Dynamics of Germinosome Formation and FRET-Based Analysis of Interactions between GerD and Germinant Receptor Subunits in Bacillus cereus Spores
Abstract
:1. Introduction
2. Results
2.1. B. cereus Expressing SGFP2 or/and mScarlet-I Fusion Proteins
Strains | Plasmid Present (+) | Description of Inserted Genes | Sources |
---|---|---|---|
Escherichia coli strains | |||
DH5α | wild type | Lab stock | |
DH5α 01 | pSGFP2-C1 Kanr | SGFP2 | Lab stock |
DH5α 02 | pEB2-mScarlet-I Kanr | mScarlet-I | Lab stock |
Bacillus cereus strains | |||
B. cereus ATCC 14579 | wild type | No | Lab stock |
strain 006 | +pHT315-f01 Eryr | PR-gerR(A-C-B)–SGFP2 | This study |
strain 008 | +pHT315-f02 Eryr | PR-gerRA–SGFP2 | This study |
strain 003 | +pHT315-f03 Eryr | PR-gerRB–SGFP2 | This study |
strain 009 | +pHT315-f04 Eryr | PR-gerRC–SGFP2 | This study |
strain 007 | +pHT315-f05 Eryr | PD-gerD–mScarlet-I | This study |
strain 010 | +pHT315-f10 Eryr | PD-gerD–SGFP2 | This study |
strain 012 | +pHT315-f12 Eryr | PS-SASP–SGFP2 | This study |
strain F06 | +pHT315-f06 Eryr | PR-gerR(A-C-B)–SGFP2 and PD-gerD–mScarlet-I | This study |
strain F07 | +pHT315-f07 Eryr | PR-gerRA–SGFP2 and PD-gerD–mScarlet-I | This study |
strain F08 | +pHT315-f08 Eryr | PR-gerRC–SGFP2 and PD-gerD–mScarlet-I | This study |
strain F09 | +pHT315-f09 Eryr | PR-gerRB–SGFP2 and PD-gerD–mScarlet-I | This study |
strain F11 | +pHT315-f11 Eryr | PD-gerD–SGFP2–mScarlet-I | This study |
strain F13 | +pHT315-f13 Eryr | PS-SASP–SGFP2 and PD-gerD–mScarlet-I | This study |
2.2. Localization of Putative Germinosomes in Developing B. cereus Forespores
2.3. Interaction of GerR GR Proteins and GerD Assessed Using Spectral FRET Analyses
2.4. Dynamic Observation of Germinosome Formation during B. cereus Sporulation
3. Discussion
4. Materials and Methods
4.1. Construction of B. cereus Strains with Plasmids Expressing Various Proteins
4.2. Fluorescence In Situ Hybridization for DNA
4.3. FM 4-64 Staining, Visualization, and Image Analysis
4.4. Microscopy Settings and Data Analysis of FRET
Images | Excitation (nm) | Emission (nm) |
---|---|---|
Donor image | Donor (458–483) | Donor (492–541) |
FRET image | Donor (458–483) | Acceptor (570–616) |
Acceptor image | Acceptor (543–558) | Acceptor (570–616) |
4.5. Time-Lapse Settings and Data Analysis in B. cereus Sporulation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blakey, L.J.; Priest, F.G. The occurrence of Bacillus cereus in some dried foods including pulses and cereals. J. Appl. Bacteriol. 1980, 48, 297–302. [Google Scholar] [CrossRef]
- Stenfors Arnesen, L.P.; Fagerlund, A.; Granum, P.E. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 2008, 32, 579–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottone, E.J. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 2010, 23, 382–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dréan, P.; McAuley, C.M.; Moore, S.C.; Fegan, N.; Fox, E.M. Characterization of the spore-forming Bacillus cereus sensu lato group and Clostridium perfringens bacteria isolated from the Australian dairy farm environment. BMC Microbiol. 2015, 15, 38. [Google Scholar] [CrossRef] [Green Version]
- Khanna, K.; Lopez-Garrido, J.; Zhao, Z.; Watanabe, R.; Yuan, Y.; Sugie, J.; Pogliano, K.; Villa, E. The molecular architecture of engulfment during Bacillus subtilis sporulation. eLife 2019, 8, e45257. [Google Scholar] [CrossRef] [PubMed]
- Higgins, D.; Dworkin, J. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol. Rev. 2012, 36, 131–148. [Google Scholar] [CrossRef] [Green Version]
- Sonenshein, A.L. Control of sporulation initiation in Bacillus subtilis. Curr. Opin. Microbiol. 2000, 3, 561–566. [Google Scholar] [CrossRef]
- Setlow, P. I will survive: DNA protection in bacterial spores. Trends Microbiol. 2007, 15, 172–180. [Google Scholar] [CrossRef]
- Bressuire-Isoard, C.; Bornard, I.; Henriques, A.; Carlin, F.; Broussolle, V. Sporulation temperature reveals a requirement for CotE in the assembly of both the coat and exosporium layers of Bacillus cereus spores. Appl. Environ. Microbiol. 2016, 82, 232–243. [Google Scholar] [CrossRef] [Green Version]
- Giorno, R.; Bozue, J.; Cote, C.; Wenzel, T.; Moody, K.-S.; Mallozzi, M.; Ryan, M.; Wang, R.; Zielke, R.; Maddock, J.R.; et al. Morphogenesis of the Bacillus anthracis spore. J. Bacteriol. 2007, 189, 691–705. [Google Scholar] [CrossRef] [Green Version]
- Setlow, P. Spore resistance properties. Microbiol. Spectr. 2014, 2, 201–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudner, D.Z.; Pan, Q.; Losick, R.M. Evidence that subcellular localization of a bacterial membrane protein is achieved by diffusion and capture. Proc. Natl. Acad. Sci. USA 2002, 99, 8701–8706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, J.; Pasman, R.; Manders, E.M.; Setlow, P.; Brul, S. Visualization of germinosomes and the inner membrane in Bacillus subtilis spores. J. Vis. Exp. 2019, e59388. [Google Scholar] [CrossRef] [Green Version]
- Paidhungat, M.; Setlow, P. Localization of a germinant receptor protein (GerBA) to the inner membrane of Bacillus subtilis spores. J. Bacteriol. 2001, 183, 3982–3990. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; De Boer, R.; Vischer, N.; Van Haastrecht, P.; Setlow, P.; Brul, S. Visualization of germination proteins in putative Bacillus cereus germinosomes. Int. J. Mol. Sci. 2020, 21, 5198. [Google Scholar] [CrossRef]
- Hudson, K.D.; Corfe, B.M.; Kemp, E.H.; Feavers, I.M.; Coote, P.J.; Moir, A. Localization of GerAA and GerAC germination proteins in the Bacillus subtilis spore. J. Bacteriol. 2001, 183, 4317–4322. [Google Scholar] [CrossRef] [Green Version]
- Paredes-Sabja, D.; Setlow, P.; Sarker, M.R. Germination of spores of Bacillales and Clostridiales species: Mechanisms and proteins involved. Trends Microbiol. 2011, 19, 85–94. [Google Scholar] [CrossRef]
- Pelczar, P.L.; Setlow, P. Localization of the germination protein GerD to the inner membrane in Bacillus subtilis spores. J. Bacteriol. 2008, 190, 5635–5641. [Google Scholar] [CrossRef] [Green Version]
- Pelczar, P.L.; Igarashi, T.; Setlow, B.; Setlow, P. Role of GerD in germination of Bacillus subtilis spores. J. Bacteriol. 2007, 189, 1090–1098. [Google Scholar] [CrossRef] [Green Version]
- Vepachedu, V.R.; Setlow, P. Localization of SpoVAD to the inner membrane of spores of Bacillus subtilis. J. Bacteriol. 2005, 187, 5677–5682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valdespino, A.P.; Li, Y.; Setlow, B.; Ghosh, S.; Pan, D.; Korza, G.; Feeherry, F.E.; Doona, C.J.; Hao, B.; Setlow, P. Function of the SpoVAEa and SpoVAF proteins of Bacillus subtilis spores. J. Bacteriol. 2014, 196, 2077–2088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setlow, P. Spore germination. Curr. Opin. Microbiol. 2003, 6, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Hornstra, L.M.; de Vries, Y.P.; de Vos, W.M.; Abee, T.; Wells-Bennik, M.H.J. gerR, a novel ger operon involved in L-alanine- and inosine-initiated germination of Bacillus cereus ATCC 14579. Appl. Environ. Microbiol. 2005, 71, 774–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, C.; Abel-Santos, E. The ger receptor family from sporulating bacteria. Curr. Issues Mol. Biol. 2010, 12, 147–158. [Google Scholar]
- Li, Y.; Setlow, B.; Setlow, P.; Hao, B. Crystal structure of the GerBC component of a Bacillus subtilis spore germinant receptor. J. Mol. Biol. 2010, 402, 8–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, K.K.; Zhang, J.; Cowan, A.E.; Yu, J.; Setlow, P. Germination proteins in the inner membrane of dormant Bacillus subtilis spores colocalize in a discrete cluster. Mol. Microbiol. 2011, 81, 1061–1077. [Google Scholar] [CrossRef] [PubMed]
- Kremers, G.-J.; Goedhart, J.; van den Heuvel, D.J.; Gerritsen, H.C.; Gadella, T.W., Jr. Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. Biochemistry 2007, 46, 3775–3783. [Google Scholar] [CrossRef]
- Bindels, D.S.; Haarbosch, L.; van Weeren, L.; Postma, M.; Wiese, K.E.; Mastop, M.; Aumonier, S.; Gotthard, G.; Royant, A.; Hink, M.A.; et al. mScarlet: A bright monomeric red fluorescent protein for cellular imaging. Nat. Methods 2017, 14, 53–56. [Google Scholar] [CrossRef]
- Carrera, M.; Zandomeni, R.; FitzGibbon, J.; Sagripanti, J.-L. Difference between the spore sizes of Bacillus anthracis and other Bacillus species. J. Appl. Microbiol. 2007, 102, 303–312. [Google Scholar] [CrossRef]
- Fishov, I.; Woldringh, C.L. Visualization of membrane domains in Escherichia coli. Mol. Microbiol. 1999, 32, 1166–1172. [Google Scholar] [CrossRef]
- Lim, G.E.; Derman, A.I.; Pogliano, J. Bacterial DNA segregation by dynamic SopA polymers. Proc. Natl. Acad. Sci. USA 2005, 102, 17658–17663. [Google Scholar] [CrossRef] [Green Version]
- Pogliano, J.; Osborne, N.; Sharp, M.D.; Mello, A.A.-D.; Perez, A.; Sun, Y.-L.; Pogliano, K. A vital stain for studying membrane dynamics in bacteria: A novel mechanism controlling septation during Bacillus subtilis sporulation. Mol. Microbiol. 1999, 31, 1149–1159. [Google Scholar] [CrossRef] [Green Version]
- Cowan, A.E.; Olivastro, E.M.; Koppel, D.E.; Loshon, C.A.; Setlow, B.; Setlow, P. Lipids in the inner membrane of dormant spores of Bacillus species are largely immobile. Proc. Natl. Acad. Sci. USA 2004, 101, 7733–7738. [Google Scholar] [CrossRef] [Green Version]
- Omardien, S.; Drijfhout, J.W.; Zaat, S.A.; Brul, S. Cationic amphipathic antimicrobial peptides perturb the inner membrane of germinated spores thus inhibiting their outgrowth. Front. Microbiol. 2018, 9, 2277. [Google Scholar] [CrossRef] [Green Version]
- Setlow, P. Small, acid-soluble spore proteins of Bacillus species: Structure, synthesis, genetics, function, and degradation. Annu. Rev. Microbiol. 1988, 42, 319–338. [Google Scholar] [CrossRef]
- Swarge, B.N.; Roseboom, W.; Zheng, L.; Abhyankar, W.; Brul, S.; De Koster, C.G.; De Koning, L.J. “One-pot” sample processing method for proteome-wide analysis of microbial cells and spores. Proteom. Clin. Appl. 2018, 12, e1700169. [Google Scholar] [CrossRef] [Green Version]
- Korza, G.; Setlow, P. Topology and accessibility of germination proteins in the Bacillus subtilis spore inner membrane. J. Bacteriol. 2013, 195, 1484–1491. [Google Scholar] [CrossRef] [Green Version]
- Blinker, S.; Vreede, J.; Setlow, P.; Brul, S. Predicting the structure and dynamics of membrane protein GerAB from Bacillus subtilis. Int. J. Mol. Sci. 2021, 22, 3793. [Google Scholar] [CrossRef] [PubMed]
- Alexeeva, S.; Gadella, T.W.J.; Verheul, J.; Verhoeven, G.S.; Blaauwen, T.D. Direct interactions of early and late assembling division proteins in Escherichia coli cells resolved by FRET. Mol. Microbiol. 2010, 77, 384–398. [Google Scholar] [CrossRef] [PubMed]
- Becker, W. Fluorescence lifetime imaging—techniques and applications. J. Microsc. 2012, 247, 119–136. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Yao, B.; Wu, C. Fluorescence resonance energy transfer detection methods: Sensitized emission and acceptor bleaching. Exp. Ther. Med. 2014, 8, 1375–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rainey, K.H.; Patterson, G.H. Photoswitching FRET to monitor protein—protein interactions. Proc. Natl. Acad. Sci. USA 2019, 116, 864–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearns, D. Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev. 2005, 19, 3083–3094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, A.; Manton, J.D.; Mustafa, A.R.; Gupta, M.; Ayuso-Garcia, A.; Rees, E.J.; Christie, G. Proteins encoded by the gerP operon are localized to the inner coat in Bacillus cereus spores and are dependent on GerPA and SafA for assembly. Appl. Environ. Microbiol. 2018, 84, e00718–e00760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, X.; Nakata, Y.; Li, H.-O.; Zhang, M.; Gao, H.; Fujita, A.; Sakatsume, O.; Ohta, T.; Yokoyama, K. The optimization of preparations of competent cells for transformation of E. coli. Nucleic Acids Res. 1994, 22, 2857–2858. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, E.; Hochberg-Laufer, H.; Blanga, S.; Kinor, N.; Shav-Tal, Y. Cytoplasmic DNA can be detected by RNA fluorescence In Situ hybridization. Nucleic Acids Res. 2019, 47, e109. [Google Scholar] [CrossRef]
- Eykelenboom, J.K.; Gierliński, M.; Yue, Z.; Hegarat, N.; Pollard, H.; Fukagawa, T.; Hochegger, H.; Tanaka, T.U. Live imaging of marked chromosome regions reveals their dynamic resolution and compaction in mitosis. J. Cell Biol. 2019, 218, 1531–1552. [Google Scholar] [CrossRef] [Green Version]
- Pandey, R.; Ter Beek, A.; Vischer, N.O.E.; Smelt, J.P.P.M.; Brul, S.; Manders, E.M.M. Live cell imaging of germination and outgrowth of individual Bacillus subtilis spores; the effect of heat stress quantitatively analyzed with SporeTracker. PLoS ONE 2013, 8, e58972. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Liu, Y. Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys. J. 2001, 81, 2395–2402. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Gaspard, G.; McMullen, N.; Duncan, R. Polycistronic genome segment evolution and gain and loss of FAST protein function during fusogenic orthoreovirus speciation. Viruses 2020, 12, 702. [Google Scholar] [CrossRef]
- Postma, M.; Goedhart, J. PlotsOfData—a web app for visualizing data together with their summaries. PLoS Biol. 2019, 17, e3000202. [Google Scholar] [CrossRef] [Green Version]
- Bolte, S.; Cordelières, F. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 2006, 224, 213–232. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Breedijk, R.M.P.; Hink, M.A.; Bults, L.; Vischer, N.O.E.; Setlow, P.; Brul, S. Dynamics of Germinosome Formation and FRET-Based Analysis of Interactions between GerD and Germinant Receptor Subunits in Bacillus cereus Spores. Int. J. Mol. Sci. 2021, 22, 11230. https://doi.org/10.3390/ijms222011230
Wang Y, Breedijk RMP, Hink MA, Bults L, Vischer NOE, Setlow P, Brul S. Dynamics of Germinosome Formation and FRET-Based Analysis of Interactions between GerD and Germinant Receptor Subunits in Bacillus cereus Spores. International Journal of Molecular Sciences. 2021; 22(20):11230. https://doi.org/10.3390/ijms222011230
Chicago/Turabian StyleWang, Yan, Ronald M. P. Breedijk, Mark A. Hink, Lars Bults, Norbert O. E. Vischer, Peter Setlow, and Stanley Brul. 2021. "Dynamics of Germinosome Formation and FRET-Based Analysis of Interactions between GerD and Germinant Receptor Subunits in Bacillus cereus Spores" International Journal of Molecular Sciences 22, no. 20: 11230. https://doi.org/10.3390/ijms222011230
APA StyleWang, Y., Breedijk, R. M. P., Hink, M. A., Bults, L., Vischer, N. O. E., Setlow, P., & Brul, S. (2021). Dynamics of Germinosome Formation and FRET-Based Analysis of Interactions between GerD and Germinant Receptor Subunits in Bacillus cereus Spores. International Journal of Molecular Sciences, 22(20), 11230. https://doi.org/10.3390/ijms222011230