Flexible Neural Probes with Electrochemical Modified Microelectrodes for Artifact-Free Optogenetic Applications
Abstract
:1. Introduction
2. Results
2.1. Morphology Characterization
2.2. Electrochemical Characterization
2.3. Stability Tests
2.4. Equivalent Circuit Analysis
2.5. Mechanical and Optical Tests
2.6. Bench Noise Recordings
3. Materials and Methods
3.1. Reagents and Apparatus
3.2. Probe Design
3.3. Probe Fabrication
3.4. Optoelectronic Integration
3.5. Electrochemical Modification
3.6. Bench Noise Measurement
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, F.; Stark, E.; Im, M.; Cho, I.; Yoon, E.; Buzsáki, G.; Wise, K.D.; Yoon, E. An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. J. Neural Eng. 2013, 10, 056012. [Google Scholar] [CrossRef] [PubMed]
- Buzsáki, G.; Stark, E.; Berenyi, A.; Khodagholy, D.; Kipke, D.R.; Yoon, E.; Wise, K.D. Tools for Probing Local Circuits: High-Density Silicon Probes Combined with Optogenetics. Neuron 2015, 86, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Seymour, J.; Wu, F.; Wise, K.D.; Yoon, E. State-of-the-art MEMS and microsystem tools for brain research. Microsyst. Nanoeng. 2017, 3, 16066. [Google Scholar] [CrossRef]
- Chen, S.; Pei, W.; Gui, Q.; Chen, Y.; Zhao, S.; Wang, H.; Chen, H. A fiber-based implantable multi-optrode array with contiguous optical and electrical sites. J. Neural Eng. 2013, 10, 046020. [Google Scholar] [CrossRef]
- Obaid, S.; Chen, Z.; Lu, L. Advanced Electrical and Optical Microsystems for Biointerfacing. Adv. Intell. Syst. 2020, 2, 2000091. [Google Scholar] [CrossRef]
- Wang, L.; Huang, K.; Zhong, C.; Wang, L.; Lu, Y. Fabrication and modification of implantable optrode arrays for in vivo optogenetic applications. Biophys. Rep. 2018, 4, 82. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Gu, X.; Zhu, J.; Zhang, X.; Han, Z.; Yan, W.; Cheng, Q.; Hao, J.; Fan, H.; Hou, R.; et al. Medial prefrontal activity during delay period contributes to learning of a working memory task. Science 2014, 346, 458–463. [Google Scholar] [CrossRef]
- Guan, S.; Wang, J.; Gu, X.; Zhao, Y.; Hou, R.; Fan, H.; Zhou, L.; Gao, L.; Du, M.; Li, C.; et al. Elastocapillary self-assembled neurotassels for stable neural activity recordings. Sci. Adv. 2019, 5, eaav2842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zhong, C.; Ke, D.; Ye, F.; Tu, J.; Wang, L.; Yu, Y. Ultrasoft and Highly Stretchable Hydrogel Optical Fibers for In Vivo Optogenetic Modulations. Adv. Opt. Mater. 2018, 6, 1800427. [Google Scholar] [CrossRef]
- Pisanello, F.; Sileo, L.; Oldenburg, I.A.; Pisanello, M.; Martiradonna, L.; Assad, J.; Sabatini, B.L.; Vittorio, M.D. Multipoint-Emitting Optical Fibers for Spatially Addressable In Vivo Optogenetics. Neuron 2014, 82, 1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohanty, A.; Li, Q.; Tadayon, M.A.; Robert, S.P.; Bhatt, G.R.; Shim, E.; Ji, X.; Cardenas, J.; Miller, S.A.; Kepecs, A.; et al. Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation. Nat. Biomed. Eng. 2020, 4, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, Y.; Lee, H.J.; Kim, J.; Shin, H.; Choi, N.; Lee, C.J.; Yoon, E.S.; Yoon, E.; Wise, K.D.; Kim, T.G.; et al. In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays. Sci. Rep. 2015, 5, 15466. [Google Scholar] [CrossRef] [Green Version]
- Segev, E.; Reimer, J.; Moreaux, L.C.; Fowler, T.M.; Chi, D.; Sacher, W.D.; Lo, M.; Deisseroth, K.; Tolias, A.S.; Faraon, A.; et al. Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics. Neurophotonics 2016, 4, 011002. [Google Scholar] [CrossRef] [Green Version]
- Stark, E.; Koos, T.; Buzsáki, G. Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals. J. Neurophysiol. 2012, 108, 349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.; Mccall, J.G.; Jung, Y.H.; Huan, X. Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics. Science 2013, 340, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Stark, E.; Ku, P.; Wise, K.D.; Buzsáki, G.; Yoon, E. Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals. Neuron 2015, 88, 1136–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scharf, R.; Tsunematsu, T.; Mcalinden, N.; Dawson, M.; Sakata, S.; Mathieson, K. Depth-specific optogenetic control in vivo with a scalable, high-density μLED neural probe. Sci. Rep. 2016, 6, 28381. [Google Scholar] [CrossRef] [Green Version]
- Kampasi, K.; Stark, E.; Seymour, J.; Na, K.; Winful, H.G.; Buzsáki, G.; Wise, K.D.; Yoon, E. Fiberless multicolor neural optoelectrode for in vivo circuit analysis. Sci. Rep. 2016, 6, 30961. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; English, D.; Mckenzie, S.; Wu, F.; Stark, E.; Seymour, J.; Buzsáki, G. GaN-on-Si μLED optoelectrodes for high-spatiotemporal-accuracy optogenetics in freely behaving animals. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016. [Google Scholar]
- Schwaerzle, M.; Seidl, K.; Schwarz, K.U.T.; Paul, O.M.; Ruther, P. Ultracompact optrode with integrated laser diode chips and SU-8 waveguides for optogenetic applications. In Proceedings of the 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, 20–24 January 2013. [Google Scholar]
- Komal, K.; English, D.; Seymour, J.; Stark, E.; Mckenzie, S.; Vöröslakos, M.; Buzsáki, G.; Wise, K.D.; Yoon, E. Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes. Microsyst. Nanoeng. 2018, 4, 10. [Google Scholar]
- Schwaerzle, M.; Paul, O.; Ruther, P. Compact silicon-based optrode with integrated laser diode chips, SU-8 waveguides and platinum electrodes for optogenetic applications. J. Micromech. Microeng. 2017, 27, 065004. [Google Scholar] [CrossRef]
- Kim, K.; Voroslakos, M.; Seymour, J.P.; Wise, K.D.; Buzsaki, G.; Yoon, E. Artifact-free and high-temporal-resolution in vivo opto-electrophysiology with microLED optoelectrodes. Nat. Commun. 2020, 11, 2063. [Google Scholar] [CrossRef]
- Obaid, S.; Yin, R.; Tian, J.; Chen, Z.; Chen, S.W.; Lee, K.; Boyajian, N.; Miniovich, A.N.; Efimov, I.; Lu, L. Multifunctional Flexible Biointerfaces for Simultaneous Colocalized Optophysiology and Electrophysiology. Adv. Funct. Mater. 2020, 30, 1910027. [Google Scholar] [CrossRef]
- Ayling, O.G.S.; Harrison, T.C.; Boyd, J.D.; Goroshkov, A.; Murphy, T.H. Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice. Nat. Methods 2009, 6, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Qian, X.; Bernstein, J.G.; Zhou, H.; Franzesi, G.T.; Stern, P.; Bronson, R.T.; Graybiel, A.M.; Desimone, R.; Boyden, E.S. Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 2009, 62, 191–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardin, J.A.; Carlén, M.; Meletis, K.; Knoblich, U.; Zhang, F.; Tsai, L.; Moore, C.I. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat. Protoc. 2010, 5, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Laxpati, N.; Mahmoudi, B.; Gutekunst, C.; Newman, J.P.; Townson, R.Z.; Gross, R. Real-time in vivo optogenetic neuromodulation and multielectrode electrophysiologic recording with NeuroRighter. Front. Neuroeng. 2014, 7, 056012. [Google Scholar] [CrossRef]
- Budai, D.; Vizvári, A.D.; Bali, Z.K.; Márki, B.; Nagy, L.V. A novel carbon tipped single micro-optrode for combined optogenetics and electrophysiology. PLoS ONE 2018, 13, e0193836. [Google Scholar] [CrossRef] [Green Version]
- Khurram, A.; Seymour, J. Investigation of the photoelectrochemical effect in optoelectrodes and potential uses for implantable electrode characterization. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 3032–3035. [Google Scholar]
- Borecki, M.; Kruszewski, J. Skew radiation in optical fiber: The proposal of share measure. In Optical Fibers: Applications, Proceedings of the Congress on Optics and Optoelectronics, Warsaw, Poland, 28 August–2 September 2005; International Society for Optics and Photonics: Bellingham, WA, USA, 2005; Volume 5952, p. 59521A. [Google Scholar]
- Mafi, A. Pulse Propagation in a Short nonlinear graded-index multimode optical fiber. J. Lightwave Technol. 2012, 30, 2803–2811. [Google Scholar] [CrossRef]
- Hofmann, P.; Mafi, A.; Jollivet, C.; Tiess, T.; Peyghambarian, N.; Schülzgen, A. Detailed Investigation of Mode-Field Adapters Utilizing Multimode-Interference in Graded Index Fibers. J. Lightwave Technol. 2012, 30, 2289–2298. [Google Scholar] [CrossRef]
- Ji, B.; Ge, C.; Guo, Z.; Wang, L.; Wang, M.; Xie, Z.; Xu, Y.; Li, H.; Yang, B.; Wang, X.; et al. Flexible and stretchable opto-electric neural interface for low-noise electrocorticogram recordings and neuromodulation in vivo. Biosens. Bioelectron. 2020, 153, 112009. [Google Scholar] [CrossRef]
- Guo, Z.; Ji, B.; Wang, M.; Ge, C.; Wang, L.; Gu, X.; Yang, B.; Wang, X.; Li, C.; Liu, J. A Polyimide-Based Flexible Optoelectrodes for Low-Noise Neural Recording. IEEE Electron Device Lett. 2019, 40, 1190–1193. [Google Scholar] [CrossRef]
- Wang, L.; Ge, C.; Wang, M.; Ji, B.; Guo, Z.; Wang, X.; Yang, B.; Li, C.; Liu, J. An artefact-resist optrode with internal shielding structure for low-noise neural modulation. J. Neural Eng. 2020, 17, 046024. [Google Scholar] [CrossRef] [PubMed]
- Kampasi, K.; Alameda, J.; Sahota, S.S.; Hernandez, J.; Patra, S.; Haque, R. Design and microfabrication strategies for thin-film, flexible optical neural implant. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020. [Google Scholar]
- Ling, W.; Yu, J.; Ma, N.; Li, Y.; Wu, Z.; Liang, R.; Hao, Y.; Pan, H.; Liu, W.; Fu, B.; et al. Flexible Electronics and Materials for Synchronized Stimulation and Monitoring in Multi-Encephalic Regions. Adv. Funct. Mater. 2020, 30, 2002644. [Google Scholar] [CrossRef]
- Tien, L.W.; Wu, F.; Tang-Schomer, M.D.; Yoon, E.; Omenetto, F.G.; Kaplan, D.L. Silk as a Multifunctional Biomaterial Substrate for Reduced Glial Scarring around Brain-Penetrating Electrodes. Adv. Funct. Mater. 2013, 23, 3185–3193. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.; Yen, S.C.; Ning, X.; Sun, T.; Tsang, W.M.; Zhang, S.S.; Liao, L.D.; Thakor, N.V.; Lee, C. Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle. J. Micromech. Microeng. 2014, 24, 065015. [Google Scholar] [CrossRef] [Green Version]
- Han, X. In Vivo Application of Optogenetics for Neural Circuit Analysis. ACS Chem. Neurosci. 2012, 3, 577–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, D.W.; Schendel, A.A.; Mikael, S.; Brodnick, S.K.; Richner, T.J.; Ness, J.P.; Hayat, M.R.; Atry, F.; Frye, S.T.; Pashaie, R.; et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat. Commun. 2014, 5, 5258. [Google Scholar] [CrossRef]
- Park, J.; Sun, F.; Xie, Y.; Xiong, Z.; Xu, G. Low-Impedance Low-Artifact PEDOT: PSS-Coated Graphene Electrodes towards High Density Optogenetic Electrophysiology. IEEE Electron Device Lett. 2020, 41, 1261–1264. [Google Scholar] [CrossRef]
- Wang, L.; Wang, M.; Ge, C.; Ji, B.; Guo, Z.; Wang, X.; Yang, B.; Li, C.; Liu, J. The use of a double-layer platinum black-conducting polymer coating for improvement of neural recording and mitigation of photoelectric artifact. Biosens. Bioelectron. 2019, 145, 111661. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ji, B.; Gu, X.; Guo, Z.; Wang, X.; Yang, B.; Li, C.; Liu, J. A novel assembly method for 3-dimensional microelectrode array with micro-drive. Sens. Actuators B-Chem. 2018, 264, 100–109. [Google Scholar] [CrossRef]
Item | Paraphrase |
---|---|
PEG | polyethylene glycol |
PEDOT | poly(3,4-ethylene-dioxythiophene) |
PSS | polystyrene sulfonic acid |
GO | graphene oxide |
PBK | Platinum-Black |
PGO | graphene oxide doped poly(3,4-ethylene-dioxythiophene) |
PEC | photoelectrochemical |
PV | photovoltaic |
LED | light emitting diode |
LD | Laser diode |
EMI | electromagnetic interference |
SEM | scanning electron microscopy |
SCE | saturated calomel electrode |
CV | cyclic voltammograms |
EIS | electrochemical impedance spectra |
CSC | charge storage capacity |
PBS | phosphate buffered saline |
ACF | anisotropic conductive films |
SNR | signal-to-noise ratio |
References | Noises | Substrate | Methods | Total Noise Amplitude | Irradiance Power |
---|---|---|---|---|---|
[40] | PEC | Silicon | PEDOT:PSS/graphene modification | 40 µV(positive) | 30 mW/mm2 |
[41] | PEC | Silicon | PBK/PSS modification | 250 µV (negative) | 38.2 mW/mm2 |
This work | PEC | PI | PBK/PGO modification | 50 µV (positive) | 641.79 mW/mm2 |
[23] | PV | Silicon | heavily boron-doping | 50 µV (peak-peak) | 50 mW/mm2 |
[41] | PV | Silicon | PBK/PSS modification | 250 µV (negative) | 38.2 mW/mm2 |
This work | PV | Silicon | PBK/PGO modification | 176 μV (negative) | 278.37 mW/mm2 |
[21] | EMI | Silicon | Grounded brass shield | 100 µV (positive) | 2142 mW/mm2 |
[23] | EMI | Silicon | Metal shielding layer | 50 µV (peak-peak) | 50 mW/mm2 |
Item | Cdl (F) | Rct (Ω) | Y0 (S·s0.5) | Cd (F) | χ2 |
---|---|---|---|---|---|
PBK/PGO 1 | 1.551 × 10−7 | 4.216 × 103 | 1.490 × 10−5 | 5.202 × 10−10 | 1.210 × 10−2 |
PBK/PGO 1 after CV scanning | 1.019 × 10−7 ↓ | 4.745 × 103 ↑ | 1.692 × 10−6 ↓ | 3.604 × 10−10 ↓ | 2.405 × 10−2 ↑ |
PBK/PGO 2 | 9.729 × 10−8 | 1.532 × 104 | 4.389 × 10−6 | 1.321 × 10−10 | 3.305 × 10−3 |
PBK/PGO 2 after sonication | 1.100 × 10−7 ↑ | 2.192 × 104 ↑ | 1.198 × 10−6 ↓ | 3.360 × 10−10 ↑ | 2.304 × 10−2 ↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, B.; Fan, Y.; Wang, M.; Cheng, Y.; Ji, B.; Chen, Y.; Wang, G. Flexible Neural Probes with Electrochemical Modified Microelectrodes for Artifact-Free Optogenetic Applications. Int. J. Mol. Sci. 2021, 22, 11528. https://doi.org/10.3390/ijms222111528
Guo B, Fan Y, Wang M, Cheng Y, Ji B, Chen Y, Wang G. Flexible Neural Probes with Electrochemical Modified Microelectrodes for Artifact-Free Optogenetic Applications. International Journal of Molecular Sciences. 2021; 22(21):11528. https://doi.org/10.3390/ijms222111528
Chicago/Turabian StyleGuo, Bangbang, Ye Fan, Minghao Wang, Yuhua Cheng, Bowen Ji, Ying Chen, and Gaofeng Wang. 2021. "Flexible Neural Probes with Electrochemical Modified Microelectrodes for Artifact-Free Optogenetic Applications" International Journal of Molecular Sciences 22, no. 21: 11528. https://doi.org/10.3390/ijms222111528
APA StyleGuo, B., Fan, Y., Wang, M., Cheng, Y., Ji, B., Chen, Y., & Wang, G. (2021). Flexible Neural Probes with Electrochemical Modified Microelectrodes for Artifact-Free Optogenetic Applications. International Journal of Molecular Sciences, 22(21), 11528. https://doi.org/10.3390/ijms222111528