconnectivity in Alzheimer’s disease. Elife 2019, 8, e36011. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, T.; Cursi, M.; Liberati, D.; Franceschi, M.; Comi, G. EEG coherence in Alzheimer’s disease. Electroencephalogr. Clin. Neurophysiol. 1998, 106, 229–237. [Google Scholar] [CrossRef]
- Delatour, B.; Blanchard, V.; Pradier, L.; Duyckaerts, C. Alzheimer pathology disorganizes cortico-cortical circuitry: Direct evidence from a transgenic animal model. Neurobiol. Dis. 2004, 16, 41–47. [Google Scholar] [CrossRef]
- Prichep, L.S. Quantitative EEG and electromagnetic brain imaging in aging and in the evolution of dementia. Ann. N.Y. Acad. Sci. 2007, 1097, 156–167. [Google Scholar] [CrossRef]
- Wada, Y.; Nanbu, Y.; Koshino, Y.; Yamaguchi, N.; Hashimoto, T. Reduced interhemispheric EEG coherence in Alzheimer disease: Analysis during rest and photic stimulation. Alzheimer Dis. Assoc. Disord. 1998, 12, 175–181. [Google Scholar] [CrossRef]
- Babiloni, C.; Ferri, R.; Binetti, G.; Vecchio, F.; Frisoni, G.B.; Lanuzza, B.; Miniussi, C.; Nobili, F.; Rodriguez, G.; Rundo, F.; et al. Directionality of EEG synchronization in Alzheimer’s disease subjects. Neurobiol. Aging. 2009, 30, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Gallego-Jutglà, E.; Elgendi, M.; Vialatte, F.; Solé-Casals, J.; Cichocki, A.; Latchoumane, C.; Jeong, J.; Dauwels, J. Diagnosis of Alzheimer’s disease from EEG by means of synchrony measures in optimized frequency bands. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2012, 2012, 4266–4270. [Google Scholar] [PubMed] [Green Version]
- Delbeuck, X.; Van der Linden, M.; Collette, F. Alzheimer’disease as a disconnection syndrome? Neuropsychol. Rev. 2003, 13, 79–92. [Google Scholar] [CrossRef]
- Uhlhaas, P.J.; Singer, W. Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron 2006, 52, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Maestú, F.; Cuesta, P.; Hasan, O.; Fernandéz, A.; Funke, M.; Schulz, P.E. The importance of the validation of M/EEG with current biomarkers in Alzheimer’s disease. Front. Hum. Neurosci. 2019, 13, 17. [Google Scholar] [CrossRef]
- Garcia-Marin, V.; Blazquez-Llorca, L.; Rodriguez, J.-R.; Boluda, S.; Muntane, G.; Ferrer, I.; Defelipe, J. Diminished perisomatic GABAergic terminals on cortical neurons adjacent to amyloid plaques. Front. Neuroanat. 2009, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Pozueta, J.; Lefort, R.; Shelanski, M.L. Synaptic changes in Alzheimer’s disease and its models. Neuroscience 2013, 251, 51–65. [Google Scholar] [CrossRef]
- Sepulcre, J.; Sabuncu, M.R.; Li, Q.; El Fakhri, G.; Sperling, R.; Johnson, K.A. Tau and amyloid β proteins distinctively associate to functional network changes in the aging brain. Alzheimers Dement. 2017, 13, 1261–1269. [Google Scholar] [CrossRef]
- Busche, M.A.; Konnerth, A. Impairments of neural circuit function in Alzheimer’s disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150429. [Google Scholar] [CrossRef]
- Sachdev, P.S.; Zhuang, L.; Braidy, N.; Wen, W. Is Alzheimer’s a disease of the white matter? Curr. Opin. Psychiatry. 2013, 26, 244–251. [Google Scholar] [CrossRef]
- Pajevic, S.; Basser, P.J.; Fields, R.D. Role of myelin plasticity in oscillations and synchrony of neuronal activity. Neuroscience 2014, 276, 135–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002, 297, 353–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallet, G.T.; Hudon, C.; Simard, M.; Versace, R. The disconnection syndrome in the Alzheimer’s disease: The cross-modal priming example. Cortex 2013, 49, 2402–2415. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Knopman, D.S.; Jagust, W.J.; Petersen, R.C.; Weiner, M.W.; Aisen, P.S.; Shaw, L.M.; Vemuri, P.; Wiste, H.J.; Weigand, S.D.; et al. Update on hypothetical model of Alzheimer’s disease biomarkers. Lancet Neurol. 2013, 12, 207. [Google Scholar] [CrossRef] [Green Version]
- Lloret, A.; Esteve, D.; Lloret, M.A.; Cervera-Ferri, A.; Lopez, B.; Nepomuceno, M.; Monllor, P. When Does Alzheimer′ s Disease Really Start? The Role of Biomarkers. IJMS 2019, 20, 5536. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Escamilla, G.; Atienza, M.; Cantero, J.L. Impaired cortical oscillatory coupling in mild cognitive impairment: Anatomical substrate and ApoE4 effects. Brain Struct. Funct. 2015, 220, 1721–1737. [Google Scholar] [CrossRef] [PubMed]
- Babiloni, C.; Del Percio, C.; Lizio, R.; Noce, G.; Lopez, S.; Soricelli, A.; Ferri, R.; Pascarelli, M.T.; Catania, V.; Nobili, F.; et al. Functional cortical source connectivity of resting state electroencephalographic alpha rhythms shows similar abnormalities in patients with mild cognitive impairment due to Alzheimer’s and Parkinson’s diseases. Clin. Neurophysiol. 2018, 129, 766–782. [Google Scholar] [CrossRef]
- Vecchio, F.; Miraglia, F.; Iberite, F.; Lacidogna, G.; Guglielmi, V.; Marra, C.; Pasqualetti, P.; Tiziano, F.D.; Rossini, P.M. Sustainable method for Alzheimer dementia prediction in mild cognitive impairment: Electroencephalographic connectivity and graph theory combined with apolipoprotein E. Ann. Neurol. 2018, 84, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Jelic, V.; Johansson, S.E.; Almkvist, O.; Shigeta, M.; Julin, P.; Nordberg, A.; Winblad, B.; Wahlund, L.-O. Quantitative electroencephalography in mild cognitive impairment: Longitudinal changes and possible prediction of Alzheimer’s disease. Neurobiol. Aging 2000, 21, 533–540. [Google Scholar] [CrossRef]
- Del Val, L.P.; Cantero, J.L.; Atienza, M. Atrophy of amygdala and abnormal memory-related alpha oscillations over posterior cingulate predict conversion to Alzheimer’s disease. Sci. Rep. 2016, 6, 1–12. [Google Scholar]
- Poil, S.S.; de Haan, W.; van der Flier, W.M.; Mansvelder, H.D.; Scheltens, P.; Linkenkaer-Hansen, K. Integrative EEG biomarkers predict progression to Alzheimer’s disease at the MCI stage. Front Aging Neurosci. 2013, 5, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, G.; Ifeachor, E.; Hudson, N.; Goh, C.; Outram, N.; Wimalaratna, S.; Del Percio, C.; Vecchio, F. Development and assessment of methods for detecting dementia using the human electroencephalogram. IEEE Trans. Biomed. Eng. 2006, 53(8), 1557–1568. [Google Scholar] [CrossRef] [PubMed]
- Ge, Q.; Lin, Z.C.; Gao, Y.X.; Zhang, J.X. A Robust Discriminant Framework Based on Functional Biomarkers of EEG and Its Potential for Diagnosis of Alzheimer’s disease. Healthcare 2020, 8, 476. [Google Scholar] [CrossRef]
- Shi, Y.; Lu, X.; Zhang, L.; Shu, H.; Gu, L.; Wang, Z.; Gao, L.; Zhu, J.; Zhang, H.; Zhou, D.; et al. Potential value of plasma amyloid-β, total tau, and neurofilament light for identification of early Alzheimer’s disease. ACS Chem. Neurosci. 2019, 10, 3479–3485. [Google Scholar] [CrossRef] [PubMed]
- Verberk, I.M.; Thijssen, E.; Koelewijn, J.; Mauroo, K.; Vanbrabant, J.; DeWilde, A.; Zwan, M.D.; Verfaillie, S.C.J.; Ossenkoppele, R.; Barkhof, F.; et al. Combination of plasma amyloid beta (1–42/1–40) and glial fibrillary acidic protein strongly associateswith cerebral amyloid pathology. Alzheimers Res. Ther. 2020, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Dauwels, J.; Vialatte, F.; Cichocki, A. Diagnosis of Alzheimer’s disease from EEG signals: Where are we standing? Curr. Alzheimer Res. 2010, 7, 487–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dellabadia, J., Jr.; Bell, W.; Keyes, J.W., Jr.; Mathews, V.P.; Glazier, S.S. Assessment and cost comparison of sleep-deprived EEG, MRI and PET in the prediction of surgical treatment for epilepsy. Seizure 2002, 11, 303–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seneviratne, U.; D’Souza, W.J. Ambulatory EEG. Handb. Clin. Neurol. 2019, 160, 161–170. [Google Scholar] [PubMed]
- Babiloni, C.; Barry, R.J.; Başar, E.; Blinowska, K.J.; Cichocki, A.; Drinkenburg, W.H.I.M.; Klimesch, W.; Knight, R.T.; Lopes da Silva, F.; Nunez, P.; et al. International Federation of Clinical Neurophysiology (IFCN)—EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies. Clin. Neurophysiol. 2020, 131, 285–307. [Google Scholar] [CrossRef] [PubMed]
Reference | Subjects | Frequency bands | Analysis | Hallmarks |
---|---|---|---|---|
Prinz et al., 1982 [60] | 22 HC (11male, 11 female), 18 mild AD (9 male, 9 female), 16 moderate AD (10 male, 6 female) and severe AD (10 male) | Spectral analysis; dominant occipital frequency (DOF). | DOF decreases inversely with the progression of the neurodegeneration. A discriminant analysis DOF and sleep variables correctly classified 71% of the subjects. | |
Coben et al., 1983 [61] | 40 mild AD patients and40 HC; Age range: 64.2–82.5; 21 female/19 male | Delta: 1–3 Hz (only 3 Hz for power), theta: 4–7 Hz (5–7 Hz for power), alpha: 7.75–13.50 Hz Beta: 14–20 Hz. | Spectral analysis of spontaneous occipital EEG (Fraction of total power in the 3–20 Hz or 5–20 Hz band; average mean frequency; alpha index (percent time alpha rhythm). | Fraction of total power in theta mild AD > HC; fraction of total power in beta mild AD < HC in occipital EEGs; average mean frequency HC > mild AD. |
Rae-Grant et al, 1987 [64] | 139 AD patients (69 male, 70 female)and 148 HC; Age range: 50–90 | Longitudinal (4 years) correlated with standardized test and autopsy; DSM. | Slowing of the background activity (delta and theta increases), superimposition of focal abnormalities, spikes, sharp waves, asymmetries and triphasic waves. Excessive delta and triphasic waves only in AD. More severe EEG abnormalities (excessive delta) correlated with hippocampal neuron density and less with granulovacuolar ratio in autopsies. | |
Dierks et al., 1993 [66] | 35 HC and 35 probable AD patients (age range 45–85) | Delta (1.0–3.5 Hz), theta (4.0–7.5 Hz), alpha (8.0–11.5 Hz), beta1, (12.0–15.5 Hz), beta2 (16.0–19.5 Hz), and beta3, (20.0–23.5 Hz). | Spectral analysis–dipole approximation; FFT power. | AD patients showed a shift of alpha and beta activity toward frontal brain regions which correlate with the degree of dementia. AD patients had higher power delta and theta, correlating with the severity of dementia, and lower power in the alpha and beta range. Theta is the most sensitive band. FFT dipole approximation results are constant. |
Besthorn et al., 1994 [109] | 50 AD patients (18 possible AD and 32 probable AD) and 42 HC | Delta 1.5–3.5 Hz, theta 3.5–7.5 Hz, alpha1 7.5–9.5 Hz, alpha2 9.5–12.5 Hz, beta1 12.5–17.5 Hz, beta2 17.5–25.0 Hz. | Spatially averaged spectral coherence between individual electrodes and all neighboring electrodes, frequency bands. | AD showed decreased coherence, mostly in the frontal and central derivations of the theta, alpha and beta frequency bands. A discriminant analysis had a 76% accuracy of prediction (patient or control) using Cz-alpha1, Pz-beta2, C3-beta1, C3-alpha1, and T4-beta 2. |
Locatelli et al., 1998 [114] | 10 mild or moderate AD (age range 53–77) and 10 HC | Delta 0.5–4 Hz, theta 4–8 Hz, alpha 8–12 Hz, beta 12–30 Hz; frequency resolution of 0.5 Hz. | Standard tests, imaging (CT or MRI). Mean spectral coherence of 50 artifact-free 1 s duration epochs. Coherence was calculated as the average of coherence values between electrodes. | Decrease in alpha band coherence in AD, in temporo-parieto-occipital areas, more evident in severe cognitive impairment. Delta coherence increased in a few patients between frontal and posterior regions. Trend towards a reduction in coherence in the temporo-parieto-occipital regions for the theta and beta bands in the AD. Interhemispheric delta and theta coherences tended to increase in all the analyzed pairs of electrodes (exception: F7–F8 and T5–T6). In these regions, and in the beta band, a coherence decrease was present in AD. |
Claus et al., 1999 [65] | 86 probable AD (49 male, 37 female) and 49 HC | Visual inspection with Grand Total EEG (GTE) score. Standardized tests for cognition. | Abnormalities in the visual inspection of the EEG can increase the diagnostic of mild AD in in diagnostic doubt (with low sensitivity). Frequency of rhythmic background activity, diffuse slow activity, and reactivity of the rhythmic background activity were statistically significant related to the diagnosis. | |
Kowalski et al., 2001 [67] | 95 probable AD (mild, marked, and severe dementia); 75 female, 20 male | Theta 6–7 Hz; 5–7 Hz; 4–7 Hz; delta 3 Hz; slow waves: delta and theta. | Standardized test. Descriptive (visual) analysis. Eight-degree scale according to the background activity, presence and amount of theta and delta waves, focal changes, lateralization of focal changes, synchronization, and presence of sharp and spike waves. | Significant correlation between the degree of EEG abnormalities and cognitive impairment. No correlation between delta waves and MMSE nor GDS. No association between duration of the disease and degree of EEG abnormalities |
Stam et al., 2003 [110] | 10 AD (2 male, 8 females; age range 59–86), 17 MCI (8 male, 9 females; age range 62–88) and 20 with subjective memory complaints (SC) (11 male, 9 females; age range: 51–89) | 2–6 Hz, 6–10 Hz, 10–14 Hz, 14–18 Hz, 18–22 Hz, and 22–50 Hz (based upon the suggestions of Leuchter et al., 1993). | Standard tests and imaging for diagnosis. Synchronization likelihood (coherence measure), comparing each channel with all other channels. | Synchronization likelihood decreased in the 14–18 Hz and 18–22 Hz bands in AD compared with both MCI subjects and SC. Lower beta band synchronization correlated with lower MMSE scores. |
Pijnenburg et al., 2004 [111] | 14 AD (7 male, 7 female), 11 MCI (10 female, 1 male) and 14 (8 male, 6 female) with subjective memory complaints (SC) (SC were younger) | 0.5–4 Hz, 4–8 Hz, 8–10 Hz, 10–12 Hz, 12–30 Hz, 30–50 Hz. | Standard tests and imaging for diagnosis. Synchronization likelihood (coherence measure), comparing each channel with all other channels. | Negative correlation in the 10–12 Hz and 12–30 Hz bands between synchronization likelihood and age. Synchronization likelihood decreased in the upper alpha (10–12) and beta (12–30) bands in AD compared to SC. In the remaining condition, the synchronization likelihood was significantly higher in AD than in MCI in the 0.5–4 Hz frequency band. During the working memory task, the synchronization likelihood was significantly higher in MCI compared to the SC in the lower alpha band (8–10 Hz). |
Prichep et al., 2006 [83] | Theta (3.5–7.5 Hz). | Multiple logistic regression | Multiple logistic regression of theta power (3.5–7.5 Hz), mean frequency, and interhemispheric coherence predicted the decline from MCI to AD at long term with an overall predictive accuracy of about 90%. | |
van der Hiele et al., 2007 [69] | 22 HC, 18 MCI and 16 probable AD | Theta (4– 8 Hz) and alpha (8–13 Hz). | Standardized test. Spectral analysis. Theta relative power (% theta in the 4–13 Hz band), alpha reactivity and alpha spectral coherence during eyes closed and memory activation. EEG power measures averaged over all electrode positions. | Theta relative power (% of the 4-13 Hz) in AD > MCI > HC and related to decreased performance in all cognitive domains. Theta absolute power AD> HC. Alpha reactivity HC > AD and related to decreased performance on tests of global cognition, memory, and executive functioning. |
Schreiter Gasser et al., 2008 [55] | 54 AD, 24 mixed dementia (vascular Alzheimer) and 66 HC | Delta (1.5–3.5 Hz), theta (3.5–7.5 Hz), alpha1 (7.5–9.5 Hz), alpha2 (9.5–12.5 Hz), beta1 (12.5–18.5 Hz), beta2 (18.5–25.0 Hz). | Standard clinical and neuropsychological tests, neuroradiology (CT) and qEEG. Spectral power. | Neuroimaging and qEEG made a greater differential diagnostic contribution than clinical symptoms and neuropsychology. Delta power: Mixed > AD > HC. High frequency power decreased in AD. Topography of slow band changed for fast bands: both patient groups showed a flattening in the anterior–posterior distribution in alpha2, beta1, and beta2. |
Babiloni et al., 2009a [85] | 64 HC, 69 amnesic MCI, and 73 mild AD | Delta (2–4 Hz), theta (4–8 Hz), alpha 1 (8–10 Hz), alpha 2 (10–12 Hz), beta 1 (13–20 Hz), beta 2 (20–30 Hz), and gamma (30–40 Hz). | Standard clinical and neuropsychological tests. Neuroimaging (CT, MRI) and laboratory analyses. Direction of information flux within EEG functional coupling by directed transfer function (DTF) with Mvar model. EEG power density spectrum and relative power. Directionality between F3–P3, Fz–Pz, F4–P4. Interhemispheric directionality between F3–F4, C3–C4, P3–P4. | Parietal to frontal direction of the information flux within EEG functional coupling of theta: HC > MCI/AD; Alpha1: HC > MCI/AD; Alpha2: HC > MCI/AD; beta1: HC > MCI > AD; beta2: HC > AD. No differences in the directional flow within inter-hemispheric EEG functional coupling. |
Babiloni et al., 2009b [118] | 60 HC, 88 MCI, and 35 AD | Delta (2–4Hz), theta (4–8 Hz), alpha 1 (8–10.5 Hz), alpha 2 (10.5–13 Hz), beta 1 (13–20 Hz), and beta 2 (20–30 Hz). | Standard tests. Spectral analysis: power spectrum, alpha peak frequency. EEG sources by low resolution electromagnetic source tomography (LORETA). | Significant linear correlation of hippocampal volume with the magnitude of alpha1 sources in the parietal, occipital and temporal areas. Progressive atrophy of hippocampus correlates with decreased cortical alpha power in a continuum MCI < AD. |
Gallego-Jutglà et al., 2012 [119] | 24 HC (10 male, 14 female), 17 mild AD (9 male, 8 female) | Narrow frequency bands of different sizes, with the aim of optimizing the band selection. | Standard tests. Synchrony analysis by cross-correlation, phase synchrony and Granger causality. | The frequency range 5–6 Hz yields the best accuracy for diagnosing AD (within the classical theta band) for directed transfer function (DTF) Granger causality. |
Babiloni et al., 2013 [62] | 88 mild AD (19 male, 69 female), 35 HC (6 male, 29 female) | Delta (2–4 Hz), theta (4–8 Hz), alpha 1 (8–10.5 Hz), alpha 2 (10.5–13 Hz), beta 1 (13–20 Hz), beta 2 (20–30 Hz), and gamma (30–40 Hz). | Standard tests. Spectral analysis: power spectrum. EEG sources by low resolution electromagnetic source tomography (LORETA). | Mild AD had a power increase in widespread delta sources and by a power decrease in posterior alpha sources. In mild AD, the follow-up EEG recordings showed increased power of widespread delta sources as well as decreased power of widespread alpha and posterior beta 1 sources. |
Poil et al., 2013 [138] | 86 MCI (25 MCI converters to AD and 61 others) | Broad band signal. Delta (1–3 Hz),theta (4–7 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–45 Hz), alpha divided into three narrower bands. | Logistic regression. Large-scale data mining (177 biomarkers). Neurophysiological Biomarker Toolbox (http://www.nbtwiki.net/). | Multiple EEG biomarkers mainly related to activity in the beta frequency range (13–30 Hz) can predict conversion from MCI to AD in 2 years. By integrating six EEG biomarkers into a diagnostic index using log regression, the prediction improved, with a sensitivity of 88% and specificity of 82%, compared with a sensitivity of 64% and specificity of 62% of the best individual biomarker in this index (peak width of the dominant beta peak). |
Lizio et al., 2016 [70] | 127 AD and 121 HC | Delta (2–4 Hz), theta (4–8 Hz), alpha 1 (8–10.5 Hz), alpha 2 (10.5–13 Hz), beta 1 (13–20 Hz), beta 2 (20–30 Hz), and gamma (30–40 Hz). | LORETA. Ratio between parieto-occipital cortical sources of delta and low-frequency alpha rhythms. | The ratio offered 77.2% of sensitivity in the recognition of the AD individuals; 65% of specificity in the recognition of the Nold individuals; and 0.75 of area under the receiver-operating characteristic curve. |
Babiloni et al., 2016 [76] | 19 AD patients with dementia and 40 healthy elderly subjects. | Delta (2–4 Hz) and low-frequency alpha (8–10.5 Hz) | LORETA. Fluorodeoxyglucose positron emission tomography (PET) images. | AD group pointed to lower activity of low-frequency alpha sources and higher activity of delta sources which correlates positively with glucose hypometabolism in the cortical region of interest. |
Hata et al., 2017 [78] | 14 probable Alzheimer’s disease patients | Delta (2–4 Hz), theta (4–8 Hz), alpha1 (8–10 Hz), alpha2 (10–13 Hz), beta1 (13–20 Hz), and beta2 (20–30 Hz). | eLORETA: current source density (CSD) and lagged phase synchronization (LPS). Brain MRI, cerebrospinal fluid measurements, and neuropsychological assessments. | Patients with AD showed significant negative correlation between CSF Aβ42 concentration and the logarithms of CSD over the right temporal area in the theta band. Total tau concentration was negatively correlated with the LPS between the left frontal eye field and the right auditory area in the alpha-2 band in patients with AD. |
Houmani et al., 2018 [97] | 169 patients:SCI (n = 22), MCI (n = 58), AD (n = 49), Other pathologies (n = 40) | 0.1–4 Hz (delta), 4–8 Hz (theta), 8–12 Hz (alpha), 12–30 Hz (beta), 30–100 Hz (gamma) | Epoch-based entropy (signal complexity) and bump models (EEG local synchrony) | Automatic discrimination of possible AD patients from SCI patients and from MCI or other pathologies. Accuracy 91.6% (specificity = 100%, sensitivity = 87.8%) Discriminating SCI patients from possible AD patients’ accuracy 81.8% to 88.8%. |
Handayani et al., 2018 [112] | 22 elderly subjects consisted of 10 MCI subjects and 12 healthy subjects | Delta (1–4 Hz), theta (4–7 Hz), alpha (7–13 Hz), and beta (13–30 Hz). | Coherence between each electrode pair measured for all frequency bands.Magnitude of phase synchrony expressed in the phase locking value (PLV). | Decrease in intrahemispheric and interhemispheric coherence especially in the beta band.Decrease in signal synchronization in some electrode pairs for the alpha band and on all electrode pairs for beta band. |
Smailovic et al., 2018 [80] | Subjective cognitive decline (SCD; n=210), mild cognitive impairment (MCI; n=230) and AD (n=197) | Delta (1–3.5 Hz), theta (4–7.5 Hz), alpha (8–11.5 Hz) and beta (12–19.5 Hz) | qEEG, global field power (GFP) and global field synchronization (GFS), and CSF biomarkers | Decreased CSF Aβ42 correlated with increased theta and delta GFP. Increased p- and t-tau with decreased alpha and beta GFP. Decreased CSF Aβ42 and increased p- and t-tau associated with decreased GFS alpha and beta. |
Koelewijn et al., 2019 [113] | Healthy young humans (N = 183) genotyped for APOE-e4. AD patients (N = 14) and age-matched controls (N = 11) | Delta: 1–4 Hz, Theta: 3–8 Hz, Alpha: 8–13 Hz, Beta-13–30 Hz, LowGamma: 40–60 Hz, and High-Gamma: 60–140 Hz. | Amplitude–amplitude connectivity of beamformer-derived oscillatory source signals, across six frequency bands and 90 AAL atlas brain areas. | Connectivity across alpha/beta increased in APOE-e4 in right-hemisphere, lateral parietal and precuneus of the default mode network. Hyperactivity in gamma. Hypoconnectivity in bilateral network in AD. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monllor, P.; Cervera-Ferri, A.; Lloret, M.-A.; Esteve, D.; Lopez, B.; Leon, J.-L.; Lloret, A. Electroencephalography as a Non-Invasive Biomarker of Alzheimer’s Disease: A Forgotten Candidate to Substitute CSF Molecules? Int. J. Mol. Sci. 2021, 22, 10889. https://doi.org/10.3390/ijms221910889
Monllor P, Cervera-Ferri A, Lloret M-A, Esteve D, Lopez B, Leon J-L, Lloret A. Electroencephalography as a Non-Invasive Biomarker of Alzheimer’s Disease: A Forgotten Candidate to Substitute CSF Molecules? International Journal of Molecular Sciences. 2021; 22(19):10889. https://doi.org/10.3390/ijms221910889
Chicago/Turabian StyleMonllor, Paloma, Ana Cervera-Ferri, Maria-Angeles Lloret, Daniel Esteve, Begoña Lopez, Jose-Luis Leon, and Ana Lloret. 2021. "Electroencephalography as a Non-Invasive Biomarker of Alzheimer’s Disease: A Forgotten Candidate to Substitute CSF Molecules?" International Journal of Molecular Sciences 22, no. 19: 10889. https://doi.org/10.3390/ijms221910889
APA StyleMonllor, P., Cervera-Ferri, A., Lloret, M. -A., Esteve, D., Lopez, B., Leon, J. -L., & Lloret, A. (2021). Electroencephalography as a Non-Invasive Biomarker of Alzheimer’s Disease: A Forgotten Candidate to Substitute CSF Molecules? International Journal of Molecular Sciences, 22(19), 10889. https://doi.org/10.3390/ijms221910889