The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction
Abstract
:1. Introduction
2. Ghrelin
2.1. Expression in Tissues Implicated in Reproduction
2.1.1. Hypothalamus
2.1.2. Pituitary
2.1.3. Testis
2.1.4. Ovaries
2.1.5. Oocyte, Embryo, and Fetus
2.1.6. Placenta
2.1.7. Umbilical Cord
2.1.8. Breast and Breast Milk
2.1.9. Uterus
2.2. Presence in Plasma
2.2.1. Pregnancy and Delivery
2.2.2. Lactation
2.2.3. Neonatal Period
2.2.4. Hormonal Treatment
2.3. Effects of Ghrelin on the Reproductive System
2.3.1. Hypothalamus
2.3.2. Pituitary
Follicle-Stimulating Hormone
Luteinizing Hormone
2.3.3. Testis
Testosterone Secretion
Testicular Morphology
Testicular Injury
2.3.4. Ovary
Ovarian Follicular Cells
Granulosa Cells
Oocytes
Corpus Luteum
Estrogen Secretion
Testosterone Secretion
Progesterone Secretion
Prostaglandin (PG) Secretion
2.3.5. Embryo Development and Implantation
2.3.6. Fetal and Neonatal Development
2.3.7. Delivery and Lactation
2.3.8. Sexual Maturation and Fertility
2.4. Role of Ghrelin in Fertility- and Pregnancy-Related Health Conditions
2.4.1. Polycystic Ovary Syndrome
2.4.2. Hyperemesis Gravidarum
2.4.3. Pregnancy-Induced Hypertension and Preeclampsia
2.4.4. Gestational Diabetes Mellitus (GDM)
3. Nesfatin-1
3.1. Expression in Tissues Implicated in Reproduction
3.1.1. Hypothalamus
3.1.2. Pituitary
3.1.3. Testis
3.1.4. Ovary
3.1.5. Uterus and Placenta
3.1.6. Cord Blood and Breast Milk
3.2. Presence in Plasma
3.3. Effects of Nesfatin-1 on the Reproductive System
3.3.1. Hypothalamus
3.3.2. Pituitary
3.3.3. Testis
3.3.4. Ovary
3.3.5. Plasma and Serum
3.4. Role of Nesfatin-1 in Fertility- and Pregnancy-Related Health Conditions
3.4.1. Polycystic Ovary Syndrome
3.4.2. Hyperemesis Gravidarum
3.4.3. Pregnancy-Induced Hypertension and Preeclampsia
3.4.4. Gestational Diabetes Mellitus (GDM)
3.4.5. Abnormal Birth Weight
4. Summary
4.1. Ghrelin
4.1.1. Ghrelin’s Expression and Effects along the HPG Axis
4.1.2. Ghrelin’s Effect Reproductive Functions
4.1.3. Ghrelin’s Role in Reproduction-Related Health Conditions
4.2. Nesfatin-1
4.2.1. Nesfatin’s Expression and Effects along the HPG Axis
4.2.2. Nesfatin’s Expression in Other Reproductive Organs
4.2.3. Nesfatin’s Role in Reproduction-Related Health Conditions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402, 656–660. [Google Scholar] [CrossRef]
- Tschop, M.; Smiley, D.L.; Heiman, M.L. Ghrelin induces adiposity in rodents. Nature 2000, 407, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Weibert, E.; Stengel, A. The X/A-like cell revisited—Spotlight on the peripheral effects of NUCB2/nesfatin-1 and ghrelin. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2017, 68, 497–520. [Google Scholar]
- Stengel, A.; Goebel, M.; Yakubov, I.; Wang, L.; Witcher, D.; Coskun, T.; Tache, Y.; Sachs, G.; Lambrecht, N.W. Identification and characterization of nesfatin-1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa. Endocrinology 2009, 150, 232–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, I.S.; Shimizu, H.; Satoh, T.; Okada, S.; Adachi, S.; Inoue, K.; Eguchi, H.; Yamamoto, M.; Imaki, T.; Hashimoto, K.; et al. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 2006, 443, 709–712. [Google Scholar] [CrossRef] [PubMed]
- Rindi, G.; Necchi, V.; Savio, A.; Torsello, A.; Zoli, M.; Locatelli, V.; Raimondo, F.; Cocchi, D.; Solcia, E. Characterisation of gastric ghrelin cells in man and other mammals: Studies in adult and fetal tissues. Histochem. Cell Biol. 2002, 117, 511–519. [Google Scholar] [CrossRef]
- Schalla, M.A.; Stengel, A. Current understanding of the role of nesfatin-1. J. Endocr. Soc. 2018, 2, 1188–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowley, M.A.; Smith, R.G.; Diano, S.; Tschöp, M.; Pronchuk, N.; Grove, K.L.; Strasburger, C.J.; Bidlingmaier, M.; Esterman, M.; Heiman, M.L.; et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 2003, 37, 649–661. [Google Scholar] [CrossRef] [Green Version]
- Bertucci, J.I.; Blanco, A.M.; Canosa, L.F.; Unniappan, S. Estradiol and testosterone modulate the tissue-specific expression of ghrelin, ghs-r, goat and nucb2 in goldfish. Gen. Comp. Endocrinol. 2016, 228, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Lei, Z.; Su, J.; Chen, S. Expression of ghrelin in the porcine hypothalamo-pituitary-ovary axis during the estrous cycle. Anim. Reprod. Sci. 2008, 109, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Caligioni, C.S. Assessing reproductive status/stages in mice. Curr. Protoc. Neurosci. 2009, 10, 677–683, Appendix 4, Appendix-4I. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibata, K.; Hosoda, H.; Kojima, M.; Kangawa, K.; Makino, Y.; Makino, I.; Kawarabayashi, T.; Futagami, K.; Gomita, Y. Regulation of ghrelin secretion during pregnancy and lactation in the rat: Possible involvement of hypothalamus. Peptides 2004, 25, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Szczepankiewicz, D.; Skrzypski, M.; Pruszynska-Oszmalek, E.; Zimmermann, D.; Andralojc, K.; Kaczmarek, P.; Wojciechowicz, T.; Sassek, M.; Nowak, K.W. Importance of ghrelin in hypothalamus-pituitary axis on growth hormone release during normal pregnancy in the rat. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2010, 61, 443–449. [Google Scholar]
- Gnanapavan, S.; Kola, B.; Bustin, S.A.; Morris, D.G.; McGee, P.; Fairclough, P.; Bhattacharya, S.; Carpenter, R.; Grossman, A.B.; Korbonits, M. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J. Clin. Endocrinol. Metab. 2002, 87, 2988. [Google Scholar] [CrossRef] [PubMed]
- Ueberberg, B.; Unger, N.; Saeger, W.; Mann, K.; Petersenn, S. Expression of ghrelin and its receptor in human tissues. Horm. Metab. Res. Horm. Stoffwechs. Horm. Metab. 2009, 41, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Torsello, A.; Scibona, B.; Leo, G.; Bresciani, E.; Avallone, R.; Bulgarelli, I.; Luoni, M.; Zoli, M.; Rindi, G.; Cocchi, D.; et al. Ontogeny and tissue-specific regulation of ghrelin mRNA expression suggest that ghrelin is primarily involved in the control of extraendocrine functions in the rat. Neuroendocrinology 2003, 77, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Tena-Sempere, M.; Barreiro, M.L.; González, L.C.; Gaytán, F.; Zhang, F.P.; Caminos, J.E.; Pinilla, L.; Casanueva, F.F.; Diéguez, C.; Aguilar, E. Novel expression and functional role of ghrelin in rat testis. Endocrinology 2002, 143, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Gaytan, F.; Barreiro, M.L.; Caminos, J.E.; Chopin, L.K.; Herington, A.C.; Morales, C.; Pinilla, L.; Paniagua, R.; Nistal, M.; Casanueva, F.F.; et al. Expression of ghrelin and its functional receptor, the type 1a growth hormone secretagogue receptor, in normal human testis and testicular tumors. J. Clin. Endocrinol. Metab. 2004, 89, 400–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreiro, M.L.; Gaytán, F.; Caminos, J.E.; Pinilla, L.; Casanueva, F.F.; Aguilar, E.; Diéguez, C.; Tena-Sempere, M. Cellular location and hormonal regulation of ghrelin expression in rat testis. Biol. Reprod. 2002, 67, 1768–1776. [Google Scholar] [CrossRef] [Green Version]
- Łukaszyk, A.; Rafińska, L.; Sawiński, P.; Kasprzak, A.; Olejniczak, K.; Ruciński, M.; Ruchała, M.; Sowiński, J. Immunohistochemical and hybridocytochemical study on ghrelin signalling in the rat seminiferous epithelium. Folia Histochem. Cytobiol. 2009, 47, 415–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moretti, E.; Vindigni, C.; Tripodi, S.A.; Mazzi, L.; Nuti, R.; Figura, N.; Collodel, G. Immunolocalisation of ghrelin and obestatin in human testis, seminal vesicles, prostate and spermatozoa. Andrologia 2014, 46, 979–985. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.T.; Kola, B.; Grossman, A.; Korbonits, M. The expression of ghrelin O-acyltransferase (GOAT) in human tissues. Endocr. J. 2011, 58, 707–710. [Google Scholar] [CrossRef] [Green Version]
- Izzo, G.; Ferrara, D.; Napolitano, F.; Crispo, A.A.; d’Istria, M.; Aniello, F.; Minucci, S. Identification of a cDNA encoding for Ghrelin in the testis of the frog Pelophylax esculentus and its involvement in spermatogenesis. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2011, 158, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T.; Fujioka, H.; Ishimura, T.; Takenaka, A.; Fujisawa, M. Ghrelin expression in human testis and serum testosterone level. J. Androl. 2007, 28, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Liu, Y.; Zhao, X.; Li, Y.; Zhang, Y.; Zhang, X. The association between testicular ghrelin receptor mRNA and serum testosterone levels in immunocastrated boars. Anim. Reprod. Sci. 2012, 135, 62–67. [Google Scholar] [CrossRef]
- Gaytan, F.; Barreiro, M.L.; Chopin, L.K.; Herington, A.C.; Morales, C.; Pinilla, L.; Casanueva, F.F.; Aguilar, E.; Diéguez, C.; Tena-Sempere, M. Immunolocalization of ghrelin and its functional receptor, the type 1a growth hormone secretagogue receptor, in the cyclic human ovary. J. Clin. Endocrinol. Metab. 2003, 88, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Caminos, J.E.; Tena-Sempere, M.; Gaytán, F.; Sanchez-Criado, J.E.; Barreiro, M.L.; Nogueiras, R.; Casanueva, F.F.; Aguilar, E.; Diéguez, C. Expression of ghrelin in the cyclic and pregnant rat ovary. Endocrinology 2003, 144, 1594–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komarowska, H.; Waśko, R.; Iwanik, K.; Majewski, P.; Rafińska, L.; Warenik-Szymankiewicz, A.; Sowiński, J. Ghrelin ovarian cell expression in patients with polycystic ovary syndrome: An immunohistochemical evaluation. Horm. Metab. Res. Horm. Stoffwechs. Horm. Et Metab. 2006, 38, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Deaver, S.E.; Hoyer, P.B.; Dial, S.M.; Field, M.E.; Collier, R.J.; Rhoads, M.L. Localization of ghrelin and its receptor in the reproductive tract of Holstein heifers. J. Dairy Sci. 2013, 96, 150–157. [Google Scholar] [CrossRef]
- Rak-Mardyla, A.; Gregoraszczuk, E.L. Expression of ghrelin and its receptor in porcine ovarian follicles collected from prepubertal and estrous cycle animals. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2012, 63, 195–199. [Google Scholar]
- Du, C.; Xilingaowa; Cao, G.; Wang, C.; Li, H.; Zhao, Y.; Siqingaowa; Cao, J. Expression of the orexigenic peptide ghrelin in the sheep ovary. Domest. Anim. Endocrinol. 2009, 36, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Rak, A.; Gregoraszczuk, E. Ghrelin levels in prepubertal pig ovarian follicles. Acta Vet. Hung. 2009, 57, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Dangi, S.S.; Singh, G.; Sarkar, M. Expression and localization of ghrelin and its receptor in ovarian follicles during different stages of development and the modulatory effect of ghrelin on granulosa cells function in buffalo. Gen. Comp. Endocrinol. 2015, 210, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Rak-Mardyła, A.; Gregoraszczuk, E.L.; Karpeta, A.; Duda, M. Expression of ghrelin and the ghrelin receptor in different stages of porcine corpus luteum development and the inhibitory effects of ghrelin on progesterone secretion, 3β-hydroxysteroid dehydrogenase (3β-honestly significant difference (HSD)) activity and protein expression. Theriogenology 2012, 77, 1505–1512. [Google Scholar] [CrossRef]
- Du, C.; Li, H.; Cao, G.; Xilingaowa; Wang, C.; Li, C. Expression of the orexigenic peptide ghrelin and the type 1a growth hormone secretagogue receptor in sheep oocytes and pre-implantation embryos produced in vitro. Reprod. Domest. Anim. Zuchthyg. 2010, 45, 92–98. [Google Scholar] [CrossRef]
- Kawamura, K.; Sato, N.; Fukuda, J.; Kodama, H.; Kumagai, J.; Tanikawa, H.; Nakamura, A.; Honda, Y.; Sato, T.; Tanaka, T. Ghrelin inhibits the development of mouse preimplantation embryos in vitro. Endocrinology 2003, 144, 2623–2633. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.L.; Bai, J.H.; Feng, T.; Xiao, L.L.; Song, Y.Q.; Xiao, Y.X.; Liu, Y. N-octanoylated ghrelin peptide inhibits bovine oocyte meiotic resumption. Gen. Comp. Endocrinol. 2018, 263, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, K.; Nakagawa, M.; Baba, Y.; Sato, M.; Toshinai, K.; Date, Y.; Nakazato, M.; Kojima, M.; Miyazato, M.; Kaiya, H.; et al. Maternal ghrelin plays an important role in rat fetal development during pregnancy. Endocrinology 2006, 147, 1333–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, H.; Walia, P.; Chanoine, J.P. Ontogeny of acylated ghrelin degradation in the rat. Peptides 2010, 31, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Gualillo, O.; Caminos, J.; Blanco, M.; Garcìa-Caballero, T.; Kojima, M.; Kangawa, K.; Dieguez, C.; Casanueva, F. Ghrelin, a novel placental-derived hormone. Endocrinology 2001, 142, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Muhlhausler, B.S.; Sim, P.S.; Page, A.J.; Li, H.; Nunez-Salces, M.; Clarke, G.S.; Huang, L.; Wilson, R.L.; Veldhuis, J.D.; et al. Pregnancy, but not dietary octanoic acid supplementation, stimulates the ghrelin-pituitary growth hormone axis in mice. J. Endocrinol. 2020, 245, 327–342. [Google Scholar] [CrossRef] [PubMed]
- Nonoshita, A.; Nishi, Y.; Takushima, S.; Oshima, M.; Hosoda, H.; Kangawa, K.; Kojima, M.; Mifune, H.; Tanaka, E.; Hori, D.; et al. Dynamics of placental ghrelin production and its receptor expression in a Dahl salt-sensitive rat model of intrauterine growth restriction. Placenta 2010, 31, 358–364. [Google Scholar] [CrossRef]
- Harrison, J.L.; Adam, C.L.; Brown, Y.A.; Wallace, J.M.; Aitken, R.P.; Lea, R.G.; Miller, D.W. An immunohistochemical study of the localization and developmental expression of ghrelin and its functional receptor in the ovine placenta. Reprod. Biol. Endocrinol. RBE 2007, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.; Minoura, H.; Isobe, T.; Yonaha, H.; Kawato, H.; Wang, D.F.; Yoshida, T.; Kojima, M.; Kangawa, K.; Toyoda, N. Ghrelin is involved in the decidualization of human endometrial stromal cells. J. Clin. Endocrinol. Metab. 2003, 88, 2335–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitamura, S.; Yokota, I.; Hosoda, H.; Kotani, Y.; Matsuda, J.; Naito, E.; Ito, M.; Kangawa, K.; Kuroda, Y. Ghrelin concentration in cord and neonatal blood: Relation to fetal growth and energy balance. J. Clin. Endocrinol. Metab. 2003, 88, 5473–5477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Domínguez, M.I.; Lazo-de-la-Vega-Monroy, M.L.; Zaina, S.; Sabanero, M.; Daza-Benítez, L.; Malacara, J.M.; Barbosa-Sabanero, G. Association of cord blood des-acyl ghrelin with birth weight, and placental GHS-R1 receptor expression in SGA, AGA, and LGA newborns. Endocrine 2016, 53, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Lányi, E.; Várnagy, A.; Kovács, K.A.; Csermely, T.; Szász, M.; Szabó, I. Ghrelin and acyl ghrelin in preterm infants and maternal blood: Relationship with endocrine and anthropometric measures. Eur. J. Endocrinol. 2008, 158, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Bellone, S.; Rapa, A.; Vivenza, D.; Vercellotti, A.; Petri, A.; Radetti, G.; Bellone, J.; Broglio, F.; Ghigo, E.; Bona, G. Circulating ghrelin levels in the newborn are positively associated with gestational age. Clin. Endocrinol. 2004, 60, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Dündar, N.O.; Dündar, B.; Cesur, G.; Yilmaz, N.; Sütçu, R.; Ozgüner, F. Ghrelin and adiponectin levels in colostrum, cord blood and maternal serum. Pediatr. Int. Off. J. Jpn. Pediatr. Soc. 2010, 52, 622–625. [Google Scholar] [CrossRef] [PubMed]
- Cortelazzi, D.; Cappiello, V.; Morpurgo, P.S.; Ronzoni, S.; Nobile De Santis, M.S.; Cetin, I.; Beck-Peccoz, P.; Spada, A. Circulating levels of ghrelin in human fetuses. Eur. J. Endocrinol. 2003, 149, 111–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patro-Małysza, J.; Trojnar, M.; Skórzyńska-Dziduszko, K.E.; Kimber-Trojnar, Ż.; Darmochwał-Kolarz, D.; Czuba, M.; Leszczyńska-Gorzelak, B. Leptin and ghrelin in excessive gestational weight gain-association between mothers and offspring. Int. J. Mol. Sci. 2019, 20, 2398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Z.C.; Bilodeau, J.F.; Nuyt, A.M.; Fraser, W.D.; Julien, P.; Audibert, F.; Xiao, L.; Garofalo, C.; Levy, E. Perinatal oxidative stress may affect fetal ghrelin levels in humans. Sci. Rep. 2015, 5, 17881. [Google Scholar] [CrossRef] [Green Version]
- Magalhães, E.; Méio, M.; Peixoto-Filho, F.M.; Gonzalez, S.; da Costa, A.C.C.; Moreira, M.E.L. Pregnancy-induced hypertension, preterm birth, and cord blood adipokine levels. Eur. J. Pediatr. 2020, 179, 1239–1246. [Google Scholar] [CrossRef]
- Karakulak, M.; Saygili, U.; Temur, M.; Yilmaz, Ö.; Özün Özbay, P.; Calan, M.; Coşar, H. Comparison of umbilical cord ghrelin concentrations in full-term pregnant women with or without gestational diabetes. Endocr. Res. 2017, 42, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Warchoł, M.; Wojciechowska, M.; Kupsz, J.; Sot-Szewczyk, M.H.; Michalak, M.; Kołodziejski, P.; Pruszyńska-Oszmałek, E.; Krauss, H. Association of cord blood ghrelin, leptin and insulin concentrations in term newborns with anthropometric parameters at birth. J. Pediatr. Endocrinol. Metab. JPEM 2018, 31, 151–157. [Google Scholar] [CrossRef]
- Farquhar, J.; Heiman, M.; Wong, A.C.; Wach, R.; Chessex, P.; Chanoine, J.P. Elevated umbilical cord ghrelin concentrations in small for gestational age neonates. J. Clin. Endocrinol. Metab. 2003, 88, 4324–4327. [Google Scholar] [CrossRef]
- Chiesa, C.; Osborn, J.F.; Haass, C.; Natale, F.; Spinelli, M.; Scapillati, E.; Spinelli, A.; Pacifico, L. Ghrelin, leptin, IGF-1, IGFBP-3, and insulin concentrations at birth: Is there a relationship with fetal growth and neonatal anthropometry? Clin. Chem. 2008, 54, 550–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yalinbas, E.E.; Binay, C.; Simsek, E.; Aksit, M.A. The role of umbilical cord blood concentration of IGF-I, IGF-II, leptin, adiponectin, ghrelin, resistin, and visfatin in fetal growth. Am. J. Perinatol. 2019, 36, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Kędzia, A.; Petriczko, E.; Tarka, A. Placental growth hormone, pituitary growth hormone, insulin-like growth factor, and ghrelin in umbilical cord blood serum and amniotic fluid. Endokrynol. Pol. 2013, 64, 293–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willemen, S.A.; De Vos, M.; Huygelen, V.; Fransen, E.; Tambuyzer, B.R.; Casteleyn, C.; Van Cruchten, S.; Van Ginneken, C. Ghrelin in the gastrointestinal tract and blood circulation of perinatal low and normal weight piglets. Anim. Int. J. Anim. Biosci. 2013, 7, 1978–1984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özdemir, Z.C.; Akşit, M.A. The association of ghrelin, leptin, and insulin levels in umbilical cord blood with fetal anthropometric measurements and glucose levels at birth. J. Matern. Fetal Neonatal Med. 2020, 33, 1486–1491. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Z.; Chen, J.; Tong, D. Ghrelin is expressed in the pregnant mammary glands of dairy goats and promotes the cell proliferation of mammary epithelial cells. Gen. Comp. Endocrinol. 2018, 260, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Kierson, J.A.; Dimatteo, D.M.; Locke, R.G.; Mackley, A.B.; Spear, M.L. Ghrelin and cholecystokinin in term and preterm human breast milk. Acta Paediatr. 2006, 95, 991–995. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S.; Geckil, H.; Karatas, F.; Donder, E.; Kumru, S.; Kavak, E.C.; Colak, R.; Ozkan, Y.; Sahin, I. Milk and blood ghrelin level in diabetics. Nutrition 2007, 23, 807–811. [Google Scholar] [CrossRef]
- Aydin, S. The presence of the peptides apelin, ghrelin and nesfatin-1 in the human breast milk, and the lowering of their levels in patients with gestational diabetes mellitus. Peptides 2010, 31, 2236–2240. [Google Scholar] [CrossRef] [PubMed]
- Karatas, Z.; Durmus Aydogdu, S.; Dinleyici, E.C.; Colak, O.; Dogruel, N. Breastmilk ghrelin, leptin, and fat levels changing foremilk to hindmilk: Is that important for self-control of feeding? Eur. J. Pediatr. 2011, 170, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S.; Aydin, S.; Ozkan, Y.; Kumru, S. Ghrelin is present in human colostrum, transitional and mature milk. Peptides 2006, 27, 878–882. [Google Scholar] [CrossRef] [PubMed]
- Slupecka-Ziemilska, M.; Wolinski, J.; Herman, A.P.; Romanowicz, K.; Dziegielewska, Z.; Borszewska-Kornacka, M.K. Influence of preterm delivery on ghrelin and obestatin concentrations in maternal plasm, milk and their expression in mammary epithelial cells. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2017, 68, 693–698. [Google Scholar]
- Khodabakhshi, A.; Ghayour-Mobarhan, M.; Rooki, H.; Vakili, R.; Hashemy, S.I.; Mirhafez, S.R.; Shakeri, M.T.; Kashanifar, R.; Pourbafarani, R.; Mirzaei, H.; et al. Comparative measurement of ghrelin, leptin, adiponectin, EGF and IGF-1 in breast milk of mothers with overweight/obese and normal-weight infants. Eur. J. Clin. Nutr. 2015, 69, 614–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandasamy, S.; Jain, A.; Baviskar, P.; Kumar, R.; Joshi, P.; Agarwal, S.K.; Mitra, A. Molecular characterization and expression profile of ghrelin gene during different reproductive phases in buffalo (Bubalus bubalis). Domest. Anim. Endocrinol. 2013, 45, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Tawadros, N.; Salamonsen, L.A.; Dimitriadis, E.; Chen, C. Facilitation of decidualization by locally produced ghrelin in the human endometrium. Mol. Hum. Reprod. 2007, 13, 483–489. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, M.; Earley, P.; Morrison, J.J.; Smith, T.J. Ghrelin in the human myometrium. Reprod. Biol. Endocrinol. RBE 2010, 8, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, M.L.; Saffrey, M.J.; Taylor, V.J. Gastrointestinal capacity, gut hormones and appetite change during rat pregnancy and lactation. Reproduction 2019, 157, 431–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, V.J.; Patterson, M.; Ghatei, M.A.; Bloom, S.R.; Wilson, C.A. Ghrelin and peptide YY (PYY) profiles in gastrointestinal tissues and the circulation of the rat during pregnancy and lactation. Peptides 2009, 30, 2213–2220. [Google Scholar] [CrossRef] [Green Version]
- Govoni, N.; Parmeggiani, A.; Galeati, G.; Penazzi, P.; De Iasio, R.; Pagotto, U.; Pasquali, R.; Tamanini, C.; Seren, E. Acyl ghrelin and metabolic hormones in pregnant and lactating sows. Reprod. Domest. Anim. Zuchthyg. 2007, 42, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Saylan, F.; Köken, G.; Cosar, E.; Köken, T.; Saylan, A.; Arıöz, D.T.; Sahin, F.; Köken, R.; Yılmazer, M. Maternal and fetal leptin and ghrelin levels: Relationship with fetal growth. Arch. Gynecol. Obstet. 2011, 284, 327–329. [Google Scholar] [CrossRef]
- Fuglsang, J.; Skjaerbaek, C.; Espelund, U.; Frystyk, J.; Fisker, S.; Flyvbjerg, A.; Ovesen, P. Ghrelin and its relationship to growth hormones during normal pregnancy. Clin. Endocrinol. 2005, 62, 554–559. [Google Scholar] [CrossRef]
- Palik, E.; Baranyi, E.; Melczer, Z.; Audikovszky, M.; Szöcs, A.; Winkler, G.; Cseh, K. Elevated serum acylated (biologically active) ghrelin and resistin levels associate with pregnancy-induced weight gain and insulin resistance. Diabetes Res. Clin. Pract. 2007, 76, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Gibson, W.; Liu, J.; Gaylinn, B.; Thorner, M.O.; Meneilly, G.S.; Babich, S.L.; Thompson, D.; Chanoine, J.P. Effects of glucose and insulin on acyl ghrelin and desacyl ghrelin, leptin, and adiponectin in pregnant women with diabetes. Metab. Clin. Exp. 2010, 59, 841–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baykus, Y.; Gurates, B.; Aydin, S.; Celik, H.; Kavak, B.; Aksoy, A.; Sahin, I.; Deniz, R.; Gungor, S.; Guzel, S.P.; et al. Changes in serum obestatin, preptin and ghrelins in patients with Gestational Diabetes Mellitus. Clin. Biochem. 2012, 45, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Valsamakis, G.; Papatheodorou, D.C.; Naoum, A.; Margeli, A.; Papassotiriou, I.; Kapantais, E.; Creatsas, G.; Kumar, S.; Mastorakos, G. Neonatal birth waist is positively predicted by second trimester maternal active ghrelin, a pro-appetite hormone, and negatively associated with third trimester maternal leptin, a pro-satiety hormone. Early Hum. Dev. 2014, 90, 487–492. [Google Scholar] [CrossRef]
- Aydın, H.A.; Derbent Uysal, A.; Erol, O.; Ellidağ, H.Y.; Bayındır, A.; Yılmaz, N. The association between serum ghrelin levels and large-for-gestational-age fetuses in patients with gestational diabetes mellitus. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2017, 33, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.F.; Wu, W.G.; Yan, H.L.; She, Y.; Ge, H.Y. Ghrelin to obestatin ratio in maternal serum in pregnancies complicated by intrauterine growth restriction. Clin. Exp. Obstet. Gynecol. 2017, 44, 364–369. [Google Scholar] [PubMed]
- Stengel, A.; Keire, D.; Goebel, M.; Evilevitch, L.; Wiggins, B.; Taché, Y.; Reeve, J.R., Jr. The RAPID method for blood processing yields new insight in plasma concentrations and molecular forms of circulating gut peptides. Endocrinology 2009, 150, 5113–5118. [Google Scholar] [CrossRef] [PubMed]
- Abizaid, A.; Schiavo, L.; Diano, S. Hypothalamic and pituitary expression of ghrelin receptor message is increased during lactation. Neurosci. Lett. 2008, 440, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Ng, P.C.; Lee, C.H.; Lam, C.W.; Chan, I.H.; Wong, E.; Fok, T.F. Ghrelin in preterm and term newborns: Relation to anthropometry, leptin and insulin. Clin. Endocrinol. 2005, 63, 217–222. [Google Scholar] [CrossRef]
- Sahin, H.; Erener, T.; Erginoz, E.; Vural, M.; Ilikkan, B.; Kavuncuoglu, S.; Yildiz, H.; Perk, Y. The relationship of active ghrelin levels and intrauterine growth in preterm infants. Eur. J. Endocrinol. 2012, 166, 399–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, P.C.; Lee, C.H.; Lam, C.W.; Wong, E.; Chan, I.H.; Fok, T.F. Plasma ghrelin and resistin concentrations are suppressed in infants of insulin-dependent diabetic mothers. J. Clin. Endocrinol. Metab. 2004, 89, 5563–5568. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Ramírez, F.; Barbosa-Sabanero, G.; Romero-Gutiérrez, G.; Malacara, J.M. Ghrelin in small-for-gestational age (SGA) newborn babies: A cross-sectional study. Clin. Endocrinol. 2009, 70, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.R.; Blache, D.; Jackson, R.B.; Downie, E.F.; Roche, J.R. Metabolic maturity at birth and neonate lamb survival: Association among maternal factors, litter size, lamb birth weight, and plasma metabolic and endocrine factors on survival and behavior. J. Anim. Sci. 2010, 88, 581–593. [Google Scholar] [CrossRef] [Green Version]
- Kahveci, H.; Laloglu, F.; Kilic, O.; Ciftel, M.; Kara, M.; Laloglu, E.; Yildirim, A.; Orbak, Z.; Ertekin, V.; Cesur, Y. Fasting and postprandial glucose, insulin, leptin, and ghrelin values in preterm babies and their mothers: Relationships among their levels, fetal growth, and neonatal anthropometry. J. Matern. Fetal Neonatal Med. 2015, 28, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Lebenthal, Y.; Gat-Yablonski, G.; Shtaif, B.; Padoa, A.; Phillip, M.; Lazar, L. Effect of sex hormone administration on circulating ghrelin levels in peripubertal children. J. Clin. Endocrinol. Metab. 2006, 91, 328–331. [Google Scholar] [CrossRef]
- Gambineri, A.; Pagotto, U.; De Lasio, R.; Meriggiola, M.C.; Costantino, A.; Patton, L.; Pelusi, C.; Pelusi, G.; Pasquali, R. Short-term modification of sex hormones is associated with changes in ghrelin circulating levels in healthy normal-weight men. J. Endocrinol. Investig. 2005, 28, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Maffeis, C.; Franceschi, R.; Moghetti, P.; Camilot, M.; Lauriola, S.; Tatò, L. Circulating ghrelin levels in girls with central precocious puberty are reduced during treatment with LHRH analog. Eur. J. Endocrinol. 2007, 156, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Cabral, A.; López Soto, E.J.; Epelbaum, J.; Perelló, M. Is ghrelin synthesized in the central nervous system? Int. J. Mol. Sci. 2017, 18, 638. [Google Scholar] [CrossRef] [PubMed]
- Uriarte, M.; De Francesco, P.N.; Fernández, G.; Castrogiovanni, D.; D’Arcangelo, M.; Imbernon, M.; Cantel, S.; Denoyelle, S.; Fehrentz, J.A.; Praetorius, J.; et al. Circulating ghrelin crosses the blood-cerebrospinal fluid barrier via growth hormone secretagogue receptor dependent and independent mechanisms. Mol. Cell. Endocrinolgy 2021, 538, 111449. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fernández, R.; Tena-Sempere, M.; Navarro, V.M.; Barreiro, M.L.; Castellano, J.M.; Aguilar, E.; Pinilla, L. Effects of ghrelin upon gonadotropin-releasing hormone and gonadotropin secretion in adult female rats: In vivo and in vitro studies. Neuroendocrinology 2005, 82, 245–255. [Google Scholar] [CrossRef]
- Lebrethon, M.C.; Aganina, A.; Fournier, M.; Gérard, A.; Parent, A.S.; Bourguignon, J.P. Effects of in vivo and in vitro administration of ghrelin, leptin and neuropeptide mediators on pulsatile gonadotrophin-releasing hormone secretion from male rat hypothalamus before and after puberty. J. Neuroendocrinol. 2007, 19, 181–188. [Google Scholar] [CrossRef]
- Wójcik-Gładysz, A.; Wańkowska, M.; Gajewska, A.; Misztal, T.; Zielińska-Górska, M.; Szlis, M.; Polkowska, J. Effects of intracerebroventricular infusions of ghrelin on secretion of follicle-stimulating hormone in peripubertal female sheep. Reprod. Fertil. Dev. 2016, 28, 2065–2074. [Google Scholar] [CrossRef] [PubMed]
- Farkas, I.; Vastagh, C.; Sárvári, M.; Liposits, Z. Ghrelin decreases firing activity of gonadotropin-releasing hormone (GnRH) neurons in an estrous cycle and endocannabinoid signaling dependent manner. PLoS ONE 2013, 8, e78178. [Google Scholar] [CrossRef]
- Smith, J.T.; Reichenbach, A.; Lemus, M.; Mani, B.K.; Zigman, J.M.; Andrews, Z.B. An eGFP-expressing subpopulation of growth hormone secretagogue receptor cells are distinct from kisspeptin, tyrosine hydroxylase, and RFamide-related peptide neurons in mice. Peptides 2013, 47, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Frazao, R.; Dungan Lemko, H.M.; da Silva, R.P.; Ratra, D.V.; Lee, C.E.; Williams, K.W.; Zigman, J.M.; Elias, C.F. Estradiol modulates Kiss1 neuronal response to ghrelin. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E606–E614. [Google Scholar] [CrossRef] [Green Version]
- Pan, D.; Wang, K.; Cao, G.; Fan, K.; Liu, H.; Li, P.; Li, H.; Chenguang, D. Inhibitory effect of central ghrelin on steroid synthesis affecting reproductive health in female mice. J. Steroid Biochem. Mol. Biol. 2020, 204, 105750. [Google Scholar] [CrossRef]
- Lanfranco, F.; Bonelli, L.; Baldi, M.; Me, E.; Broglio, F.; Ghigo, E. Acylated ghrelin inhibits spontaneous luteinizing hormone pulsatility and responsiveness to naloxone but not that to gonadotropin-releasing hormone in young men: Evidence for a central inhibitory action of ghrelin on the gonadal axis. J. Clin. Endocrinol. Metab. 2008, 93, 3633–3639. [Google Scholar] [CrossRef]
- Dallak, M. Unacylated ghrelin stimulates steroidogenesis in lean rats and reverses reproductive dysfunction in high fat diet-fed rats. Syst. Biol. Reprod. Med. 2019, 65, 129–146. [Google Scholar] [CrossRef]
- Dovolou, E.; Chadio, S.; Messinis, I.E.; Rekkas, C.A.; Deligiannis, C.; Kalogiannis, D.; Amiridis, G.S. Human ghrelin decreases pituitary response to GnRH in superovulated ewes. Theriogenology 2013, 80, 262–268. [Google Scholar] [CrossRef]
- Martini, A.C.; Fernández-Fernández, R.; Tovar, S.; Navarro, V.M.; Vigo, E.; Vazquez, M.J.; Davies, J.S.; Thompson, N.M.; Aguilar, E.; Pinilla, L.; et al. Comparative analysis of the effects of ghrelin and unacylated ghrelin on luteinizing hormone secretion in male rats. Endocrinology 2006, 147, 2374–2382. [Google Scholar] [CrossRef] [PubMed]
- Kluge, M.; Schüssler, P.; Schmidt, D.; Uhr, M.; Steiger, A. Ghrelin suppresses secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in women. J. Clin. Endocrinol. Metab. 2012, 97, E448-451. [Google Scholar] [CrossRef] [Green Version]
- Chouzouris, T.M.; Dovolou, E.; Dafopoulos, K.; Georgoulias, P.; Vasileiou, N.G.; Fthenakis, G.C.; Anifandis, G.; Amiridis, G.S. Ghrelin suppresses the GnRH-induced preovulatory gonadotropin surge in dairy heifers. Theriogenology 2016, 86, 1615–1621. [Google Scholar] [CrossRef]
- Babaei-Balderlou, F.; Khazali, H. Effects of ghrelin on sexual behavior and luteinizing hormone beta-subunit gene expression in male rats. J. Reprod. Infertil. 2016, 17, 88–96. [Google Scholar] [PubMed]
- Fernández-Fernández, R.; Tena-Sempere, M.; Aguilar, E.; Pinilla, L. Ghrelin effects on gonadotropin secretion in male and female rats. Neurosci. Lett. 2004, 362, 103–107. [Google Scholar] [CrossRef]
- Vulliémoz, N.R.; Xiao, E.; Xia-Zhang, L.; Rivier, J.; Ferin, M. Astressin B, a nonselective corticotropin-releasing hormone receptor antagonist, prevents the inhibitory effect of ghrelin on luteinizing hormone pulse frequency in the ovariectomized rhesus monkey. Endocrinology 2008, 149, 869–874. [Google Scholar] [CrossRef]
- Furuta, M.; Funabashi, T.; Kimura, F. Intracerebroventricular administration of ghrelin rapidly suppresses pulsatile luteinizing hormone secretion in ovariectomized rats. Biochem. Biophys. Res. Commun. 2001, 288, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Kluge, M.; Schüssler, P.; Uhr, M.; Yassouridis, A.; Steiger, A. Ghrelin suppresses secretion of luteinizing hormone in humans. J. Clin. Endocrinol. Metab. 2007, 92, 3202–3205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forbes, S.; Li, X.F.; Kinsey-Jones, J.; O’Byrne, K. Effects of ghrelin on Kisspeptin mRNA expression in the hypothalamic medial preoptic area and pulsatile luteinising hormone secretion in the female rat. Neurosci. Lett. 2009, 460, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Sirotkin, A.V.; Chrenková, M.; Nitrayová, S.; Patras, P.; Darlak, K.; Valenzuela, F.; Pinilla, L.; Tena-Sempere, M. Effects of chronic food restriction and treatments with leptin or ghrelin on different reproductive parameters of male rats. Peptides 2008, 29, 1362–1368. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Kurose, Y.; Canny, B.; Clarke, I.J. Effects of central infusion of ghrelin on food intake and plasma levels of growth hormone, luteinizing hormone, prolactin, and cortisol secretion in sheep. Endocrinology 2006, 147, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Poretti, M.B.; Frautschi, C.; Luque, E.; Bianconi, S.; Martini, A.C.; Stutz, G.; Vincenti, L.; Santillán, M.E.; Ponzio, M.; Schiöth, H.B.; et al. Reproductive performance of male mice after hypothalamic ghrelin administration. Reproduction 2018, 156, 121–132. [Google Scholar] [CrossRef]
- Pagotto, U.; Gambineri, A.; Pelusi, C.; Genghini, S.; Cacciari, M.; Otto, B.; Castañeda, T.; Tschöp, M.; Pasquali, R. Testosterone replacement therapy restores normal ghrelin in hypogonadal men. J. Clin. Endocrinol. Metab. 2003, 88, 4139–4143. [Google Scholar] [CrossRef] [Green Version]
- Duran, C.; Yonem, A.; Ustun, I.; Ozcan, O.; Ipcioglu, O.M.; Basekim, C.C. Plasma ghrelin levels in males with idiopathic hypogonadotropic hypogonadism. Endocrine 2008, 34, 81–86. [Google Scholar] [CrossRef]
- Abou Heif, H.M.; Deif, M.M.; Abdel Aziz, H.K. Effect of food restriction on ghrelin in adult male rats and its relation to male reproductive hormones. Andrologia 2010, 42, 97–105. [Google Scholar] [CrossRef]
- Afsar, T.; Jahan, S.; Razak, S.; Almajwal, A.; Abulmeaty, M.; Wazir, H.; Majeed, A. Obestatin modulates ghrelin’s effects on the basal and stimulated testosterone secretion by the testis of rat: An in vitro study. Physiol. Res. 2017, 66, 93–98. [Google Scholar] [CrossRef]
- Liu, K.; Jiang, D.; Zhang, T.; Tao, J.; Shen, L.; Sun, X. Activation of growth hormone secretagogue type 1a receptor inhibits T-type Ca2+ channel currents through pertussis toxin-sensitive novel protein kinase C pathway in mouse spermatogenic cells. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2011, 27, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Fang, F.; Li, Y.; Zhang, Y.; Pu, Y.; Zhang, X. Role of ghrelin on testosterone secretion and the mRNA expression of androgen receptors in adult rat testis. Syst. Biol. Reprod. Med. 2011, 57, 119–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kheradmand, A.; Dezfoulian, O.; Alirezaei, M.; Rasoulian, B. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats. Biochem. Biophys. Res. Commun. 2012, 419, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Kheradmand, A.; Roshangar, L.; Taati, M. The role of ghrelin on the morphometry and intracellular changes in the rat testis. Tissue Cell 2009, 41, 105–111. [Google Scholar] [CrossRef]
- Barreiro, M.L.; Gaytan, F.; Castellano, J.M.; Suominen, J.S.; Roa, J.; Gaytan, M.; Aguilar, E.; Dieguez, C.; Toppari, J.; Tena-Sempere, M. Ghrelin inhibits the proliferative activity of immature Leydig cells in vivo and regulates stem cell factor messenger ribonucleic acid expression in rat testis. Endocrinology 2004, 145, 4825–4834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, A.D.; Sá, R.; Monteiro, M.P.; Barros, A.; Sousa, M.; Carvalho, R.A.; Silva, B.M.; Oliveira, P.F.; Alves, M.G. Ghrelin acts as energy status sensor of male reproduction by modulating Sertoli cells glycolytic metabolism and mitochondrial bioenergetics. Mol. Cell Endocrinol. 2016, 434, 199–209. [Google Scholar] [CrossRef]
- Kheradmand, A.; Alirezaei, M.; Asadian, P.; Rafiei Alavi, E.; Joorabi, S. Antioxidant enzyme activity and MDA level in the rat testis following chronic administration of ghrelin. Andrologia 2009, 41, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zeng, Y.; Zhao, J.; Zhu, C.J.; Hou, W.G.; Zhang, S. Upregulation and nuclear translocation of testicular ghrelin protects differentiating spermatogonia from ionizing radiation injury. Cell Death Dis. 2014, 5, e1248. [Google Scholar] [CrossRef]
- Sarac, M.; Bakal, U.; Tartar, T.; Kuloglu, T.; Yardim, M.; Artas, G.; Aydin, S.; Kazez, A. Ghrelin and NUCB2/Nesfatin-1 expression in unilateral testicular torsion-induced rats with and without N-acetylcysteine. Cell. Mol. Biol. 2017, 63, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, L.; Böcking, A.; Böhm, N.; Christ, B.; Costabel, U.; Deckert, M.; Denk, H.; Drexler, H.; Freudenberg, N.; Füzesi, L.; et al. Allgemeine und Spezielle Pathologie. 5., Komplett Überarbeitete Auflage ed.; Georg Thieme Verlag: Stuttgart, Germany; New York, NY, USA, 2004. [Google Scholar]
- Kheradmand, A.; Dezfoulian, O.; Alirezaei, M.; Hadian, B. Ghrelin is a suppressor of testicular damage following experimentally induced cryptorchidism in the rat. J. Pediatr. Surg. 2014, 49, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Asadi, N.; Kheradmand, A.; Gholami, M.; Moradi, F.H. Effect of ghrelin on the biochemical and histopathology parameters and spermatogenesis cycle following experimental varicocele in rat. Andrologia 2018, 50, e13106. [Google Scholar] [CrossRef] [PubMed]
- Taati, M.; Moghadasi, M.; Dezfoulian, O.; Asadian, P.; Kheradmand, A.; Abbasi, M.; Zendehdel, M. The effect of ghrelin pretreatment on epididymal sperm quality and tissue antioxidant enzyme activities after testicular ischemia/reperfusion in rats. J. Physiol. Biochem. 2012, 68, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Taati, M.; Moghadasi, M.; Dezfoulian, O.; Asadian, P. Effects of ghrelin on testicular ischemia/reperfusion-induced injury. Acta Med. Iran. 2016, 54, 32–38. [Google Scholar]
- Salimnejad, R.; Soleimani Rad, J.; Mohammad Nejad, D.; Roshangar, L. Effect of ghrelin on total antioxidant capacity, lipid peroxidation, sperm parameters and fertility in mice against oxidative damage caused by cyclophosphamide. Andrologia 2018, 50. [Google Scholar] [CrossRef]
- Garcia, J.M.; Chen, J.A.; Guillory, B.; Donehower, L.A.; Smith, R.G.; Lamb, D.J. Ghrelin prevents cisplatin-induced testicular damage by facilitating repair of DNA double strand breaks through activation of p53 in mice. Biol. Reprod. 2015, 93, 24. [Google Scholar] [CrossRef] [PubMed]
- Whirledge, S.D.; Garcia, J.M.; Smith, R.G.; Lamb, D.J. Ghrelin partially protects against cisplatin-induced male murine gonadal toxicity in a GHSR-1a-dependent manner. Biol. Reprod. 2015, 92, 76. [Google Scholar] [CrossRef]
- Kheradmand, A.; Dezfoulian, O.; Tarrahi, M.J. Ghrelin attenuates heat-induced degenerative effects in the rat testis. Regul. Pept. 2011, 167, 97–104. [Google Scholar] [CrossRef]
- Kheradmand, A.; Dezfoulian, O.; Alirezaei, M. Ghrelin regulates Bax and PCNA but not Bcl-2 expressions following scrotal hyperthermia in the rat. Tissue Cell 2012, 44, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cao, L.; Liu, X. Ghrelin alleviates endoplasmic reticulum stress and inflammation-mediated reproductive dysfunction induced by stress. J. Assist. Reprod. Genet. 2019, 36, 2357–2366. [Google Scholar] [CrossRef] [PubMed]
- Rak, A.; Gregoraszczuk, E.L. Modulatory effect of ghrelin in prepubertal porcine ovarian follicles. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2008, 59, 781–793. [Google Scholar]
- Rak, A.; Szczepankiewicz, D.; Gregoraszczuk, E. Expression of ghrelin receptor, GHSR-1a, and its functional role in the porcine ovarian follicles. Growth Horm. IGF Res. Off. J. Growth Horm. Res. Soc. Int. IGF Res. Soc. 2009, 19, 68–76. [Google Scholar] [CrossRef]
- Sirotkin, A.V.; Grossmann, R. Effects of ghrelin and its analogues on chicken ovarian granulosa cells. Domest. Anim. Endocrinol. 2008, 34, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Rak-Mardyla, A.; Gregoraszczuk, E.L. ERK 1/2 and PI-3 kinase pathways as a potential mechanism of ghrelin action on cell proliferation and apoptosis in the porcine ovarian follicular cells. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2010, 61, 451–458. [Google Scholar]
- Rak, A.; Gregoraszczuk, E. Local feedback loop of ghrelin-GH in the pig ovary: Action on estradiol secretion, aromatase activity and cell apoptosis. Growth Horm. IGF Res. Off. J. Growth Horm. Res. Soc. Int. IGF Res. Soc. 2008, 18, 221–227. [Google Scholar] [CrossRef]
- Sirotkin, A.V.; Benco, A.; Tandlmajerova, A.; Vasícek, D.; Kotwica, J.; Darlak, K.; Valenzuela, F. Transcription factor p53 can regulate proliferation, apoptosis and secretory activity of luteinizing porcine ovarian granulosa cell cultured with and without ghrelin and FSH. Reproduction 2008, 136, 611–618. [Google Scholar] [CrossRef] [Green Version]
- Sominsky, L.; Goularte, J.F.; Andrews, Z.B.; Spencer, S.J. Acylated ghrelin supports the ovarian transcriptome and follicles in the mouse: Implications for Fertility. Front. Endocrinol. 2019, 9, 815. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Na, Y.; Hong, K.; Lee, S.; Moon, S.; Cho, M.; Park, M.; Lee, O.H.; Chang, E.M.; Lee, D.R.; et al. Synergistic effect of melatonin and ghrelin in preventing cisplatin-induced ovarian damage via regulation of FOXO3a phosphorylation and binding to the p27(Kip1) promoter in primordial follicles. J. Pineal Res. 2017, 63, e12432. [Google Scholar] [CrossRef]
- Kheradmand, A.; Roshangar, L.; Taati, M.; Sirotkin, A.V. Morphometrical and intracellular changes in rat ovaries following chronic administration of ghrelin. Tissue Cell 2009, 41, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Di Natale, M.R.; Soch, A.; Ziko, I.; De Luca, S.N.; Spencer, S.J.; Sominsky, L. Chronic predator stress in female mice reduces primordial follicle numbers: Implications for the role of ghrelin. J. Endocrinol. 2019, 241, 201–219. [Google Scholar] [CrossRef]
- Rak-Mardyła, A.; Wróbel, A.; Gregoraszczuk, E.L. Ghrelin negatively affects the function of ovarian follicles in mature pigs by direct action on basal and gonadotropin-stimulated steroidogenesis. Reprod. Sci. 2015, 22, 469–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirotkin, A.V.; Grossmann, R.; María-Peon, M.T.; Roa, J.; Tena-Sempere, M.; Klein, S. Novel expression and functional role of ghrelin in chicken ovary. Mol. Cell. Endocrinol. 2006, 257-258, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Sirotkin, A.V.; Rafay, J.; Kotwica, J.; Darlak, K.; Valenzuela, F. Role of ghrelin in regulating rabbit ovarian function and the response to LH and IGF-I. Domest. Anim. Endocrinol. 2009, 36, 162–172. [Google Scholar] [CrossRef]
- Benco, A.; Sirotkin, A.V.; Vasícek, D.; Pavlová, S.; Zemanová, J.; Kotwica, J.; Darlak, K.; Valenzuela, F. Involvement of the transcription factor STAT1 in the regulation of porcine ovarian granulosa cell functions treated and not treated with ghrelin. Reproduction 2009, 138, 553–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirotkin, A.V.; Meszarosová, M. Comparison of effects of leptin and ghrelin on porcine ovarian granulosa cells. Domest. Anim. Endocrinol. 2010, 39, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sirotkin, A.V.; Grossmann, R. The role of ghrelin and some intracellular mechanisms in controlling the secretory activity of chicken ovarian cells. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2007, 147, 239–246. [Google Scholar] [CrossRef]
- Sirotkin, A.V.; Meszarošová, M.; Grossmann, R.; Benčo, A.; Valenzuela, F. Effect of inhibitor and activator of ghrelin receptor (GHS-R1a) on porcine ovarian granulosa cell functions. Gen. Comp. Endocrinol. 2011, 173, 105–110. [Google Scholar] [CrossRef]
- Mabudi, H.; Jamili, S.; Majd, N.E.; Vosoughi, G.; Fatemi, M.R.; Rashed, S. The effects of ghrelin on ovary histology in Barbus sharpeyi. J. Anim. Physiol. Anim. Nutr. 2011, 95, 599–602. [Google Scholar] [CrossRef] [PubMed]
- Sirini, M.A.; Anchordoquy, J.M.; Anchordoquy, J.P.; Pascua, A.M.; Nikoloff, N.; Carranza, A.; Relling, A.E.; Furnus, C.C. The presence of acylated ghrelin during in vitro maturation of bovine oocytes induces cumulus cell DNA damage and apoptosis, and impairs early embryo development. Zygote 2017, 25, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Luque, E.M.; Carlini, V.P.; Vincenti, L.M.; Puechagut, P.; Stutz, G.; Santillán, M.E.; Ruiz, R.D.; Martini, A.C.; Fiol de Cuneo, M. Effects of hexarelin (a ghrelin analogue) on fertilisation and the pre- and postnatal development of mice. Reprod. Fertil. Dev. 2010, 22, 926–938. [Google Scholar] [CrossRef]
- Shepperd, E.; Peng, C.; Unniappan, S. Ghrelinergic system in fish ovaries and ghrelin inhibition of germinal vesicle breakdown in zebrafish oocytes. Gen. Comp. Endocrinol. 2012, 176, 426–431. [Google Scholar] [CrossRef]
- Chouzouris, T.M.; Dovolou, E.; Krania, F.; Pappas, I.S.; Dafopoulos, K.; Messinis, I.E.; Anifandis, G.; Amiridis, G.S. Effects of ghrelin on activation of Akt1 and ERK1/2 pathways during in vitro maturation of bovine oocytes. Zygote 2017, 25, 183–189. [Google Scholar] [CrossRef]
- Dovolou, E.; Messinis, I.E.; Periquesta, E.; Dafopoulos, K.; Gutierrez-Adan, A.; Amiridis, G.S. Ghrelin accelerates in vitro maturation of bovine oocytes. Reprod. Domest. Anim. Zuchthyg. 2014, 49, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Romani, F.; Lanzone, A.; Tropea, A.; Familiari, A.; Scarinci, E.; Sali, M.; Delogu, G.; Catino, S.; Apa, R. In vitro effect of unacylated ghrelin and obestatin on human luteal cell function. Fertil. Steril. 2012, 97, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Tropea, A.; Tiberi, F.; Minici, F.; Orlando, M.; Gangale, M.F.; Romani, F.; Miceli, F.; Catino, S.; Mancuso, S.; Sanguinetti, M.; et al. Ghrelin affects the release of luteolytic and luteotropic factors in human luteal cells. J. Clin. Endocrinol. Metab. 2007, 92, 3239–3245. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Dangi, S.S.; Chouhan, V.S.; Hyder, I.; Babitha, V.; Yadav, V.P.; Khan, F.A.; Sonwane, A.; Singh, G.; Das, G.K.; et al. Expression and localization of ghrelin and its functional receptor in corpus luteum during different stages of estrous cycle and the modulatory role of ghrelin on progesterone production in cultured luteal cells in buffalo. Domest. Anim. Endocrinol. 2014, 48, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Galvão, A.; Tramontano, A.; Rebordão, M.R.; Amaral, A.; Bravo, P.P.; Szóstek, A.; Skarzynski, D.; Mollo, A.; Ferreira-Dias, G. Opposing roles of leptin and ghrelin in the equine corpus luteum regulation: An in vitro study. Mediat. Inflamm. 2014, 2014, 682193. [Google Scholar] [CrossRef]
- Sirotkin, A.V.; Harrath, A.H.; Grossmann, R. Comparison of the effects of human and chicken ghrelin on chicken ovarian hormone release. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2016, 201, 59–63. [Google Scholar] [CrossRef]
- Viani, I.; Vottero, A.; Tassi, F.; Cremonini, G.; Sartori, C.; Bernasconi, S.; Ferrari, B.; Ghizzoni, L. Ghrelin inhibits steroid biosynthesis by cultured granulosa-lutein cells. J. Clin. Endocrinol. Metab. 2008, 93, 1476–1481. [Google Scholar] [CrossRef] [PubMed]
- Sirotkin, A.V.; Rafay, J.; Kotwica, J. Leptin controls rabbit ovarian function in vivo and in vitro: Possible interrelationships with ghrelin. Theriogenology 2009, 72, 765–772. [Google Scholar] [CrossRef]
- Sirotkin, A.V.; Mertin, D.; Süvegová, K.; Lauričik, J.; Morovič, M.; Harrath, A.H.; Kotwica, J. Mink aging is associated with a reduction in ovarian hormone release and the response to FSH and ghrelin. Theriogenology 2016, 86, 1175–1181. [Google Scholar] [CrossRef]
- Sirotkin, A.V.; Grossmann, R. Interrelationship between feeding level and the metabolic hormones leptin, ghrelin and obestatin in control of chicken egg laying and release of ovarian hormones. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2015, 184, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Wang, L.; Zhang, Y.; Li, Y.; Su, S.; Zhang, X. Role of ghrelin on estrogen and progesterone secretion in the adult rat ovary during estrous cycle. Syst. Biol. Reprod. Med. 2012, 58, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Chrenek, P.; Grossmann, R.; Sirotkin, A.V. The cAMP analogue, dbcAMP affects release of steroid hormones by cultured rabbit ovarian cells and their response to FSH, IGF-I and ghrelin. Eur. J. Pharmacol. 2010, 640, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Sirotkin, A.V.; Harrath, A.H.; Grossmann, R. Metabolic status and ghrelin regulate plasma levels and release of ovarian hormones in layer chicks. Physiol. Res. 2017, 66, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Sirotkin, A.V.; Chrenek, P.; Darlak, K.; Valenzuela, F.; Kuklova, Z. Some endocrine traits of transgenic rabbits. II. Changes in hormone secretion and response of isolated ovarian tissue to FSH and ghrelin. Physiol. Res. 2008, 57, 745. [Google Scholar] [CrossRef]
- Puechagut, P.B.; Martini, A.C.; Stutz, G.; Santillán, M.E.; Luque, E.M.; Fiol de Cuneo, M.; Ruiz, R.D.; Vincenti, L.M. Reproductive performance and fertility in male and female adult mice chronically treated with hexarelin. Reprod. Fertil. Dev. 2012, 24, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lin, P.; Yu, S. Effects of ghrelin on developmental competence and gene expression of in vitro fertilized ovine embryos. Theriogenology 2013, 79, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Luque, E.M.; Torres, P.J.; de Loredo, N.; Vincenti, L.M.; Stutz, G.; Santillán, M.E.; Ruiz, R.D.; de Cuneo, M.F.; Martini, A.C. Role of ghrelin in fertilization, early embryo development, and implantation periods. Reproduction 2014, 148, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ferin, M.; Sauer, M.V.; Lobo, R.A. Serum and follicular fluid ghrelin levels negatively reflect human oocyte quality and in vitro embryo development. Fertil. Steril. 2011, 96, 1116–1120. [Google Scholar] [CrossRef]
- Zhang, K.; Wei, H.X.; Zhang, Y.H.; Wang, S.H.; Li, Y.; Dai, Y.P.; Li, N. Effects of ghrelin on in vitro development of porcine in vitro fertilized and parthenogenetic embryos. J. Reprod. Dev. 2007, 53, 647–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dovolou, E.; Periquesta, E.; Messinis, I.E.; Tsiligianni, T.; Dafopoulos, K.; Gutierrez-Adan, A.; Amiridis, G.S. Daily supplementation with ghrelin improves in vitro bovine blastocysts formation rate and alters gene expression related to embryo quality. Theriogenology 2014, 81, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Rak-Mardyła, A.; Gregoraszczuk, E. Effect of ghrelin on proliferation, apoptosis and secretion of progesterone and hCG in the placental JEG-3 cell line. Reprod. Biol. 2010, 10, 159–165. [Google Scholar] [CrossRef]
- Tseng, L.; Mazella, J. Prolactin and its receptor in human endometrium. Semin. Reprod. Endocrinol. 1999, 17, 23–27. [Google Scholar] [CrossRef]
- Martin, J.R.; Lieber, S.B.; McGrath, J.; Shanabrough, M.; Horvath, T.L.; Taylor, H.S. Maternal ghrelin deficiency compromises reproduction in female progeny through altered uterine developmental programming. Endocrinology 2011, 152, 2060–2066. [Google Scholar] [CrossRef]
- Akarsu, S.; Buke, B.; Göde, F.; Dirican, K.E.; Başbuğ, A.; Ceyhan, S.T.; Goktolga, U.; Akın, O.; Korkmaz, C.; Kara, C.; et al. Association of serum and follicular fluid leptin and ghrelin levels with in vitro fertilization success. Ginekol. Pol. 2017, 88, 469–474. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Fernández, R.; Navarro, V.M.; Barreiro, M.L.; Vigo, E.M.; Tovar, S.; Sirotkin, A.V.; Casanueva, F.F.; Aguilar, E.; Dieguez, C.; Pinilla, L.; et al. Effects of chronic hyperghrelinemia on puberty onset and pregnancy outcome in the rat. Endocrinology 2005, 146, 3018–3025. [Google Scholar] [CrossRef]
- Inoue, Y.; Nakahara, K.; Kangawa, K.; Murakami, N. Transitional change in rat fetal cell proliferation in response to ghrelin and des-acyl ghrelin during the last stage of pregnancy. Biochem. Biophys. Res. Commun. 2010, 393, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Piao, H.; Hosoda, H.; Kangawa, K.; Murata, T.; Narita, K.; Higuchi, T. Ghrelin stimulates milk intake by affecting adult type feeding behaviour in postnatal rats. J. Neuroendocrinol. 2008, 20, 330–334. [Google Scholar] [CrossRef]
- Hehir, M.P.; Glavey, S.V.; Morrison, J.J. Uterorelaxant effect of ghrelin on human myometrial contractility. Am. J. Obstet. Gynecol. 2008, 198, 323.e1–323.e5. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, T.; Tolekova, A.; Kalfin, R.; Hadzhibozheva, P. Short-term administration of melatonin or ghrelin on diabetic rats: Effects on angiotensin II and vasopressin-induced uterine contractility. Physiol. Res. 2017, 66, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, K.; Hayashida, T.; Nakazato, M.; Kojima, M.; Hosoda, H.; Kangawa, K.; Murakami, N. Effect of chronic treatments with ghrelin on milk secretion in lactating rats. Biochem. Biophys. Res. Commun. 2003, 303, 751–755. [Google Scholar] [CrossRef]
- Hayashida, T.; Nakahara, K.; Mondal, M.S.; Date, Y.; Nakazato, M.; Kojima, M.; Kangawa, K.; Murakami, N. Ghrelin in neonatal rats: Distribution in stomach and its possible role. J. Endocrinol. 2002, 173, 239–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, P.J.; Luque, E.M.; Ponzio, M.F.; Cantarelli, V.; Diez, M.; Figueroa, S.; Vincenti, L.M.; Carlini, V.P.; Martini, A.C. The role of intragestational ghrelin on postnatal development and reproductive programming in mice. Reproduction 2018, 156, 331–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchi, E.; Boekelheide, K.; Sigman, M.; Hall, S.J.; Hwang, K. Ghrelin modulates testicular damage in a cryptorchid mouse model. PLoS ONE 2017, 12, e0177995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honig, H.; Ofer, L.; Elbaz, M.; Kaim, M.; Shinder, D.; Gershon, E. Seasonal and parity effects on ghrelin levels throughout the estrous cycle in dairy cows. Gen. Comp. Endocrinol. 2016, 235, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Melis, M.R.; Mascia, M.S.; Succu, S.; Torsello, A.; Muller, E.E.; Deghenghi, R.; Argiolas, A. Ghrelin injected into the paraventricular nucleus of the hypothalamus of male rats induces feeding but not penile erection. Neurosci. Lett. 2002, 329, 339–343. [Google Scholar] [CrossRef]
- Inal, H.A.; Yilmaz, N.; Gorkem, U.; Oruc, A.S.; Timur, H. The impact of follicular fluid adiponectin and ghrelin levels based on BMI on IVF outcomes in PCOS. J. Endocrinol. Investig. 2016, 39, 431–437. [Google Scholar] [CrossRef]
- Schöfl, C.; Horn, R.; Schill, T.; Schlösser, H.W.; Müller, M.J.; Brabant, G. Circulating ghrelin levels in patients with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2002, 87, 4607–4610. [Google Scholar] [CrossRef] [Green Version]
- Panidis, D.; Farmakiotis, D.; Koliakos, G.; Rousso, D.; Kourtis, A.; Katsikis, I.; Asteriadis, C.; Karayannis, V.; Diamanti-Kandarakis, E. Comparative study of plasma ghrelin levels in women with polycystic ovary syndrome, in hyperandrogenic women and in normal controls. Hum. Reprod. 2005, 20, 2127–2132. [Google Scholar] [CrossRef] [Green Version]
- Pagotto, U.; Gambineri, A.; Vicennati, V.; Heiman, M.L.; Tschöp, M.; Pasquali, R. Plasma ghrelin, obesity, and the polycystic ovary syndrome: Correlation with insulin resistance and androgen levels. J. Clin. Endocrinol. Metab. 2002, 87, 5625–5629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altuğ Şen, T.; Köken, R.; Narcı, A.; Yılmazer, M. Homocysteine and ghrelin link with polcystic ovary syndrome in relation to obesity. J. Pediatr. Adolesc. Gynecol. 2011, 24, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Gambineri, A.; Pagotto, U.; Tschöp, M.; Vicennati, V.; Manicardi, E.; Carcello, A.; Cacciari, M.; De Iasio, R.; Pasquali, R. Anti-androgen treatment increases circulating ghrelin levels in obese women with polycystic ovary syndrome. J. Endocrinol. Investig. 2003, 26, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Waśko, R.; Komarowska, H.; Warenik-Szymankiewicz, A.; Sowiński, J. Elevated ghrelin plasma levels in patients with polycystic ovary syndrome. Horm. Metab. Res. Horm. Stoffwechs. Horm. Et Metab. 2004, 36, 170–173. [Google Scholar] [CrossRef]
- Xu, L.; Shi, Y.; Gu, J.; Wang, Y.; Wang, L.; You, L.; Qi, X.; Ye, Y.; Chen, Z. Association between ghrelin gene variations, body mass index, and waist-to-hip ratio in patients with polycystic ovary syndrome. Exp. Clin. Endocrinol. Diabetes Off. J. Ger. Soc. Endocrinol. Ger. Diabetes Assoc. 2014, 122, 144–148. [Google Scholar] [CrossRef]
- Oruç, A.S.; Mert, I.; Akturk, M.; Aslan, E.; Polat, B.; Buyukkagnıcı, U.; Danışman, N. Ghrelin and motilin levels in hyperemesis gravidarum. Arch. Gynecol. Obstet. 2013, 287, 1087–1092. [Google Scholar] [CrossRef]
- Albayrak, M.; Karatas, A.; Demiraran, Y.; Erman, H.; Topuz, S.; Bıyık, İ.; Uzun, H.; Erkan, M. Ghrelin, acylated ghrelin, leptin and PYY-3 levels in hyperemesis gravidarum. J. Matern. Fetal Neonatal Med. 2013, 26, 866–870. [Google Scholar] [CrossRef]
- Ozturk, G.; Ozgu-Erdinc, A.S.; Ucar, F.; Ginis, Z.; Erden, G.; Danisman, N. Concentrations of prealbumin and some appetite-controlling hormones in pregnancies associated with hyperemesis gravidarium. Ann. Clin. Biochem. 2017, 54, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Gungor, S.; Gurates, B.; Aydin, S.; Sahin, I.; Kavak, S.B.; Kumru, S.; Celik, H.; Aksoy, A.; Yilmaz, M.; Catak, Z.; et al. Ghrelins, obestatin, nesfatin-1 and leptin levels in pregnant women with and without hyperemesis gravidarum. Clin. Biochem. 2013, 46, 828–830. [Google Scholar] [CrossRef]
- Ege, S.; Kolusarı, A.; Buğdaycı, G.; Çim, N.; Bademkıran, M.H.; Peker, N.; Erdem, S.; Özgökçe, Ç.; Yıldızhan, R. Ghrelin does not change in hyperemesis gravidarum. Ginekol. Pol. 2019, 90, 699–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makino, Y.; Hosoda, H.; Shibata, K.; Makino, I.; Kojima, M.; Kangawa, K.; Kawarabayashi, T. Alteration of plasma ghrelin levels associated with the blood pressure in pregnancy. Hypertension 2002, 39, 781–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydin, S.; Guzel, S.P.; Kumru, S.; Aydin, S.; Akin, O.; Kavak, E.; Sahin, I.; Bozkurt, M.; Halifeoglu, I. Serum leptin and ghrelin concentrations of maternal serum, arterial and venous cord blood in healthy and preeclamptic pregnant women. J. Physiol. Biochem. 2008, 64, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Fan, X.; Yu, Y.; Wang, Y. Maternal serum ratio of ghrelin to obestatin decreased in preeclampsia. Pregnancy Hypertens. 2015, 5, 263–266. [Google Scholar] [CrossRef]
- Erol, O.; Ellidağ, H.Y.; Ayık, H.; Bülbül, G.A.; Derbent, A.U.; Kulaksızoğlu, S.; Yılmaz, N. Increased serum ghrelin in preeclampsia: Is ghrelin a friend or a foe? Ginekol. Pol. 2016, 87, 277–282. [Google Scholar] [CrossRef]
- Turgut, A.; Ozler, A.; Goruk, N.Y.; Tunç, S.Y.; Sak, M.E.; Evsen, M.S.; Evliyaoglu, O.; Gul, T. Serum levels of the adipokines, free fatty acids, and oxidative stress markers in obese and non-obese preeclamptic patients. Clin. Exp. Obstet. Gynecol. 2015, 42, 473–479. [Google Scholar]
- Wang, X.; Yang, L.; Chen, Y.; Zhang, L.; Fei, H. Ghrelin promotes angiogenesis by activating the Jagged1/Notch2/VEGF pathway in preeclampsia. J. Obstet. Gynaecol. Res. 2021, 47, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Díaz, R.A.; Gómez-Medina, M.P.; Ramírez-Soriano, E.; López-Robles, L.; Aguilar-Salinas, C.A.; Saucedo, R.; Zarate, A.; Valladares-Salgado, A.; Wacher, N.H. Lower plasma ghrelin levels are found in women with diabetes-complicated pregnancies. J. Clin. Res. Pediatr. Endocrinol. 2016, 8, 425–431. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, E.G.; Reynolds, C.M.E.; Killalea, A.; O’Kelly, R.; Sheehan, S.R.; Turner, M.J. The use of biomarkers at the end of the second trimester to predict gestational diabetes mellitus. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 250, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Telejko, B.; Kuzmicki, M.; Zonenberg, A.; Modzelewska, A.; Niedziolko-Bagniuk, K.; Ponurkiewicz, A.; Wawrusiewicz-Kurylonek, N.; Nikolajuk, A.; Szamatowicz, J.; Laudanski, P.; et al. Ghrelin in gestational diabetes: Serum level and mRNA expression in fat and placental tissue. Exp. Clin. Endocrinol. Diabetes Off. J. Ger. Soc. Endocrinol. Ger. Diabetes Assoc. 2010, 118, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Tham, E.; Liu, J.; Innis, S.; Thompson, D.; Gaylinn, B.D.; Bogarin, R.; Haim, A.; Thorner, M.O.; Chanoine, J.P. Acylated ghrelin concentrations are markedly decreased during pregnancy in mothers with and without gestational diabetes: Relationship with cholinesterase. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E1093-1100. [Google Scholar] [CrossRef] [Green Version]
- Seon, S.; Jeon, D.; Kim, H.; Chung, Y.; Choi, N.; Yang, H. Testosterone regulates NUCB2 mRNA expression in male mouse hypothalamus and pituitary gland. Dev. Reprod. 2017, 21, 71–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatef, A.; Unniappan, S. Gonadotropin-releasing hormone, kisspeptin, and gonadal steroids directly modulate nucleobindin-2/nesfatin-1 in murine hypothalamic gonadotropin-releasing hormone neurons and gonadotropes. Biol. Reprod. 2017, 96, 635–651. [Google Scholar] [CrossRef]
- Gonzalez, R.; Shepperd, E.; Thiruppugazh, V.; Lohan, S.; Grey, C.L.; Chang, J.P.; Unniappan, S. Nesfatin-1 regulates the hypothalamo-pituitary-ovarian axis of fish. Biol. Reprod. 2012, 87, 84. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, K.; Song, M.; Li, X.; Luo, L.; Tian, Y.; Zhang, Y.; Li, Y.; Zhang, X.; Ling, Y.; et al. Role of nesfatin-1 in the reproductive axis of male rat. Sci. Rep. 2016, 6, 32877. [Google Scholar] [CrossRef] [PubMed]
- Iwasa, T.; Matsuzaki, T.; Tungalagsuvd, A.; Munkhzaya, M.; Yiliyasi, M.; Kuwahara, A.; Irahara, M. Developmental changes in the hypothalamic mRNA levels of nucleobindin-2 (NUCB2) and their sensitivity to fasting in male and female rats. Int. J. Dev. Neurosci. Off. J. Int. Soc. Dev. Neurosci. 2016, 49, 46–49. [Google Scholar] [CrossRef]
- Prinz, P.; Goebel-Stengel, M.; Teuffel, P.; Rose, M.; Klapp, B.F.; Stengel, A. Peripheral and central localization of the nesfatin-1 receptor using autoradiography in rats. Biochem. Biophys. Res. Commun. 2016, 470, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Chung, Y.; Kim, H.; Im, E.; Lee, H.; Yang, H. The Tissue Distribution of Nesfatin-1/NUCB2 in Mouse. Dev. Reprod. 2014, 18, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.; Kim, J.; Im, E.; Kim, H.; Yang, H. Progesterone and 17β-estradiol regulate expression of nesfatin-1/NUCB2 in mouse pituitary gland. Peptides 2015, 63, 4–9. [Google Scholar] [CrossRef]
- Ranjan, A.; Choubey, M.; Yada, T.; Krishna, A. Direct effects of neuropeptide nesfatin-1 on testicular spermatogenesis and steroidogenesis of the adult mice. Gen. Comp. Endocrinol. 2019, 271, 49–60. [Google Scholar] [CrossRef]
- Garcia-Galiano, D.; Navarro, V.M.; Roa, J.; Ruiz-Pino, F.; Sanchez-Garrido, M.A.; Pineda, R.; Castellano, J.M.; Romero, M.; Aguilar, E.; Gaytan, F.; et al. The anorexigenic neuropeptide, nesfatin-1, is indispensable for normal puberty onset in the female rat. J. Neurosci. Off. J. Soc. Neurosci. 2010, 30, 7783–7792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, S.; Chaturvedi, C.M. Nesfatin-1: Localization and expression in avian gonads and its modulation by temporal phase relation of neural oscillations in female Japanese quail, Coturnix coturnix japonica. Gen. Comp. Endocrinol. 2015, 224, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Sun, S.; Lee, D.; Youk, H.; Yang, H. Gonadotropin regulates NUCB2/nesfatin-1 expression in the mouse ovary and uterus. Biochem. Biophys. Res. Commun. 2019, 513, 602–607. [Google Scholar] [CrossRef]
- Cao, Z.; Luo, L.; Yang, J.; Zhang, L.; Gao, D.; Xu, T.; Tong, X.; Zhang, D.; Wang, Y.; Li, Y.; et al. Stimulatory effects of NESFATIN-1 on meiotic and developmental competence of porcine oocytes. J. Cell. Physiol. 2019, 234, 17767–17774. [Google Scholar] [CrossRef]
- Ciccimarra, R.; Bussolati, S.; Grasselli, F.; Grolli, S.; Paolucci, M.; Basini, G. Potential physiological involvement of nesfatin-1 in regulating swine granulosa cell functions. Reprod. Fertil. Dev. 2020, 32, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, H.; Li, Q.; Lao, K.; Wang, Y. The role of nesfatin-1 expression in letrozole-induced polycystic ovaries in the rat. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2017, 33, 438–441. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Shin, J.; Jang, J.; Hwang, S.; Kim, J.; Kong, J.; Yang, H. 17Beta-Estradiol Regulates NUCB2/ Nesfatin-1 Expression in Mouse Oviduct. Dev. Reprod. 2020, 24, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Altincik, A.; Sayin, O. Serum Nesfatin-1 Levels in Girls with Idiopathic Central Precocious Puberty. J. Clin. Res. Pediatr. Endocrinol. 2018, 10, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Garcés, M.F.; Poveda, N.E.; Sanchez, E.; Sánchez Á, Y.; Bravo, S.B.; Vázquez, M.J.; Diéguez, C.; Nogueiras, R.; Caminos, J.E. Regulation of NucB2/Nesfatin-1 throughout rat pregnancy. Physiol. Behav. 2014, 133, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Legg-St Pierre, C.B.; Mackova, M.; Miskiewicz, E.I.; Hemmings, D.G.; Unniappan, S.; MacPhee, D.J. Insulinotropic nucleobindin-2/nesfatin-1 is dynamically expressed in the haemochorial mouse and human placenta. Reprod. Fertil. Dev. 2018, 30, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Aslan, M.; Celik, O.; Celik, N.; Turkcuoglu, I.; Yilmaz, E.; Karaer, A.; Simsek, Y.; Celik, E.; Aydin, S. Cord blood nesfatin-1 and apelin-36 levels in gestational diabetes mellitus. Endocrine 2012, 41, 424–429. [Google Scholar] [CrossRef]
- Çelik, F.; Belviranli, M.; Okudan, N. Circulating levels of leptin, nesfatin-1 and kisspeptin in postmenopausal obese women. Arch. Physiol. Biochem. 2016, 122, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, L.K.; Pierce, A.L.; Riley, L.G.; Duncan, C.A.; Nagler, J.J. Plasma nesfatin-1 is not affected by long-term food restriction and does not predict rematuration among iteroparous female rainbow trout (Oncorhynchus mykiss). PLoS ONE 2014, 9, e85700. [Google Scholar] [CrossRef]
- Ademoglu, E.N.; Gorar, S.; Carlıoglu, A.; Yazıcı, H.; Dellal, F.D.; Berberoglu, Z.; Akdeniz, D.; Uysal, S.; Karakurt, F. Plasma nesfatin-1 levels are increased in patients with polycystic ovary syndrome. J. Endocrinol. Investig. 2014, 37, 715–719. [Google Scholar] [CrossRef]
- Rajeswari, J.J.; Hatef, A.; Unniappan, S. Nesfatin-1-like peptide suppresses hypothalamo-pituitary-gonadal mRNAs, gonadal steroidogenesis, and oocyte maturation in fish†. Biol. Reprod. 2020, 103, 802–816. [Google Scholar] [CrossRef]
- Rajeswari, J.J.; Unniappan, S. Nesfatin-1 suppresses fish reproductive axis and gonadal steroidogenesis. Reproduction 2020, 160, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, A.; Choubey, M.; Yada, T.; Krishna, A. Immunohistochemical localization and possible functions of nesfatin-1 in the testis of mice during pubertal development and sexual maturation. J. Mol. Histol. 2019, 50, 533–549. [Google Scholar] [CrossRef]
- Ranjan, A.; Choubey, M.; Yada, T.; Krishna, A. Nesfatin-1 ameliorates type-2 diabetes-associated reproductive dysfunction in male mice. J. Endocrinol. Investig. 2020, 43, 515–528. [Google Scholar] [CrossRef]
- Arabaci Tamer, S.; Yildirim, A.; Köroğlu, M.K.; Çevik, Ö.; Ercan, F.; Yeğen, B. Nesfatin-1 ameliorates testicular injury and supports gonadal function in rats induced with testis torsion. Peptides 2018, 107, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Madi, N.M.; Abo El Gheit, R.E.; Barhoma, R.A.; El Saadany, A.; Alghazaly, G.M.; Marea, K.; El-Saka, M.H. Beneficial impact of Nesfatin-1 on reproductive dysfunction induced by nicotine in male rats: Possible modulation of autophagy and pyroptosis signaling pathways. Physiol. Int. 2021. [Google Scholar] [CrossRef] [PubMed]
- Guvenc, G.; Altinbas, B.; Kasikci, E.; Ozyurt, E.; Bas, A.; Udum, D.; Niaz, N.; Yalcin, M. Contingent role of phoenixin and nesfatin-1 on secretions of the male reproductive hormones. Andrologia 2019, 51, e13410. [Google Scholar] [CrossRef]
- Sahin, F.K.; Sahin, S.B.; Ural, U.M.; Cure, M.C.; Senturk, S.; Tekin, Y.B.; Balik, G.; Cure, E.; Yuce, S.; Kirbas, A. Nesfatin-1 and Vitamin D levels may be associated with systolic and diastolic blood pressure values and hearth rate in polycystic ovary syndrome. Bosn. J. Basic Med Sci. 2015, 15, 57–63. [Google Scholar] [CrossRef]
- Alp, E.; Görmüş, U.; Güdücü, N.; Bozkurt, S. Nesfatin-1 levels and metabolic markers in polycystic ovary syndrome. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2015, 31, 543–547. [Google Scholar] [CrossRef]
- Demir Çaltekin, M.; Caniklioğlu, A.; Eris Yalçın, S.; Aydoğan Kırmızı, D.; Baser, E.; Yalvaç, E.S. DLK1 and Nesfatin-1 levels and the relationship with metabolic parameters in polycystic ovary syndrome: Prospective, controlled study. Turk. J. Obstet. Gynecol. 2021, 18, 124–130. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Wang, Y.; Li, J.; Liu, R.; Liu, H. Decreased levels of serum nesfatin-1 in patients with preeclampsia. Biomark. Biochem. Indic. Expo. Response Susceptibility Chem. 2014, 19, 402–406. [Google Scholar] [CrossRef]
- Kucukler, F.K.; Gorkem, U.; Simsek, Y.; Kocabas, R.; Gulen, S.; Guler, S. Low level of Nesfatin-1 is associated with gestational diabetes mellitus. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2016, 32, 759–761. [Google Scholar] [CrossRef] [PubMed]
- Ademoglu, E.N.; Gorar, S.; Keskin, M.; Carlioglu, A.; Ucler, R.; Erdamar, H.; Culha, C.; Aral, Y. Serum nesfatin-1 levels are decreased in pregnant women newly diagnosed with gestational diabetes. Arch. Endocrinol. Metab. 2017, 61, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Mierzyński, R.; Poniedziałek-Czajkowska, E.; Dłuski, D.; Patro-Małysza, J.; Kimber-Trojnar, Ż.; Majsterek, M.; Leszczyńska-Gorzelak, B. Nesfatin-1 and vaspin as potential novel biomarkers for th prediction and early diagnosis of gestational diabetes mellitus. Int. J. Mol. Sci. 2019, 20, 159. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lu, J.H.; Zheng, S.Y.; Yan, J.H.; Chen, L.; Liu, X.; Wu, W.Z.; Wang, F. Serum levels of nesfatin-1 are increased in gestational diabetes mellitus. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2017, 33, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Boutsikou, T.; Briana, D.D.; Boutsikou, M.; Kafalidis, G.; Piatopoulou, D.; Baka, S.; Hassiakos, D.; Gourgiotis, D.; Malamitsi-Puchner, A. Cord blood nesfatin-1 in large for gestational age pregnancies. Cytokine 2013, 61, 591–594. [Google Scholar] [CrossRef]
- Cheng, Y.Y.; Zhao, X.M.; Cai, B.P.; Ma, L.N.; Yin, J.Y.; Song, G.Y. Nesfatin-1 in newborns: Relationship with endocrine and metabolic and anthropometric measures. J. Pediatr. Endocrinol. Metab. JPEM 2012, 25, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Serin, S.; Bakacak, M.; Ercan, Ö.; Köstü, B.; Avci, F.; Arıkan, D.; Kıran, G. The evaluation of Nesfatin-1 levels in patients with and without intrauterine growth restriction. J. Matern. Fetal Neonatal Med. 2016, 29, 1409–1413. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schalla, M.A.; Stengel, A. The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int. J. Mol. Sci. 2021, 22, 11059. https://doi.org/10.3390/ijms222011059
Schalla MA, Stengel A. The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. International Journal of Molecular Sciences. 2021; 22(20):11059. https://doi.org/10.3390/ijms222011059
Chicago/Turabian StyleSchalla, Martha A., and Andreas Stengel. 2021. "The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction" International Journal of Molecular Sciences 22, no. 20: 11059. https://doi.org/10.3390/ijms222011059
APA StyleSchalla, M. A., & Stengel, A. (2021). The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. International Journal of Molecular Sciences, 22(20), 11059. https://doi.org/10.3390/ijms222011059