Late Inflammation Induced by Asbestiform Fibers in Mice Is Ameliorated by a Small Molecule Synthetic Lignan
Abstract
:1. Introduction
2. Results
2.1. Mice Consumed Approximately 100 mg/kg LGM2605 Daily
2.2. LGM2605 Treatment Mitigated Innate Immune Responses to LA
2.3. LGM2605 Treatment Alters Peritoneal and Splenic B1a B Cell Levels Following LA Exposure
2.4. LGM2605 Treatment Alters Adaptive Immune Responses Following LA Exposure
2.5. LGM2605 Treatment Significantly Alters Immunoglobulin Isotypes in PLF Following LA Exposure
2.6. LGM2605 Treatment Significantly Alters IL-6 and MCP-1 Concentrations in PLF and IL-6 and IL-10 Concentrations in Serum Following LA Exposure
2.7. LGM2605 Treatment Reduces Oxidative Stress Biomarkers in PLF Following LA Exposure
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. LGM2605 Treatment
4.3. Mineral Fibers (LA)
4.4. LA Exposure
4.5. Tissues Harvest
- B cells: CD19 (PE) or IgM (PerCP Cy5.5)
- B1a B cells: IgMpos (PerCP Cy5.5), CD5pos (APC), CD23neg (PE)
- T cells: CD3 (FITC) pos
- Helper T cells: CD3 (FITC)pos, CD4 (PE)pos
- Polymorphonuclear cells (PMN): Ly-6G (APC)
4.6. Cytokine Detection
4.7. Immunoglobulin Isotyping
4.8. Detection of DNA/RNA Oxidative Damage in PLF
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meeker, G.P.; Bern, A.M.; Brownfield, I.K.; Lowers, H.A.; Sutley, S.J.; Hoefen, T.M.; Vance, J.S. The composition and morphology of amphiboles from the Rainy Creek complex, near Libby, Montana. Am. Mineral. 2003, 88, 1955–1969. [Google Scholar] [CrossRef]
- Quivik, F. United States v. W.R. Grace Civil Action No. 90-11-2-07106/2; United States District Court District of Montana: Bilings, MT, USA, 2002; pp. 2–47.
- Ewing, W.M.; Hays, S.M.; Hatfield, R.; Longo, W.E.; Millette, J.R. Zonolite attic insulation exposure studies. Int. J. Occup. Environ. Eealth 2010, 16, 279–290. [Google Scholar] [CrossRef]
- Baumann, F.; Buck, B.J.; Metcalf, R.V.; McLaurin, B.T.; Merkler, D.J.; Carbone, M. The presence of asbestos in the natural environment is likely related to mesothelioma in young individuals and women from southern Nevada. J. Thorac. Oncol. 2015, 10, 731–737. [Google Scholar] [CrossRef] [Green Version]
- Ryan, P.H.; Dihle, M.; Griffin, S.; Partridge, C.; Hilbert, T.J.; Taylor, R.; Adjei, S.; Lockey, J.E. Erionite in road gravel associated with interstitial and pleural changes—An occupational hazard in western United States. J. Occup. Environ. Med. 2011, 53, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Ferro, A.; Zebedeo, C.N.; Davis, C.; Ng, K.W.; Pfau, J.C. Amphibole, but not chrysotile, asbestos induces anti-nuclear autoantibodies and IL-17 in C57BL/6 mice. J. Immunotoxicol. 2013, 11, 283–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodavanti, U.P.; Andrews, D.; Schladweiler, M.C.; Gavett, S.H.; Dodd, D.E.; Cyphert, J.M. Early and delayed effects of naturally occurring asbestos on serum biomarkers of inflammation and metabolism. J. Toxicol. Environ. Health A 2014, 77, 1024–1039. [Google Scholar] [CrossRef] [PubMed]
- Pfau, J.C.; Sentissi, J.J.; Li, S.; Calderon-Garciduenas, L.; Brown, J.M.; Blake, D.J. Asbestos-induced autoimmunity in C57BL/6 mice. J. Immunotoxicol. 2008, 5, 129–137. [Google Scholar] [CrossRef]
- Diegel, R.; Black, B.; Pfau, J.C.; McNew, T.; Noonan, C.; Flores, R. Case series: Rheumatological manifestations attributed to exposure to Libby Asbestiform Amphiboles. J. Toxicol. Environ. Health A 2018, 81, 734–747. [Google Scholar] [CrossRef] [Green Version]
- Pfau, J.C.; Buck, B.; Metcalf, R.V.; Kaupish, Z.; Stair, C.; Rodriguez, M.; Keil, D.E. Comparative health effects in mice of Libby amphibole asbestos and a fibrous amphibole from Arizona. Toxicol. Appl. Pharmacol. 2017, 334, 24–34. [Google Scholar] [CrossRef]
- Black, B.; Szeinuk, J.; Whitehouse, A.C.; Levin, S.M.; Henschke, C.I.; Yankelevitz, D.F.; Flores, R.M. Rapid progression of pleural disease due to exposure to Libby amphibole: “Not your grandfather’s asbestos related disease”. Am. J. Ind. Med. 2014, 57, 1197–1206. [Google Scholar] [CrossRef]
- Whitehouse, A.C. Asbestos-related pleural disease due to tremolite associated with progressive loss of lung function: Serial observations in 123 miners, family members, and residents of Libby, Montana. Am. J. Ind. Med. 2004, 46, 219–225. [Google Scholar] [CrossRef]
- Pfau, J.C.; Sentissi, J.J.; Weller, G.; Putnam, E.A. Assessment of autoimmune responses associated with asbestos exposure in Libby, Montana, USA. Environ. Health Perspect. 2005, 113, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Noonan, C.W.; Pfau, J.C.; Larson, T.C.; Spence, M.R. Nested case-control study of autoimmune disease in an asbestos-exposed population. Environ. Health Perspect. 2006, 114, 1243–1247. [Google Scholar] [CrossRef]
- Marchand, L.S.; St-Hilaire, S.; Putnam, E.A.; Serve, K.M.; Pfau, J.C. Mesothelial cell and anti-nuclear autoantibodies associated with pleural abnormalities in an asbestos exposed population of Libby MT. Toxicol. Lett. 2012, 208, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Szeinuk, J.; Noonan, C.W.; Henschke, C.I.; Pfau, J.; Black, B.; Miller, A.; Yankelevitz, D.F.; Liang, M.; Liu, Y.; Yip, R.; et al. Pulmonary abnormalities as a result of exposure to Libby amphibole during childhood and adolescence—The pre-adult latency study (PALS). Am. J. Ind. Med. 2017, 60, 20–34. [Google Scholar] [CrossRef]
- Doll, N.J.; Stankus, R.P.; Goldbach, S.; Salvaggio, J.E. In vitro effect of asbestos fibers on polymorphonuclear leukocyte function. Int. Arch. Allergy Appl. Immunol. 1982, 68, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Choe, N.; Tanaka, S.; Xia, W.; Hemenway, D.R.; Roggli, V.L.; Kagan, E. Pleural macrophage recruitment and activation in asbestos-induced pleural injury. Environ. Health Perspect 1997, 105, 1257–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rola-Pleszczynski, M.; Gouin, S.; Begin, R. Asbestos-induced lung inflammation. Role of local macrophage-derived chemotactic factors in accumulation of neutrophils in the lungs. Inflammation 1984, 8, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Dostert, C.; Petrilli, V.; Van Bruggen, R.; Steele, C.; Mossman, B.T.; Tschopp, J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008, 320, 674–677. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.; Gulumian, M.; Hei, T.K.; Kamp, D.; Rahman, Q.; Mossman, B.T. Multiple roles of oxidants in the pathogenesis of asbestos-induced diseases. Free Radic. Biol. Med. 2003, 34, 1117–1129. [Google Scholar] [CrossRef]
- Pietrofesa, R.A.; Woodruff, P.; Hwang, W.T.; Patel, P.; Chatterjee, S.; Albelda, S.M.; Christofidou-Solomidou, M. The synthetic lignan secoisolariciresinol diglucoside prevents asbestos-induced NLRP3 inflammasome activation in murine macrophages. Oxid. Med. Cell. Longev. 2017, 2017, 7395238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blake, D.J.; Bolin, C.M.; Cox, D.P.; Cardozo-Pelaez, F.; Pfau, J.C. Internalization of Libby amphibole asbestos and induction of oxidative stress in murine macrophages. Toxicol. Sci. 2007, 99, 277–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayan, M.; Mossman, B.T. The NLRP3 inflammasome in pathogenic particle and fibre-associated lung inflammation and diseases. Part. Fibre Toxicol. 2016, 13, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillegass, J.M.; Miller, J.M.; MacPherson, M.B.; Westbom, C.M.; Sayan, M.; Thompson, J.K.; Macura, S.L.; Perkins, T.N.; Beuschel, S.L.; Alexeeva, V.; et al. Asbestos and erionite prime and activate the NLRP3 inflammasome that stimulates autocrine cytokine release in human mesothelial cells. Part. Fibre Toxicol. 2013, 10, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Overocker, J.; Pfau, J.C. Cytokine production modified by system X(c)–After PM10 and asbestos exposure. J. Young Investig. 2012, 23, 34–39. [Google Scholar]
- Andersson, U.; Wang, H.; Palmblad, K.; Aveberger, A.C.; Bloom, O.; Erlandsson-Harris, H.; Janson, A.; Kokkola, R.; Zhang, M.; Yang, H.; et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J. Exp. Med. 2000, 192, 565–570. [Google Scholar] [CrossRef]
- Gorgulho, C.M.; Romagnoli, G.G.; Bharthi, R.; Lotze, M.T. Johnny on the spot-chronic inflammation is driven by HMGB1. Front. Immunol. 2019, 10, 1561. [Google Scholar] [CrossRef]
- Pfau, J.C.; McNew, T.; Hanley, K.; Swan, L.; Black, B. Autoimmune markers for progression of Libby amphibole lamellar pleural thickening. Inhal. Toxicol. 2019, 31, 409–419. [Google Scholar] [CrossRef]
- Pietrofesa, R.A.; Velalopoulou, A.; Albelda, S.M.; Christofidou-Solomidou, M. Asbestos induces oxidative stress and activation of Nrf2 signaling in murine macrophages: Chemopreventive role of the synthetic lignan secoisolariciresinol diglucoside (LGM2605). Int. J. Mol. Sci. 2016, 17, 322. [Google Scholar] [CrossRef] [Green Version]
- Pietrofesa, R.A.; Velalopoulou, A.; Arguiri, E.; Menges, C.W.; Testa, J.R.; Hwang, W.T.; Albelda, S.M.; Christofidou-Solomidou, M. Flaxseed lignans enriched in secoisolariciresinol diglucoside prevent acute asbestos-induced peritoneal inflammation in mice. Carcinogenesis 2016, 37, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Kadariya, Y.; Menges, C.W.; Talarchek, J.; Cai, K.Q.; Klein-Szanto, A.J.; Pietrofesa, R.A.; Christofidou-Solomidou, M.; Cheung, M.; Mossman, B.T.; Shukla, A.; et al. Inflammation-related IL1beta/IL1R signaling promotes the development of asbestos-induced malignant mesothelioma. Cancer Prev. Res. 2016, 9, 406–414. [Google Scholar] [CrossRef] [Green Version]
- Pietrofesa, R.A.; Chatterjee, S.; Park, K.; Arguiri, E.; Albelda, S.M.; Christofidou-Solomidou, M. Synthetic lignan secoisolariciresinol diglucoside (LGM2605) reduces asbestos-induced cytotoxicity in an Nrf2-dependent and -independent manner. Antioxidants 2018, 7, 38. [Google Scholar] [CrossRef] [Green Version]
- Mishra, O.P.; Popov, A.V.; Pietrofesa, R.A.; Hwang, W.T.; Andrake, M.; Nakamaru-Ogiso, E.; Christofidou-Solomidou, M. Radiation activates myeloperoxidase (MPO) to generate active chlorine species (ACS) via a dephosphorylation mechanism-inhibitory effect of LGM2605. Biochim. Biophys. Acta Gen. Subj. 2020, 1864, 129548. [Google Scholar] [CrossRef] [PubMed]
- Mishra, O.P.; Popov, A.V.; Pietrofesa, R.A.; Nakamaru-Ogiso, E.; Andrake, M.; Christofidou-Solomidou, M. Synthetic secoisolariciresinol diglucoside (LGM2605) inhibits myeloperoxidase activity in inflammatory cells. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 1364–1375. [Google Scholar] [CrossRef]
- Mishra, O.P.; Popov, A.V.; Pietrofesa, R.A.; Christofidou-Solomidou, M. Gamma-irradiation produces active chlorine species (ACS) in physiological solutions: Secoisolariciresinol diglucoside (SDG) scavenges ACS–A novel mechanism of DNA radioprotection. Biochim. Biophys. Acta 2016, 1860, 1884–1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christofidou-Solomidou, M.; Pietrofesa, R.A.; Park, K.; Albelda, S.M.; Serve, K.M.; Keil, D.E.; Pfau, J.C. Synthetic secoisolariciresinol diglucoside (LGM2605) inhibits Libby amphibole fiber-induced acute inflammation in mice. Toxicol. Appl. Pharmacol. 2019, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Moalli, P.A.; MacDonald, J.L.; Goodglick, L.A.; Kane, A.B. Acute injury and regeneration of the mesothelium in response to asbestos fibers. Am. J. Pathol. 1987, 128, 426–445. [Google Scholar] [PubMed]
- Pfau, J.C.; Hurley, K.; Peterson, C.; Coker, L.; Fowers, C.; Marcum, R. Activation and trafficking of peritoneal B1a B-cells in response to amphibole asbestos. J. Immunotoxicol. 2014, 11, 90–98. [Google Scholar] [CrossRef]
- Pfau, J.C.; Barbour, C.; Black, B.; Serve, K.M.; Fritzler, M.J. Analysis of autoantibody profiles in two asbestiform fiber exposure cohorts. J. Toxicol. Environ. Health A 2018, 81, 1015–1027. [Google Scholar] [CrossRef]
- Miossec, P.; Kolls, J.K. Targeting IL-17 and TH17 cells in chronic inflammation. Nat. Rev. Drug Discov. 2012, 11, 763–776. [Google Scholar] [CrossRef]
- Fusco, R.; Cordaro, M.; Genovese, T.; Impellizzeri, D.; Siracusa, R.; Gugliandolo, E.; Peritore, A.F.; D’Amico, R.; Crupi, R.; Cuzzocrea, S.; et al. Adelmidrol: A new promising antioxidant and anti-inflammatory therapeutic tool in pulmonary Fibrosis. Antioxidants 2020, 9, 601. [Google Scholar] [CrossRef]
- Imran, M.; Ahmad, N.; Anjum, F.M.; Khan, M.K.; Mushtaq, Z.; Nadeem, M.; Hussain, S. Potential protective properties of flax lignan secoisolariciresinol diglucoside. Nutr. J. 2015, 14, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velalopoulou, A.; Tyagi, S.; Pietrofesa, R.A.; Arguiri, E.; Christofidou-Solomidou, M. The flaxseed-derived lignan phenolic secoisolariciresinol diglucoside (SDG) protects non-malignant lung cells from radiation damage. Int. J. Mol. Sci. 2016, 17, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunderson-Schelvan, M.; Pfau, J.C.; Crouch, R.; Holian, A. Nonpulmonary outcomes of asbestos exposure. J. Toxicol. Environ. Health B Crit. Rev. 2011, 14, 122–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, M.K.; Boberg, J.R.; Walsh, M.T.; Wolf, V.; Trujillo, A.; Duke, M.S.; Palme, R.; Felton, L.A. A less stressful alternative to oral gavage for pharmacological and toxicological studies in mice. Toxicol. Appl. Pharmacol. 2012, 260, 65–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christy, A.C.; Byrnes, K.R.; Settle, T.L. Evaluation of medicated gel as a supplement to providing acetaminophen in the drinking water of C57BL/6 mice after surgery. J. Am. Assoc. Lab. Anim. Sci. 2014, 53, 180–184. [Google Scholar] [PubMed]
- Saarinen, N.M.; Thompson, L.U. Prolonged administration of secoisolariciresinol diglycoside increases lignan excretion and alters lignan tissue distribution in adult male and female rats. Br. J. Nutr. 2010, 104, 833–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowers, L.W.; Lineberger, C.G.; Ford, N.A.; Rossi, E.L.; Punjala, A.; Camp, K.K.; Kimler, B.K.; Fabian, C.J.; Hursting, S.D. The flaxseed lignan secoisolariciresinol diglucoside decreases local inflammation, suppresses NFkappaB signaling, and inhibits mammary tumor growth. Breast Cancer Res. Treat. 2019, 173, 545–557. [Google Scholar] [CrossRef] [Green Version]
- Chapman, J.; Bansal, P.; Goyal, A.; Azevedo, A.M. Splenomegaly; StatPearls: Treasure Island, FL, USA, 2020.
- Pfau, J.C.; Serve, K.; Woods, L.; Noonan, C. Asbestos Exposure and Autoimmunity. In Biological Effects of Fibrous and Particulate Substances. Current Topics in Environmental Health and Preventive Medicine; Otsuki, T., Holian, A., Eds.; Springer: Tokyo, Japan, 2016. [Google Scholar]
- Ward, P.A. Oxidative stress: Acute and progressive lung injury. Ann. N. Y. Acad. Sci. 2010, 1203, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.B.; Hewitt, S.L.; Heltemes-Harris, L.M.; Mandal, M.; Johnson, K.; Rajewsky, K.; Koralov, S.B.; Clark, M.R.; Farrar, M.A.; Skok, J.A. B-1a cells acquire their unique characteristics by bypassing the pre-BCR selection stage. Nat. Commun. 2019, 10, 4768. [Google Scholar] [CrossRef] [Green Version]
- Aziz, M.; Holodick, N.E.; Rothstein, T.L.; Wang, P. The role of B-1 cells in inflammation. Immunol. Res. 2015, 63, 153–166. [Google Scholar] [CrossRef] [PubMed]
- El Sayed, Z.H.; El-Hagrasy, H.A.; Badway, D.; Mohamed, M.S.E. The pathogenic role of B1a lymphocyte in rheumatoid arthritis patients and its relation with seropositivity. Clin. Med. Diagn. 2019, 9, 47–54. [Google Scholar] [CrossRef]
- Yamamoto, W.; Toyoda, H.; Xu, D.Q.; Hanaki, R.; Morimoto, M.; Nakato, D.; Ito, T.; Iwamoto, S.; Bonno, M.; Tanaka, S.; et al. CD3+ B-1a cells as a mediator of disease progression in autoimmune-prone mice. Mediat. Inflamm. 2018, 2018, 9289417. [Google Scholar] [CrossRef]
- Scotland, R.S.; Stables, M.J.; Madalli, S.; Watson, P.; Gilroy, D.W. Sex differences in resident immune cell phenotype underlie more efficient acute inflammatory responses in female mice. Blood 2011, 118, 5918–5927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, D.L.; Pfau, J.C. Asbestos activates CH12.LX B-lymphocytes via macrophage signaling. J. Immunotoxicol. 2012, 9, 129–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumagai-Takei, N.; Yamamoto, S.; Lee, S.; Maeda, M.; Masuzzaki, H.; Sada, N.; Yu, M.; Yoshitome, K.; Nishimura, Y.; Otsuki, T. Inflammatory alteration of human T cells exposed continuously to asbestos. Int. J. Mol. Sci. 2018, 19, 504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, M.; Nishimura, Y.; Hayashi, H.; Kumagai, N.; Chen, Y.; Murakami, S.; Miura, Y.; Hiratsuka, J.; Kishimoto, T.; Otsuki, T. Decreased CXCR3 expression in CD4+ T cells exposed to asbestos or derived from asbestos-exposed patients. Am. J. Respir. Cell Mol. Biol. 2011, 45, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Lilienthal, G.M.; Rahmoller, J.; Petry, J.; Bartsch, Y.C.; Leliavski, A.; Ehlers, M. Potential of murine IgG1 and human IgG4 to inhibit the classical complement and Fcγ receptor activation pathways. Front. Immunol. 2018, 9, 958. [Google Scholar] [CrossRef]
- Beagley, K.W.; Eldridge, J.H.; Lee, F.; Kiyono, H.; Everson, M.P.; Koopman, W.J.; Hirano, T.; Kishimoto, T.; McGhee, J.R. Interleukins and IgA synthesis. Human and murine interleukin 6 induce high rate IgA secretion in IgA-committed B cells. J. Exp. Med. 1989, 169, 2133–2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beagley, K.W.; Bao, S.; Ramsay, A.J.; Eldridge, J.H.; Husband, A.J. IgA production by peritoneal cavity B cells is IL-6 independent: Implications for intestinal IgA responses. Eur. J. Immunol. 1995, 25, 2123–2126. [Google Scholar] [CrossRef]
- Roy, B.; Brennecke, A.M.; Agarwal, S.; Krey, M.; Duber, S.; Weiss, S. An intrinsic propensity of murine peritoneal B1b cells to switch to IgA in presence of TGF-beta and retinoic acid. PLoS ONE 2013, 8, e82121. [Google Scholar] [CrossRef]
- Kaminski, D.A.; Stavnezer, J. Enhanced IgA class switching in marginal zone and B1 B cells relative to follicular/B2 B cells. J. Immunol. 2006, 177, 6025–6029. [Google Scholar] [CrossRef]
- Popov, A.V.; Zou, X.; Xian, J.; Nicholson, I.C.; Bruggemann, M. A human immunoglobulin lambda locus is similarly well expressed in mice and humans. J. Exp. Med. 1999, 189, 1611–1620. [Google Scholar] [CrossRef]
- Ye, Y.; Li, S.L.; Xie, M.; Jiang, P.; Liu, K.G.; Li, Y.J. Judging disease activity in rheumatoid arthritis by serum free kappa and lambda light chain levels. Kaohsiung J. Med. Sci. 2013, 29, 547–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayakawa, K.; Hardy, R.R.; Herzenberg, L.A. Peritoneal Ly-1 B cells: Genetic control, autoantibody production, increased lambda light chain expression. Eur. J. Immunol. 1986, 16, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, K.; Hardy, R.R.; Honda, M.; Herzenberg, L.A.; Steinberg, A.D.; Herzenberg, L.A. Ly-1 B cells: Functionally distinct lymphocytes that secrete IgM autoantibodies. Proc. Natl. Acad. Sci. USA 1984, 81, 2494–2498. [Google Scholar] [CrossRef] [Green Version]
- Chomarat, P.; Banchereau, J.; Davoust, J.; Palucka, A.K. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat. Immunol. 2000, 1, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interferon Cytokine Res. 2009, 29, 313–326. [Google Scholar] [CrossRef]
- Gabrysova, L.; Howes, A.; Saraiva, M.; O’Garra, A. The regulation of IL-10 expression. Curr. Top. Microbiol. Immunol. 2014, 380, 157–190. [Google Scholar] [CrossRef] [Green Version]
- Mittal, S.K.; Cho, K.J.; Ishido, S.; Roche, P.A. Interleukin 10 (IL-10)-mediated Immunosuppression: March-i induction regulates antigen presentation by macrophages but not dendritic cells. J. Biol. Chem. 2015, 290, 27158–27167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietrofesa, R.A.; Solomides, C.C.; Christofidou-Solomidou, M. Flaxseed mitigates acute oxidative lung damage in a mouse model of repeated radiation and hyperoxia exposure associated with space exploration. J. Pulm. Respir. Med. 2014, 4, 1000215. [Google Scholar] [CrossRef] [PubMed]
- Pilger, A.; Rudiger, H.W. 8-Hydroxy-2′-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures. Int. Arch. Occup. Environ. Health 2006, 80, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Mishra, O.P.; Simmons, N.; Tyagi, S.; Pietrofesa, R.; Shuvaev, V.V.; Valiulin, R.A.; Heretsch, P.; Nicolaou, K.C.; Christofidou-Solomidou, M. Synthesis and antioxidant evaluation of (S,S)- and (R,R)-secoisolariciresinol diglucosides (SDGs). Bioorg. Med. Chem. Lett. 2013, 23, 5325–5328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, K.E.; Cook, P.M.; Gavett, S.H.; Dailey, L.A.; Mahoney, R.K.; Ghio, A.J.; Roggli, V.L.; Devlin, R.B. In vitro determinants of asbestos fiber toxicity: Effect on the relative toxicity of Libby amphibole in primary human airway epithelial cells. Part. Fibre Toxicol. 2014, 11, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowers, H.A.; Wilson, S.A.; Hoefen, T.M.; Benzel, W.M.; Meeker, G.P. Preparation and Characterization of “Libby Amphibole” Toxicological Testing Material; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2012.
- Gao, B.; Wang, Y.; Tsan, M.F. The heat sensitivity of cytokine-inducing effect of lipopolysaccharide. J. Leukoc. Biol. 2006, 80, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-M.; Calcagnotto, A.; Zhu, J.; Yuan-Wan, S.; El-Bayoumy, K.; Richie, J.P. Comparison of an HPLC-MS/MS method with multiple commercial ELISA kits on the determination of levels of 8-oxo-7,8-Dihydro-2′-Deoxyguianosine in human urine. J. New Dev. Chem. 2018, 2, 1–13. [Google Scholar] [CrossRef]
Control | LGM2605 Only | LA Only | LGM2605 + LA | p-Value Treatment | |
---|---|---|---|---|---|
IgG1 conc. | 1.00 ± 0.10 | 1.19 ± 0.09 | 0.53 ± 0.08 | 1.13 ± 0.16 | <0.001 |
κ/λ ratio | 93.18 | 91.58 | 32.44 | 81.19 | |
IgG2a conc. | 1.00 ± 0.08 | 1.16 ± 0.10 | 0.72 ± 0.11 | 1.05 ± 0.10 | 0.023 |
κ/λ ratio | 63.00 | 89.61 | 24.76 | 32.95 | |
IgG2b conc. | 1.00 ± 0.08 | 1.06 ± 0.07 | 0.53 ± 0.04 | 1.13 ± 0.13 | <0.001 |
κ/λ ratio | 89.32 | 114.34 | 16.33 | 93.87 | |
IgG3 conc. | 1.00 ± 0.09 | 1.27 ± 0.06 | 0.85 ± 0.09 | 1.21 ± 0.15 | 0.036 |
κ/λ ratio | 12.42 | 16.77 | 7.68 | 17.19 | |
IgA conc. | 1.00 ± 0.14 | 0.86 ± 0.03 | 1.68 ± 0.26 | 0.94 ± 0.16 | <0.01 |
κ/λ ratio | 7.24 | 6.97 | 0.98 | 5.38 | |
IgM conc. | 1.00 ± 0.06 | 1.29 ± 0.14 | 1.14 ± 0.07 | 1.16 ± 0.09 | n.s. |
κ/λ ratio | 32.93 | 64.81 | 8.27 | 15.80 | |
IgE conc. | 1.00 ± 0.10 | 1.83 ± 0.48 | 1.45 ± 0.18 | 1.20 ± 0.24 | 0.032 |
κ/λ ratio | 2.37 | 6.92 | 0.37 | 2.67 |
Control | LGM2605 Only | LA Only | LGM2605 + LA | p-Value Treatment | |
---|---|---|---|---|---|
IL-6 | 0.36 ± 0.17 | 0.89 ± 0.42 | 16.84 ± 4.16 | 0.22 ± 0.14 | <0.0001 |
Female | 0.26 ± 0.12 | 0.41 ± 0.14 | 12.86 ± 1.77 | 0.11 ± 0.03 | <0.001 |
Male | 0.46 ± 0.22 | 1.62 ± 0.59 | 18.03 ± 5.89 | 0.33 ± 0.20 | <0.001 |
MCP-1 | 0.77 ± 0.2 | 1.04 ± 0.20 | 1.88 ± 0.29 | 0.65 ± 0.10 | <0.001 |
Female | 0.65 ± 0.18 | 0.91 ± 0.20 | 1.90 ± 0.32 | 0.55 ± 0.09 | 0.026 |
Male | 0.90 ± 0.22 | 1.31 ± 0.22 | 1.63 ± 0.29 | 0.74 ± 0.12 | n.s. |
Control | LGM2605 Only | LA Only | LGM2605 + LA | p-Value Treatment | |
---|---|---|---|---|---|
IL-6 | 5.47 ± 0.82 | 4.25 ± 0.38 | 7.87 ± 1.06 | 4.38 ± 0.50 | <0.01 |
Female | 5.28 ± 1.42 | 3.67 ± 0.37 | 7.04 ± 1.30 | 5.26 ± 0.81 | n.s. |
Male | 5.66 ± 0.97 | 4.83 ± 0.65 | 8.71 ± 1.73 | 3.49 ± 0.31 | 0.036 |
IL-10 | 15.83 ± 1.35 | 18.46 ± 1.65 | 13.09 ± 1.33 | 21.31 ± 2.59 | 0.016 |
Female | 17.69 ± 2.02 | 17.03 ± 1.94 | 11.86 ± 0.19 | 25.29 ± 3.85 | 0.014 |
Male | 13.97 ± 1.59 | 19.89 ± 2.71 | 14.31 ± 1.57 | 16.54 ± 2.00 | n.s. |
MCP-1 | 9.30 ± 1.37 | 6.50 ± 0.46 | 5.41 ± 0.42 | 6.47 ± 0.47 | <0.01 |
Female | 9.19 ± 2.16 | 7.35 ± 0.54 | 5.18 ± 0.59 | 6.60 ± 0.54 | 0.045 |
Male | 9.41 ± 1.89 | 6.47 ± 0.47 | 5.64 ± 0.63 | 6.31 ± 0.88 | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badger, R.; Park, K.; Pietrofesa, R.A.; Christofidou-Solomidou, M.; Serve, K.M. Late Inflammation Induced by Asbestiform Fibers in Mice Is Ameliorated by a Small Molecule Synthetic Lignan. Int. J. Mol. Sci. 2021, 22, 10982. https://doi.org/10.3390/ijms222010982
Badger R, Park K, Pietrofesa RA, Christofidou-Solomidou M, Serve KM. Late Inflammation Induced by Asbestiform Fibers in Mice Is Ameliorated by a Small Molecule Synthetic Lignan. International Journal of Molecular Sciences. 2021; 22(20):10982. https://doi.org/10.3390/ijms222010982
Chicago/Turabian StyleBadger, Reagan, Kyewon Park, Ralph A. Pietrofesa, Melpo Christofidou-Solomidou, and Kinta M. Serve. 2021. "Late Inflammation Induced by Asbestiform Fibers in Mice Is Ameliorated by a Small Molecule Synthetic Lignan" International Journal of Molecular Sciences 22, no. 20: 10982. https://doi.org/10.3390/ijms222010982
APA StyleBadger, R., Park, K., Pietrofesa, R. A., Christofidou-Solomidou, M., & Serve, K. M. (2021). Late Inflammation Induced by Asbestiform Fibers in Mice Is Ameliorated by a Small Molecule Synthetic Lignan. International Journal of Molecular Sciences, 22(20), 10982. https://doi.org/10.3390/ijms222010982