Development of Novel Quinoline-Based Sulfonamides as Selective Cancer-Associated Carbonic Anhydrase Isoform IX Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Evaluation
2.2.1. Carbonic Anhydrases Inhibition
2.2.2. Anticancer Activity
In Vitro Anti-Proliferative Activity
Effect of QBS 11c and 13b on Apoptotic Markers Bax, Bcl-2, and Active Caspase-3
2.3. Molecular Modeling Studies
3. Materials and Methods
3.1. Chemistry
General Procedures for Preparation of Target QBS (9a–d, 11a–g, 13a–c and 16)
3.2. Biological Evaluation
3.3. Molecular Modelling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Angeli, A.; Carta, F.; Supuran, C.T. Carbonic Anhydrases: Versatile and Useful Biocatalysts in Chemistry and Biochemistry. Catalysts 2020, 10, 1008. [Google Scholar] [CrossRef]
- Mishra, C.B.; Tiwari, M.; Supuran, C.T. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med. Res. Rev. 2020, 40, 2485–2565. [Google Scholar] [CrossRef]
- Taslimi, P.; Gulcin, I.; Ozgeris, B.; Goksu, S.; Tumer, F.; Alwasel, S.H.; Supuran, C.T. The human carbonic anhydrase isoenzymes I and II (hCA I and II) inhibition effects of trimethoxyindane derivatives. J. Enzym. Inhib. Med. Chem. 2016, 31, 152–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eldehna, W.M.; Abdelrahman, M.A.; Nocentini, A.; Bua, S.; Al-Rashood, S.T.; Hassan, G.S.; Bonardi, A.; Almehizia, A.A.; Alkahtani, H.M.; Alharbi, A.; et al. Synthesis, biological evaluation and in silico studies with 4-benzylidene-2-phenyl-5(4H)-imidazolone-based benzenesulfonamides as novel selective carbonic anhydrase IX inhibitors endowed with anticancer activity. Bioorganic Chem. 2019, 90, 103102. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, M.; Boone, C.D.; Kondeti, B.; McKenna, R. Structural annotation of human carbonic anhydrases. J. Enzym. Inhib. Med. Chem. 2013, 28, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Waheed, A.; Sly, W.S. Carbonic anhydrase XII functions in health and disease. Gene 2017, 623, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Occhipinti, R.; Boron, W.F. Role of Carbonic Anhydrases and Inhibitors in Acid-Base Physiology: Insights from Mathematical Modeling. Int. J. Mol. Sci. 2019, 20, 3841. [Google Scholar] [CrossRef] [Green Version]
- Provensi, G.; Carta, F.; Nocentini, A.; Supuran, C.T.; Casamenti, F.; Passani, M.B.; Fossati, S. A New Kid on the Block? Carbonic Anhydrases as Possible New Targets in Alzheimer’s Disease. Int. J. Mol. Sci. 2019, 20, 4724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Supuran, C.T. Carbonic Anhydrases and Metabolism. Metabolites 2018, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Fabrizi, F.; Mincione, F.; Somma, T.; Scozzafava, G.; Galassi, F.; Masini, E.; Impagnatiello, F.; Supuran, C.T. A new approach to antiglaucoma drugs: Carbonic anhydrase inhibitors with or without NO donating moieties. Mechanism of action and preliminary pharmacology. J. Enzyme Inhib. Med. Chem. 2012, 27, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, M.; Kondeti, B.; McKenna, R. Anticonvulsant/antiepileptic carbonic anhydrase inhibitors: A patent review. Expert Opin. Ther. Pat. 2013, 23, 717–724. [Google Scholar] [CrossRef]
- Pastorekova, S.; Gillies, R.J. The role of carbonic anhydrase IX in cancer development: Links to hypoxia, acidosis, and beyond. Cancer Metastasis Rev. 2019, 38, 65–77. [Google Scholar] [CrossRef]
- Chiche, J.; Ilc, K.; Laferrière, J.; Trottier, E.; Dayan, F.; Mazure, N.M.; Brahimi-Horn, M.C.; Pouysségur, J. Hypoxia-Inducible Carbonic Anhydrase IX and XII Promote Tumor Cell Growth by Counteracting Acidosis through the Regulation of the Intracellular pH. Cancer Res. 2009, 69, 358–368. [Google Scholar] [CrossRef] [Green Version]
- Chafe, S.C.; Vizeacoumar, F.S.; Venkateswaran, G.; Nemirovsky, O.; Awrey, S.; Brown, W.S.; McDonald, P.C.; Carta, F.; Metcalfe, A.; Karasinska, J.M.; et al. Genome-wide synthetic lethal screen unveils novel CAIX-NFS1/xCT axis as a targetable vulnerability in hypoxic solid tumors. Sci. Adv. 2021, 7, eabj0364. [Google Scholar] [CrossRef]
- Okuno, K.; Matsubara, T.; Nakamura, T.; Iino, T.; Kakimoto, T.; Asanuma, K.; Matsumine, A.; Sudo, A. Carbonic anhydrase IX enhances tumor cell proliferation and tumor progression in osteosarcoma. Onco Targets Ther. 2018, 11, 6879–6886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tafreshi, N.K.; Lloyd, M.C.; Proemsey, J.B.; Bui, M.M.; Kim, J.; Gillies, R.J.; Morse, D.L. Evaluation of CAIX and CAXII Expression in Breast Cancer at Varied O2 Levels: CAIX is the Superior Surrogate Imaging Biomarker of Tumor Hypoxia. Mol. Imaging Biol. 2016, 18, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Bhat, H.R.; Masih, A.; Shakya, A.; Ghosh, S.K.; Singh, U.P. Design, synthesis, anticancer, antibacterial, and antifungal evaluation of 4-aminoquinoline-1,3,5-triazine derivatives. J. Heterocycl. Chem. 2020, 57, 390–399. [Google Scholar] [CrossRef]
- Musiol, R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin. Drug Discov. 2017, 12, 583–597. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, L.C.; Mayer, I.A. New targets in endocrine-resistant hormone receptor-positive breast cancer. Clin. Adv. Hematol. Oncol. HO 2021, 19, 511–521. [Google Scholar]
- ClinicalTrials. WI231696: Bosutinib, Palbocicilib and Fulvestrant for HR+HER2- Advanced Breast Cancer Refractory to a CDK4/6 Inhibitor. Available online: https://clinicaltrials.gov/ct2/show/NCT03854903 (accessed on 7 September 2021).
- Campone, M.; Bondarenko, I.; Brincat, S.; Hotko, Y.; Munster, P.N.; Chmielowska, E.; Fumoleau, P.; Ward, R.; Bardy-Bouxin, N.; Leip, E.; et al. Phase II study of single-agent bosutinib, a Src/Abl tyrosine kinase inhibitor, in patients with locally advanced or metastatic breast cancer pretreated with chemotherapy. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2012, 23, 610–617. [Google Scholar] [CrossRef]
- Chan, A.; Moy, B.; Mansi, J.; Ejlertsen, B.; Holmes, F.A.; Chia, S.; Iwata, H.; Gnant, M.; Loibl, S.; Barrios, C.H.; et al. Final Efficacy Results of Neratinib in HER2-positive Hormone Receptor-positive Early-stage Breast Cancer from the Phase III ExteNET Trial. Clin. Breast Cancer 2021, 21, 80–91.e87. [Google Scholar] [CrossRef] [PubMed]
- To, K.K.W.; Poon, D.C.; Wei, Y.; Wang, F.; Lin, G.; Fu, L. Pelitinib (EKB-569) targets the up-regulation of ABCB1 and ABCG2 induced by hyperthermia to eradicate lung cancer. Br. J. Pharmacol. 2015, 172, 4089–4106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Sanea, M.M.; Elkamhawy, A.; Paik, S.; Bua, S.; Ha Lee, S.; Abdelgawad, M.A.; Roh, E.J.; Eldehna, W.M.; Supuran, C.T. Synthesis and biological evaluation of novel 3-(quinolin-4-ylamino)benzenesulfonamidesAQ3 as carbonic anhydrase isoforms I and II inhibitors. J. Enzym. Inhib. Med. Chem. 2019, 34, 1457–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thacker, P.S.; Shaikh, P.; Angeli, A.; Arifuddin, M.; Supuran, C.T. Synthesis and biological evaluation of novel 8-substituted quinoline-2-carboxamides as carbonic anhydrase inhibitors. J. Enzym. Inhib. Med. Chem. 2019, 34, 1172–1177. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.-E.; Lee, S.-H.; Kim, S.-K.; Lee, S.-H. The conformation and activity relationship of benzofuran derivatives as angiotensin II receptor antagonists. Bioorganic Med. Chem. 1997, 5, 445–459. [Google Scholar] [CrossRef]
- Madrid, P.B.; Sherrill, J.; Liou, A.P.; Weisman, J.L.; DeRisi, J.L.; Guy, R.K. Synthesis of ring-substituted 4-aminoquinolines and evaluation of their antimalarial activities. Bioorganic Med. Chem. Lett. 2005, 15, 1015–1018. [Google Scholar] [CrossRef]
- Gaber, A.E.-A.M.; McNab, H. Synthetic Applications of the Pyrolysis of Meldrum’s Acid Derivatives. Synthesis 2001, 2001, 2059–2074. [Google Scholar] [CrossRef]
- Dumas, A.M.; Fillion, E. Meldrum’s Acids and 5-Alkylidene Meldrum’s Acids in Catalytic Carbon−Carbon Bond-Forming Processes. Acc. Chem. Res. 2010, 43, 440–454. [Google Scholar] [CrossRef]
- Khalifah, R.G. The Carbon Dioxide Hydration Activity of Carbonic Anhydrase: I. stop-flow kinetic studies on the native human isoenzymes B and C. J. Biol. Chem. 1971, 246, 2561–2573. [Google Scholar] [CrossRef]
- Van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell Sensitivity Assays: The MTT Assay. In Cancer Cell Culture: Methods and Protocols; Cree, I.A., Ed.; Humana Press: Totowa, NJ, USA, 2011; pp. 237–245. [Google Scholar]
- Leitans, J.; Kazaks, A.; Balode, A.; Ivanova, J.; Zalubovskis, R.; Supuran, C.T.; Tars, K. Efficient Expression and Crystallization System of Cancer-Associated Carbonic Anhydrase Isoform IX. J. Med. Chem. 2015, 58, 9004–9009. [Google Scholar] [CrossRef]
- Zubrienė, A.; Smirnovienė, J.; Smirnov, A.; Morkūnaitė, V.; Michailovienė, V.; Jachno, J.; Juozapaitienė, V.; Norvaišas, P.; Manakova, E.; Gražulis, S.; et al. Intrinsic thermodynamics of 4-substituted-2,3,5,6-tetrafluorobenzenesulfonamide binding to carbonic anhydrases by isothermal titration calorimetry. Biophys. Chem. 2015, 205, 51–65. [Google Scholar] [CrossRef]
- Cassis, R.; Tapia, R.; Valderrama, J.A. Synthesis of 4(1H)-Quinolones by Thermolysis of Arylaminomethylene Meldrum’s Acid Derivatives. Synth. Commun. 1985, 15, 125–133. [Google Scholar] [CrossRef]
- Takaoka, Y.; Tsutsumi, H.; Kasagi, N.; Nakata, E.; Hamachi, I. One-Pot and Sequential Organic Chemistry on an Enzyme Surface to Tether a Fluorescent Probe at the Proximity of the Active Site with Restoring Enzyme Activity. J. Am. Chem. Soc. 2006, 128, 3273–3280. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Elmetwally, S.A.; Saied, K.F.; Eissa, I.H.; Elkaeed, E.B. Design, synthesis and anticancer evaluation of thieno[2,3-d]pyrimidine derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers. Bioorganic Chem. 2019, 88, 102944. [Google Scholar] [CrossRef]
- Eldehna, W.M.; Al-Rashood, S.T.; Al-Warhi, T.; Eskandrani, R.O.; Alharbi, A.; El Kerdawy, A.M. Novel oxindole/benzofuran hybrids as potential dual CDK2/GSK-3β inhibitors targeting breast cancer: Design, synthesis, biological evaluation, and in silico studies. J. Enzym. Inhib. Med. Chem. 2021, 36, 270–285. [Google Scholar] [CrossRef]
- El-Naggar, A.M.; Eissa, I.H.; Belal, A.; El-Sayed, A.A. Design, eco-friendly synthesis, molecular modeling and anticancer evaluation of thiazol-5(4H)-ones as potential tubulin polymerization inhibitors targeting the colchicine binding site. RSC Adv. 2020, 10, 2791–2811. [Google Scholar] [CrossRef] [Green Version]
- Al-Rashood, S.T.; Hamed, A.R.; Hassan, G.S.; Alkahtani, H.M.; Almehizia, A.A.; Alharbi, A.; Al-Sanea, M.M.; Eldehna, W.M. Antitumor properties of certain spirooxindoles towards hepatocellular carcinoma endowed with antioxidant activity. J. Enzym. Inhib. Med. Chem. 2020, 35, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Rana, N.K.; Singh, P.; Koch, B. CoCl2 simulated hypoxia induce cell proliferation and alter the expression pattern of hypoxia associated genes involved in angiogenesis and apoptosis. Biol. Res. 2019, 52, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz-Sánchez, J.; Chánez-Cárdenas, M.E. The use of cobalt chloride as a chemical hypoxia model. J. Appl. Toxicol. 2019, 39, 556–570. [Google Scholar] [CrossRef] [PubMed]
cmpd | o-/m-/p- | R1 | R2 | KI (nM) 1 | |||
---|---|---|---|---|---|---|---|
CA I | CA II | CA IX | CA XII | ||||
9a | o- | 6-CH3 | H | 558.3 | 78.4 | 36.4 | 22.8 |
9b | o- | 6-OCH3 | H | 864.4 | 49.7 | 39.2 | 42.1 |
9c | o- | 6-Cl | H | 1239 | 86.8 | 65.6 | 38.4 |
9d | o- | 5,7-diCF3 | H | 1562 | 112.4 | 25.9 | 26.5 |
11a | m- | 6-CH3 | H | 663.1 | 265.2 | 70.1 | 41.2 |
11b | m- | 6-OCH3 | H | 258.4 | 365.7 | 86.5 | 73.1 |
11c | m- | 6-Cl | H | 442.3 | 154.8 | 8.4 | 55.3 |
11d | m- | 5,7-diCF3 | H | 105.3 | 221.0 | 52.9 | 34.0 |
11e | m- | 6-CH3 | CH3 | 3498 | 1503 | 103.5 | 88.1 |
11f | m- | 6-OCH3 | CH3 | 2256 | 998.2 | 853.4 | 152.2 |
11g | m- | 6-Cl | CH3 | 4521 | 2356 | 116.2 | 92.7 |
13a | p- | 6-CH3 | - | 78.4 | 36.5 | 25.8 | 9.8 |
13b | p- | 6-OCH3 | - | 92.1 | 58.4 | 5.5 | 13.2 |
13c | p- | 6-Cl | - | 55.4 | 7.3 | 18.6 | 8.7 |
16 | - | - | - | 81.4 | 31.1 | 21.7 | 25.4 |
AAZ | - | - | - | 250 | 12.5 | 25.0 | 5.7 |
cmpd | I/IX | II/IX | I/XII | II/XII |
---|---|---|---|---|
9a | 15.3 | 2.2 | 24.5 | 3.4 |
9b | 22.1 | 1.3 | 20.5 | 1.2 |
9c | 18.9 | 1.3 | 32.3 | 2.3 |
9d | 60.3 | 4.3 | 58.9 | 4.2 |
11a | 9.5 | 3.8 | 16.1 | 6.4 |
11b | 3.0 | 4.2 | 3.5 | 5.0 |
11c | 52.7 | 18.4 | 8.0 | 2.8 |
11d | 2.0 | 4.2 | 3.1 | 6.5 |
11e | 33.8 | 14.5 | 39.7 | 17.1 |
11f | 2.6 | 1.2 | 14.8 | 6.6 |
11g | 38.9 | 20.3 | 48.8 | 25.4 |
13a | 3.0 | 1.4 | 8.0 | 3.7 |
13b | 16.7 | 10.6 | 7.0 | 4.4 |
13c | 3.0 | 0.4 | 6.4 | 0.8 |
16 | 3.8 | 1.4 | 3.2 | 1.2 |
AAZ | 10.0 | 0.5 | 43.9 | 2.2 |
Compound | IC50 (μM) 1 | |
---|---|---|
MDA-MB-231 | MCF-7 | |
11c | 1.03 ± 0.05 | 0.43 ± 0.02 |
13b | 2.24 ± 0.1 | 3.69 ± 0.17 |
Doxorubicin | 1.67 ± 0.08 | 3.04 ± 0.14 |
Compound | MDA-MB-231 | ||
---|---|---|---|
BAX (Pg/mg of Total Protein) | Bcl-2 (Pg/mg of Total Protein) | Active Caspase-3 (Pg/mg of Total Protein) | |
11c | 420.9 ± 8.24 (7.1) 1 | 6.45 ± 0.17 (0.45) 1 | 12.69 ± 1.14 (4.93) 1 |
13b | 373.5 ± 10.4 (6.3) 1 | 5.304 ± 0.13 (0.37) 1 | 9.32 ± 0.73 (3.62) 1 |
Control | 59.43 ± 24.8 | 14.29 ± 0.10 | 2.57 ± 0.35 |
Compound | MCF-7 | ||
---|---|---|---|
BAX (Pg/mg of Total Protein) | Bcl-2 (Pg/mg of Total Protein) | Active Caspase-3 (Pg/mg of Total Protein) | |
11c | 512.9 ± 11.7 (5.36) 1 | 7.29 ± 0.15 (0.79) 1 | 17.83 ± 0.62 (3.64) 1 |
13b | 443.9 ± 10.2 (4.64) 1 | 5.72 ± 0.13 (0.62) 1 | 14.82 ± 0.43 (3.02) 1 |
Control | 95.6 ± 11.6 | 9.14 ± 0.21 | 4.895 ± 0.66 |
Comp. | hCA IX | hCA XII | ||
---|---|---|---|---|
Docking Score | MMGBSA dG Bind | Docking Score | MMGBSA dG Bind | |
11c | −6.029 | −34.30 | −6.029 | −46.69 |
13b | −6.046 | −42.14 | −6.441 | −49.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaldam, M.; Nocentini, A.; Elsayed, Z.M.; Ibrahim, T.M.; Salem, R.; El-Domany, R.A.; Capasso, C.; Supuran, C.T.; Eldehna, W.M. Development of Novel Quinoline-Based Sulfonamides as Selective Cancer-Associated Carbonic Anhydrase Isoform IX Inhibitors. Int. J. Mol. Sci. 2021, 22, 11119. https://doi.org/10.3390/ijms222011119
Shaldam M, Nocentini A, Elsayed ZM, Ibrahim TM, Salem R, El-Domany RA, Capasso C, Supuran CT, Eldehna WM. Development of Novel Quinoline-Based Sulfonamides as Selective Cancer-Associated Carbonic Anhydrase Isoform IX Inhibitors. International Journal of Molecular Sciences. 2021; 22(20):11119. https://doi.org/10.3390/ijms222011119
Chicago/Turabian StyleShaldam, Moataz, Alessio Nocentini, Zainab M. Elsayed, Tamer M. Ibrahim, Rofaida Salem, Ramadan A. El-Domany, Clemente Capasso, Claudiu T. Supuran, and Wagdy M. Eldehna. 2021. "Development of Novel Quinoline-Based Sulfonamides as Selective Cancer-Associated Carbonic Anhydrase Isoform IX Inhibitors" International Journal of Molecular Sciences 22, no. 20: 11119. https://doi.org/10.3390/ijms222011119
APA StyleShaldam, M., Nocentini, A., Elsayed, Z. M., Ibrahim, T. M., Salem, R., El-Domany, R. A., Capasso, C., Supuran, C. T., & Eldehna, W. M. (2021). Development of Novel Quinoline-Based Sulfonamides as Selective Cancer-Associated Carbonic Anhydrase Isoform IX Inhibitors. International Journal of Molecular Sciences, 22(20), 11119. https://doi.org/10.3390/ijms222011119