An Outlook on Global Regulatory Landscape for Genome-Edited Crops
Abstract
:1. Introduction
2. Emerging CRISPR/Cas Systems and Their Applications
2.1. CRISPR/Cas Systems
2.1.1. CRISPR/Cas9 Is the Most Widely-Used Genome Editing System
2.1.2. CRISPR/Cas12 Has Advantages over Cas9
2.1.3. CasX Is Smaller Than Cas12
2.1.4. Cas14a Only Binds and Cleaves ssDNA
2.1.5. CRISPR/Cas13 Is an RNA Editing System
2.2. Innovations in CRISPR/Cas Systems
2.2.1. Deactivated Cas Nuclease Systems Can Bind DNA but Not Cleave It
2.2.2. Base Editing with CRISPR/Cas Systems
2.2.3. RNA Editing Systems
2.2.4. Prime Editing: A New CRISPR/Cas Development for Precise Editing
3. Classification of Genome Editing Modifications
- Plants with new genetic element;
- Plants with point mutations in existing DNA but no new DNA;
- Plants with no genome modification.
3.1. SDN1 Systems
3.2. SDN2 Systems
3.3. SDN3 Systems
4. CRISPR/Cas Reagents and Their Cargos
4.1. CRISPR Reagents
4.1.1. Plasmids
4.1.2. Messenger RNA
4.1.3. Ribonucleoproteins (RNPs)
4.2. Delivery Methods in Plants
4.2.1. Direct Delivery Methods
4.2.2. Indirect Delivery Methods
5. Potential Concerns Associated with CRISPR Crops
5.1. Selection of Reagents for Creating Genome-Edited Crop Plants
5.2. Selection of Delivery Method
5.3. Off-Target Impacts
5.4. Gene Drives: Forcing Inheritance of a Gene throughout Population
5.5. Environmental Concerns
6. CRISPR-Edited Crops and GM Crops: Similarities and Differences
7. Current Regulations for GMOs
7.1. Biosafety Regulations for GMOs
7.1.1. Product-Based Regulation of GM Plants
7.1.2. Process-Based Regulation of GM Plants
7.1.3. Regulations for Plants with Novel Traits
8. Ethical Concerns and Public Acceptance of Genome-Edited and GM Crops
9. Global Regulation of GMOs and Genome-Edited Crops
9.1. United States
9.2. Canada
9.3. Latin America
9.4. European Union
9.5. India
9.6. China
9.7. Japan
9.8. Australia and New Zealand
10. Prospects
Author Contributions
Funding
Conflicts of Interest
References
- McGuire, S. International Food Policy Research Institute. 2014. Washington, DC: Global Nutrition Report 2014: Actions and accountability to accelerate the world’s progress on nutrition. Adv. Nutr. 2015, 6, 278–279. [Google Scholar] [CrossRef] [Green Version]
- Dhankher, O.P.; Foyer, C.H. Climate resilient crops for improving global food security and safety. Plant Cell Environ. 2018, 41, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Ali, Q.; Hafeez, M.; Malik, A. Improvement for biotic and abiotic stress tolerance in crop plants. Biol. Clin. Sci. Res. J. 2021, 2021, e004. [Google Scholar] [CrossRef]
- Bradshaw, J.E. Plant breeding: Past, present and future. Euphytica 2017, 213, 60. [Google Scholar] [CrossRef]
- Borlaug, N.E. Contributions of conventional plant breeding to food production. Science 1983, 219, 689–693. [Google Scholar] [CrossRef] [Green Version]
- Lassoued, R.; Phillips, P.W.; Macall, D.M.; Hesseln, H.; Smyth, S.J. Expert opinions on the regulation of plant genome editing. Plant Biotechnol. J. 2021, 19, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Hussin, G.; Ramli, A.; Rahim, H.A.; Miah, G.; Usman, M. Principle and application of plant mutagenesis in crop improvement: A review. Biotechnol. Biotechnol. Equip. 2016, 30, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Kamthan, A.; Chaudhuri, A.; Kamthan, M.; Datta, A. Genetically modified (GM) crops: Milestones and new advances in crop improvement. Theor. Appl. Genet. 2016, 129, 1639–1655. [Google Scholar] [CrossRef]
- Mall, T.; Han, L.; Tagliani, L.; Christensen, C. Transgenic crops: Status, potential, and challenges. In Biotechnologies of Crop Improvement, Volume 2; Springer: Cham, Switzerland, 2018; pp. 451–485. [Google Scholar]
- Malone, L.A.; Gatehouse, A.M.; Barratt, B.I. Beyond Bt: Alternative strategies for insect-resistant genetically modified crops. In Integration of Insect-Resistant Genetically Modified Crops within IPM Programs; Springer: Berlin/Heidelberg, Germany, 2008; pp. 357–417. [Google Scholar]
- Hu, T.; Metz, S.; Chay, C.; Zhou, H.; Biest, N.; Chen, G.; Cheng, M.; Feng, X.; Radionenko, M.; Lu, F. Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep. 2003, 21, 1010–1019. [Google Scholar]
- Sharma, S.; Pareek, S.; Sagar, N.A.; Valero, D.; Serrano, M. Modulatory effects of exogenously applied polyamines on postharvest physiology, antioxidant system and shelf life of fruits: A review. Int. J. Mol. Sci. 2017, 18, 1789. [Google Scholar] [CrossRef] [Green Version]
- Saharan, V.; Jain, D.; Pareek, S.; Pal, A.; Kumaraswamy, R.; Jakhar, S.K.; Singh, M. Viral, fungal and bacterial disease resistance in transgenic plants. In Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits; Springer: Berlin/Heidelberg, Germany, 2016; pp. 627–656. [Google Scholar]
- Tappiban, P.; Smith, D.R.; Triwitayakorn, K.; Bao, J. Recent understanding of starch biosynthesis in cassava for quality improvement: A review. Trends Food Sci. Technol. 2019, 83, 167–180. [Google Scholar] [CrossRef]
- Erpen, L.; Devi, H.S.; Grosser, J.W.; Dutt, M. Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell Tissue Organ Cult. (PCTOC) 2018, 132, 1–25. [Google Scholar] [CrossRef]
- Sathishkumar, R.; Kumar, S.R.; Hema, J.; Baskar, V. Advances in Plant Transgenics: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Choudhury, A.R.; Das, K.; Ghosh, S.; Mukherjee, R.N.; Banerjee, R. Transgenic plants: Benefits and controversies. J. Bot. Soc. Bengal. 2012, 66, 29–35. [Google Scholar]
- Rani, S.J.; Usha, R. Transgenic plants: Types, benefits, public concerns and future. J. Pharm. Res. 2013, 6, 879–883. [Google Scholar]
- Turnbull, C.; Lillemo, M.; Hvoslef-Eide, T.A. Global regulation of genetically modified crops amid the gene edited crop boom–a review. Front. Plant Sci. 2021, 12, 258. [Google Scholar] [CrossRef]
- Wolter, F.; Schindele, P.; Puchta, H. Plant breeding at the speed of light: The power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biol. 2019, 19, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.; Wang, Y.; Zhang, R.; Zhang, H.; Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 2019, 70, 667–697. [Google Scholar] [CrossRef]
- Jaganathan, D.; Ramasamy, K.; Sellamuthu, G.; Jayabalan, S.; Venkataraman, G. CRISPR for crop improvement: An update review. Front. Plant Sci. 2018, 9, 985. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Mau, M.; Sharbel, T.F. Genome editing for global food security. Trends Biotechnol. 2018, 36, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Waltz, E. With a free pass, CRISPR-edited plants reach market in record time. Nat. Biotechnol. 2018, 36, 6–8. [Google Scholar] [CrossRef]
- Waltz, E. CRISPR-edited crops free to enter market, skip regulation. Nat. Biotechnol. 2016, 34, 582–583. [Google Scholar] [CrossRef]
- Cong, L.; Ran, F.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome engineering via Cas9. Science 2013, 339, 823–826. [Google Scholar] [CrossRef] [Green Version]
- Uyhazi, K.E.; Bennett, J. A CRISPR view of the 2020 Nobel Prize in Chemistry. J. Clin. Investig. 2021, 131. [Google Scholar] [CrossRef]
- Arora, L.; Narula, A. Gene editing and crop improvement using CRISPR-Cas9 system. Front. Plant Sci. 2017, 8, 1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceasar, S.A.; Rajan, V.; Prykhozhij, S.V.; Berman, J.N.; Ignacimuthu, S. Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9. Biochim. Et Biophys. Acta (BBA) Mol. Cell Res. 2016, 1863, 2333–2344. [Google Scholar] [CrossRef]
- Ma, M.; Ye, A.Y.; Zheng, W.; Kong, L. A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes. BioMed Res. Int. 2013, 2013, 270805. [Google Scholar] [CrossRef]
- Belhaj, K.; Chaparro-Garcia, A.; Kamoun, S.; Nekrasov, V. Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 2013, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, H.; Chen, J.; Yan, L.; Xia, L. Toward precision genome editing in crop plants. Mol. Plant 2020, 13, 811–813. [Google Scholar] [CrossRef]
- Samanta, M.K.; Dey, A.; Gayen, S. CRISPR/Cas9: An advanced tool for editing plant genomes. Transgenic Res. 2016, 25, 561–573. [Google Scholar] [CrossRef] [PubMed]
- El-Mounadi, K.; Morales-Floriano, M.L.; Garcia-Ruiz, H. Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9. Front. Plant Sci. 2020, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Bartkowski, B.; Theesfeld, I.; Pirscher, F.; Timaeus, J. Snipping around for food: Economic, ethical and policy implications of CRISPR/Cas genome editing. Geoforum 2018, 96, 172–180. [Google Scholar] [CrossRef]
- Georges, F.; Ray, H. Genome editing of crops: A renewed opportunity for food security. GM Crop. Food 2017, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rath, J. Safety and security risks of CRISPR/Cas9. In Ethics Dumping; Springer: Cham, Switzerland, 2018; pp. 107–113. [Google Scholar]
- Woo, J.W.; Kim, J.; Kwon, S.I.; Corvalán, C.; Cho, S.W.; Kim, H.; Kim, S.-G.; Kim, S.-T.; Choe, S.; Kim, J.-S. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 2015, 33, 1162–1164. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, M.; Bhat, J.A.; Mir, Z.A.; Sakina, A.; Ali, S.; Singh, A.K.; Tyagi, A.; Salgotra, R.K.; Dar, A.A.; Bhat, R. CRISPR/Cas approach: A new way of looking at plant-abiotic interactions. J. Plant Physiol. 2018, 224, 156–162. [Google Scholar] [CrossRef]
- Ahmad, A.; Ashraf, S.; Munawar, N.; Jamil, A.; Ghaffar, A.; Shahbaz, M. CRISPR/Cas-Mediated Abiotic Stress Tolerance in Crops. In CRISPR Crops; Springer: Berlin/Heidelberg, Germany, 2021; pp. 177–211. [Google Scholar]
- Zhang, D.; Hussain, A.; Manghwar, H.; Xie, K.; Xie, S.; Zhao, S.; Larkin, R.M.; Qing, P.; Jin, S.; Ding, F. Genome editing with the CRISPR-Cas system: An art, ethics and global regulatory perspective. Plant Biotechnol. J. 2020, 18, 1651–1669. [Google Scholar] [CrossRef]
- Omodamilola, O.I.; Ibrahim, A.U. CRISPR technology: Advantages, limitations and future direction. J. Biomed. Pharm. Sci. 2018, 1, 115. [Google Scholar]
- Cribbs, A.P.; Perera, S.M. Focus: Genome editing: Science and bioethics of CRISPR-Cas9 gene editing: An analysis towards separating facts and fiction. Yale J. Biol. Med. 2017, 90, 625. [Google Scholar] [PubMed]
- Mueller, S. Are Market GM plants an unrecognized platform for bioterrorism and biocrime? Front. Bioeng. Biotechnol. 2019, 7, 121. [Google Scholar] [CrossRef] [Green Version]
- Wolt, J.D.; Wang, K.; Yang, B. The regulatory status of genome-edited crops. Plant Biotechnol. J. 2016, 14, 510–518. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Loh, T.J.; Shen, H.; Zheng, X.; Shen, H. CRISPR as a strong gene editing tool. BMB Rep. 2017, 50, 20. [Google Scholar] [CrossRef] [Green Version]
- Kumlehn, J.; Pietralla, J.; Hensel, G.; Pacher, M.; Puchta, H. The CRISPR/Cas revolution continues: From efficient gene editing for crop breeding to plant synthetic biology. J. Integr. Plant Biol. 2018, 60, 1127–1153. [Google Scholar] [CrossRef]
- Smyth, S.J. Regulatory barriers to improving global food security. Glob. Food Secur. 2020, 26, 100440. [Google Scholar] [CrossRef]
- Koonin, E.V.; Makarova, K.S.; Zhang, F. Diversity, classification and evolution of CRISPR-Cas systems. Curr. Opin. Microbiol. 2017, 37, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V.; Makarova, K.S. Origins and evolution of CRISPR-Cas systems. Philos. Trans. R. Soc. B 2019, 374, 20180087. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.Y.; Doudna, J.A. Chemistry of Class 1 CRISPR-Cas effectors: Binding, editing, and regulation. J. Biol. Chem. 2020, 295, 14473–14487. [Google Scholar] [CrossRef]
- Makarova, K.S.; Wolf, Y.I.; Iranzo, J.; Shmakov, S.A.; Alkhnbashi, O.S.; Brouns, S.J.; Charpentier, E.; Cheng, D.; Haft, D.H.; Horvath, P. Evolutionary classification of CRISPR–Cas systems: A burst of class 2 and derived variants. Nat. Rev. Microbiol. 2020, 18, 67–83. [Google Scholar] [CrossRef]
- Moon, S.B.; Lee, J.M.; Kang, J.G.; Lee, N.-E.; Ha, D.-I.; Kim, S.H.; Yoo, K.; Kim, D.; Ko, J.-H.; Kim, Y.-S. Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3′-overhang. Nat. Commun. 2018, 9, 1–11. [Google Scholar]
- Abudayyeh, O.O.; Gootenberg, J.S.; Essletzbichler, P.; Han, S.; Joung, J.; Belanto, J.J.; Verdine, V.; Cox, D.B.; Kellner, M.J.; Regev, A. RNA targeting with CRISPR–Cas13. Nature 2017, 550, 280–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marraffini, L.A. The CRISPR-Cas System of Streptococcus Pyogenes: Function and Applications. In Streptococcus pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 1–13. [Google Scholar]
- Khan, F.J.; Yuen, G.; Luo, J. Multiplexed CRISPR/Cas9 gene knockout with simple crRNA: TracrRNA co-transfection. Cell Biosci. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Kumar, J.; Alok, A.; Tuli, R. RNA-guided genome editing for target gene mutations in wheat. G3: Genes Genomes Genet. 2013, 3, 2233–2238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endo, M.; Mikami, M.; Endo, A.; Kaya, H.; Itoh, T.; Nishimasu, H.; Nureki, O.; Toki, S. Genome editing in plants by engineered CRISPR–Cas9 recognizing NG PAM. Nat. Plants 2019, 5, 14–17. [Google Scholar] [CrossRef]
- Nishimasu, H.; Ran, F.A.; Hsu, P.D.; Konermann, S.; Shehata, S.I.; Dohmae, N.; Ishitani, R.; Zhang, F.; Nureki, O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014, 156, 935–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khakimzhan, A.; Garenne, D.; Tickman, B.; Fontana, J.; Carothers, J.; Noireaux, V. Complex dependence of CRISPR-Cas9 binding strength on guide RNA spacer lengths. Phys. Biol. 2021, 18, 056003. [Google Scholar] [CrossRef]
- Zhan, X.; Lu, Y.; Zhu, J.K.; Botella, J.R. Genome editing for plant research and crop improvement. J. Integr. Plant Biol. 2021, 63, 3–33. [Google Scholar] [CrossRef]
- Yan, F.; Wang, W.; Zhang, J. CRISPR-Cas12 and Cas13: The Lesser Known Siblings of CRISPR-Cas9. Cell Biol. Toxicol. 2019, 35, 489–492. [Google Scholar] [CrossRef] [Green Version]
- Jain, I.; Minakhin, L.; Mekler, V.; Sitnik, V.; Rubanova, N.; Severinov, K.; Semenova, E. Defining the seed sequence of the Cas12b CRISPR-Cas effector complex. RNA Biol. 2019, 16, 413–422. [Google Scholar] [CrossRef]
- Kaminski, M.M.; Abudayyeh, O.O.; Gootenberg, J.S.; Zhang, F.; Collins, J.J. CRISPR-based diagnostics. Nat. Biomed. Eng. 2021, 5, 643–656. [Google Scholar] [CrossRef] [PubMed]
- Mahas, A.; Hassan, N.; Aman, R.; Marsic, T.; Wang, Q.; Ali, Z.; Mahfouz, M.M. LAMP-Coupled CRISPR–Cas12a Module for Rapid and Sensitive Detection of Plant DNA Viruses. Viruses 2021, 13, 466. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, C.; Feng, B. The rapidly advancing Class 2 CRISPR-Cas technologies: A customizable toolbox for molecular manipulations. J. Cell. Mol. Med. 2020, 24, 3256–3270. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Kitajima, M.; Whittle, A.J.; Liu, W.-T. Benefits of genomic insights and CRISPR-Cas signatures to monitor potential pathogens across drinking water production and distribution systems. Front. Microbiol. 2017, 8, 2036. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Patel, D.J. CasX: A new and small CRISPR gene-editing protein. Cell Res. 2019, 29, 345–346. [Google Scholar] [CrossRef]
- Rees, H.A.; Liu, D.R. Base editing: Precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 2018, 19, 770–788. [Google Scholar] [CrossRef]
- Hu, J.H.; Miller, S.M.; Geurts, M.H.; Tang, W.; Chen, L.; Sun, N.; Zeina, C.M.; Gao, X.; Rees, H.A.; Lin, Z. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 2018, 556, 57–63. [Google Scholar] [CrossRef]
- Burstein, D.; Harrington, L.B.; Strutt, S.C.; Probst, A.J.; Anantharaman, K.; Thomas, B.C.; Doudna, J.A.; Banfield, J.F. New CRISPR–Cas systems from uncultivated microbes. Nature 2017, 542, 237–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, F.; Li, X.; Zhang, C.; Tang, X. The expanded development and application of CRISPR system for sensitive nucleotide detection. Protein Cell 2020, 11, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Aquino-Jarquin, G. CRISPR-Cas14 is now part of the artillery for gene editing and molecular diagnostic. Nanomed. Nanotechnol. Biol. Med. 2019, 18, 428–431. [Google Scholar] [CrossRef] [PubMed]
- Harrington, L.B.; Burstein, D.; Chen, J.S.; Paez-Espino, D.; Ma, E.; Witte, I.P.; Cofsky, J.C.; Kyrpides, N.C.; Banfield, J.F.; Doudna, J.A. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 2018, 362, 839–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.Z.; Haider, S.; Mansoor, S.; Amin, I. Targeting plant ssDNA viruses with engineered miniature CRISPR-Cas14a. Trends Biotechnol. 2019, 37, 800–804. [Google Scholar] [CrossRef]
- Cana-Quijada, P.; Romero-Rodríguez, B.; Vallejo, P.G.; Castillo, A.G.; Bejarano, E.R. Cutting-edge technology to generate plant immunity against geminiviruses. Curr. Opin. Virol. 2020, 42, 58–64. [Google Scholar] [CrossRef]
- Shmakov, S.; Smargon, A.; Scott, D.; Cox, D.; Pyzocha, N.; Yan, W.; Abudayyeh, O.O.; Gootenberg, J.S.; Makarova, K.S.; Wolf, Y.I. Diversity and evolution of class 2 CRISPR–Cas systems. Nat. Rev. Microbiol. 2017, 15, 169–182. [Google Scholar] [CrossRef] [Green Version]
- Tambe, A.; East-Seletsky, A.; Knott, G.J.; Doudna, J.A.; O’Connell, M.R. RNA binding and HEPN-nuclease activation are decoupled in CRISPR-Cas13a. Cell Rep. 2018, 24, 1025–1036. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Malzahn, A.A.; Sretenovic, S.; Qi, Y. The emerging and uncultivated potential of CRISPR technology in plant science. Nat. Plants 2019, 5, 778–794. [Google Scholar] [CrossRef] [PubMed]
- Abudayyeh, O.O.; Gootenberg, J.S.; Konermann, S.; Joung, J.; Slaymaker, I.M.; Cox, D.B.; Shmakov, S.; Makarova, K.S.; Semenova, E.; Minakhin, L. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016, 353. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.-Z.; Wang, Y.; Li, S.-Q.; Yao, R.-W.; Luan, P.-F.; Wu, H.; Carmichael, G.G.; Chen, L.-L. Dynamic imaging of RNA in living cells by CRISPR-Cas13 systems. Mol. Cell 2019, 76, 981–997.e987. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.B.; Gootenberg, J.S.; Abudayyeh, O.O.; Franklin, B.; Kellner, M.J.; Joung, J.; Zhang, F. RNA editing with CRISPR-Cas13. Science 2017, 358, 1019–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abudayyeh, O.O.; Gootenberg, J.S.; Franklin, B.; Koob, J.; Kellner, M.J.; Ladha, A.; Joung, J.; Kirchgatterer, P.; Cox, D.B.; Zhang, F. A cytosine deaminase for programmable single-base RNA editing. Science 2019, 365, 382–386. [Google Scholar] [CrossRef]
- Yilmaz, S.G. Genome editing technologies: CRISPR, LEAPER, RESTORE, ARCUT, SATI, and RESCUE. EXCLI J. 2021, 20, 19. [Google Scholar]
- Kannan, S.; Altae-Tran, H.; Jin, X.; Madigan, V.J.; Oshiro, R.; Makarova, K.S.; Koonin, E.V.; Zhang, F. Compact RNA editors with small Cas13 proteins. Nat. Biotechnol. 2021, 30, 1–4. [Google Scholar]
- Khatodia, S.; Bhatotia, K.; Passricha, N.; Khurana, S.; Tuteja, N. The CRISPR/Cas genome-editing tool: Application in improvement of crops. Front. Plant Sci. 2016, 7, 506. [Google Scholar] [CrossRef] [Green Version]
- Zaychikova, M.V.; Danilenko, V.N.; Maslov, D.A. CRISPR-Cas systems: Prospects for use in medicine. Appl. Sci. 2020, 10, 9001. [Google Scholar] [CrossRef]
- Tian, S.; Jiang, L.; Gao, Q.; Zhang, J.; Zong, M.; Zhang, H.; Ren, Y.; Guo, S.; Gong, G.; Liu, F. Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Rep. 2017, 36, 399–406. [Google Scholar] [CrossRef]
- Ni, W.; Qiao, J.; Hu, S.; Zhao, X.; Regouski, M.; Yang, M.; Polejaeva, I.A.; Chen, C. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS ONE 2014, 9, e106718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arazoe, T.; Miyoshi, K.; Yamato, T.; Ogawa, T.; Ohsato, S.; Arie, T.; Kuwata, S. Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol. Bioeng. 2015, 112, 2543–2549. [Google Scholar] [CrossRef] [PubMed]
- Young, J.K.; Gasior, S.L.; Jones, S.; Wang, L.; Navarro, P.; Vickroy, B.; Barrangou, R. The repurposing of type IE CRISPR-Cascade for gene activation in plants. Commun. Biol. 2019, 2, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, L.A.; Horlbeck, M.A.; Adamson, B.; Villalta, J.E.; Chen, Y.; Whitehead, E.H.; Guimaraes, C.; Panning, B.; Ploegh, H.L.; Bassik, M.C. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 2014, 159, 647–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molla, K.A.; Yang, Y. CRISPR/Cas-mediated base editing: Technical considerations and practical applications. Trends Biotechnol. 2019, 37, 1121–1142. [Google Scholar] [CrossRef]
- Li, J.; Meng, X.; Zong, Y.; Chen, K.; Zhang, H.; Liu, J.; Li, J.; Gao, C. Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nat. Plants 2016, 2, 1–6. [Google Scholar] [CrossRef]
- Haeussler, M. CRISPR Off-Targets: A Question of Context. Cell Biol Toxicol. 2019, 36, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Terns, M.P. CRISPR-based technologies: Impact of RNA-targeting systems. Mol. Cell 2018, 72, 404–412. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y. Engineered CRISPR/dCas9 Systems to Dynamically Control Transcription and Chromatin Organization; Stanford University: Stanford, CA, USA, 2020. [Google Scholar]
- Pan, C.; Sretenovic, S.; Qi, Y. CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants. Curr. Opin. Plant Biol. 2021, 60, 101980. [Google Scholar] [CrossRef]
- Feng, W.; Newbigging, A.M.; Tao, J.; Cao, Y.; Peng, H.; Le, C.; Wu, J.; Pang, B.; Li, J.; Tyrrell, D.L. CRISPR technology incorporating amplification strategies: Molecular assays for nucleic acids, proteins, and small molecules. Chem. Sci. 2021, 12, 4683–4698. [Google Scholar] [CrossRef]
- Zhao, Y.; Tian, J.; Zheng, G.; Chen, J.; Sun, C.; Yang, Z.; Zimin, A.A.; Jiang, W.; Deng, Z.; Wang, Z. Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces. Sci. China Life Sci. 2020, 63, 1053–1062. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Yu, L.; Zhang, X.; Xin, C.; Huang, S.; Bai, L.; Chen, W.; Gao, R.; Li, J.; Pan, S. Highly efficient and precise base editing by engineered dCas9-guide tRNA adenosine deaminase in rats. Cell Discov. 2018, 4, 1–4. [Google Scholar] [CrossRef]
- Lapinaite, A.; Knott, G.J.; Palumbo, C.M.; Lin-Shiao, E.; Richter, M.F.; Zhao, K.T.; Beal, P.A.; Liu, D.R.; Doudna, J.A. DNA capture by a CRISPR-Cas9–guided adenine base editor. Science 2020, 369, 566–571. [Google Scholar] [CrossRef]
- Makarova, K.S.; Zhang, F.; Koonin, E.V. SnapShot: Class 2 CRISPR-Cas systems. Cell 2017, 168, 328–328.e1. [Google Scholar] [CrossRef] [PubMed]
- Huynh, N.; Depner, N.; Larson, R.; King-Jones, K. A versatile toolkit for CRISPR-Cas13-based RNA manipulation in Drosophila. Genome Biol. 2020, 21, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, L.-L. Enhancing the RNA engineering toolkit. Science 2017, 358, 996–997. [Google Scholar] [CrossRef]
- Koonin, E.V.; Krupovic, M. Origin of programmed cell death from antiviral defense? Proc. Natl. Acad. Sci. USA 2019, 116, 16167–16169. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, M.R. Molecular mechanisms of RNA targeting by Cas13-containing type VI CRISPR–Cas systems. J. Mol. Biol. 2019, 431, 66–87. [Google Scholar] [CrossRef]
- Bayarsaikhan, D.; Bayarsaikhan, G.; Lee, B. Recent advances in stem cells and gene editing: Drug discovery and therapeutics. Prog. Mol. Biol. Transl. Sci. 2021, 181, 231–269. [Google Scholar] [PubMed]
- Palaz, F.; Kalkan, A.K.; Can, Ö.; Demir, A.N.; Tozluyurt, A.; Özcan, A.; Ozsoz, M. CRISPR-Cas13 System as a Promising and Versatile Tool for Cancer Diagnosis, Therapy, and Research. ACS Synth. Biol. 2021, 10, 1245–1267. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhang, C.; Yang, Y.; Zhao, S.; Kang, G.; He, X.; Song, J.; Yang, J. Versatile nucleotides substitution in plant using an improved prime editing system. Mol. Plant 2020, 13, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Moon, S.B.; Ko, J.-H.; Kim, Y.-S.; Kim, D. Unbiased investigation of specificities of prime editing systems in human cells. Nucleic Acids Res. 2020, 48, 10576–10589. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Chen, J.; Yan, L.; Xia, L. Precise modifications of both exogenous and endogenous genes in rice by prime editing. Mol. Plant 2020, 13, 671–674. [Google Scholar] [CrossRef]
- Matsoukas, I.G. Prime editing: Genome editing for rare genetic diseases without double-strand breaks or donor DNA. Front. Genet. 2020, 11, 528. [Google Scholar] [CrossRef]
- Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019, 576, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Zong, Y.; Xue, C.; Wang, S.; Jin, S.; Zhu, Z.; Wang, Y.; Anzalone, A.V.; Raguram, A.; Doman, J.L. Prime genome editing in rice and wheat. Nat. Biotechnol. 2020, 38, 582–585. [Google Scholar] [CrossRef]
- Wang, L.; Kaya, H.B.; Zhang, N.; Rai, R.; Willmann, M.R.; Carpenter, S.C.; Read, A.C.; Martin, F.; Fei, Z.; Leach, J.E. Spelling changes and fluorescent tagging with prime editing vectors for plants. Front. Genome Ed. 2021, 3, 7. [Google Scholar] [CrossRef]
- Monarkh, V. Gmo and health risks selected issues. Agric. For. 2020, 14, 245–254. [Google Scholar]
- Chen, K.; Gao, C. Genome-edited crops: How to move them from laboratory to market. Front. Agric. Sci. Eng. 2020, 7, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Metje-Sprink, J.; Sprink, T.; Hartung, F. Genome-edited plants in the field. Curr. Opin. Biotechnol. 2020, 61, 1–6. [Google Scholar] [CrossRef]
- Modrzejewski, D. Evidence Synthesis on the Impact of Genome Editing on Plant Breeding; Georg-August-Universität Göttingen: Gottingen, Germany, 2020. [Google Scholar]
- Zannoni, L. Evolving regulatory landscape for genome-edited plants. CRISPR J. 2019, 2, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sprink, T.; Eriksson, D.; Schiemann, J.; Hartung, F. Regulatory hurdles for genome editing: Process-vs. product-based approaches in different regulatory contexts. Plant Cell Rep. 2016, 35, 1493–1506. [Google Scholar] [CrossRef] [Green Version]
- Verma, P.; Tandon, R.; Yadav, G.; Gaur, V. Structural aspects of DNA repair and recombination in crop improvement. Front. Genet. 2020, 11, 1103. [Google Scholar] [CrossRef]
- Podevin, N.; Davies, H.V.; Hartung, F.; Nogué, F.; Casacuberta, J.M. Site-directed nucleases: A paradigm shift in predictable, knowledge-based plant breeding. Trends Biotechnol. 2013, 31, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Van de Wiel, C.; Schaart, J.; Lotz, L.; Smulders, M. New traits in crops produced by genome editing techniques based on deletions. Plant Biotechnol. Rep. 2017, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Ghouri, M.Z.; Munawar, N.; Ismail, M.; Ashraf, S.; Aftab, S.O. Regulatory, Ethical, and Social Aspects of CRISPR Crops. In CRISPR Crops; Springer: Berlin/Heidelberg, Germany, 2021; pp. 261–287. [Google Scholar]
- Zhang, S.; Zhang, R.; Song, G.; Gao, J.; Li, W.; Han, X.; Chen, M.; Li, Y.; Li, G. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat. BMC Plant Biol. 2018, 18, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ran, Y.; Liang, Z.; Gao, C. Current and future editing reagent delivery systems for plant genome editing. Sci. China Life Sci. 2017, 60, 490–505. [Google Scholar] [CrossRef]
- Xie, K.; Yang, Y. RNA-guided genome editing in plants using a CRISPR–Cas system. Mol. Plant 2013, 6, 1975–1983. [Google Scholar] [CrossRef] [Green Version]
- Manghwar, H.; Li, B.; Ding, X.; Hussain, A.; Lindsey, K.; Zhang, X.; Jin, S. CRISPR/Cas systems in genome editing: Methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Adv. Sci. 2020, 7, 1902312. [Google Scholar] [CrossRef]
- Farboud, B.; Jarvis, E.; Roth, T.L.; Shin, J.; Corn, J.E.; Marson, A.; Meyer, B.J.; Patel, N.H.; Hochstrasser, M.L. Enhanced genome editing with Cas9 ribonucleoprotein in diverse cells and organisms. JoVE (J. Vis. Exp.) 2018, 135, e57350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eoh, J.; Gu, L. Biomaterials as vectors for the delivery of CRISPR–Cas9. Biomater. Sci. 2019, 7, 1240–1261. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, L.; Liu, H.; Cheng, K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J. Control. Release 2017, 266, 17–26. [Google Scholar] [CrossRef]
- Glass, Z.; Lee, M.; Li, Y.; Xu, Q. Engineering the delivery system for CRISPR-based genome editing. Trends Biotechnol. 2018, 36, 173–185. [Google Scholar] [CrossRef]
- Park, J.; Choi, S.; Park, S.; Yoon, J.; Park, A.Y.; Choe, S. DNA-free genome editing via ribonucleoprotein (RNP) delivery of CRISPR/Cas in lettuce. In Plant Genome Editing with CRISPR Systems; Springer: Berlin/Heidelberg, Germany, 2019; pp. 337–354. [Google Scholar]
- Kim, H.; Kim, S.-T.; Ryu, J.; Kang, B.-C.; Kim, J.-S.; Kim, S.-G. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat. Commun. 2017, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Yubing, H.; Min, Z.; Lihao, W.; Junhua, W.; Qiaoyan, W.; Rongchen, W.; Yunde, Z. Improvements of TKC technology accelerate isolation of transgene-free CRISPR/Cas9-edited rice plants. Rice Sci. 2019, 26, 109–117. [Google Scholar] [CrossRef]
- Andersson, M.; Turesson, H.; Nicolia, A.; Fält, A.-S.; Samuelsson, M.; Hofvander, P. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep. 2017, 36, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.S.; Hsu, C.T.; Yang, L.H.; Lee, L.Y.; Fu, J.Y.; Cheng, Q.W.; Wu, F.H.; Hsiao, H.C.W.; Zhang, Y.; Zhang, R. Application of protoplast technology to CRISPR/Cas9 mutagenesis: From single-cell mutation detection to mutant plant regeneration. Plant Biotechnol. J. 2018, 16, 1295–1310. [Google Scholar] [CrossRef] [Green Version]
- Rui, Y.; Wilson, D.R.; Green, J.J. Non-viral delivery to enable genome editing. Trends Biotechnol. 2019, 37, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Choe, S. DNA-free genome editing with preassembled CRISPR/Cas9 ribonucleoproteins in plants. Transgenic Res. 2019, 28, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.; Turesson, H.; Olsson, N.; Fält, A.S.; Ohlsson, P.; Gonzalez, M.N.; Samuelsson, M.; Hofvander, P. Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol. Plant. 2018, 164, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Sandhya, D.; Jogam, P.; Allini, V.R.; Abbagani, S.; Alok, A. The present and potential future methods for delivering CRISPR/Cas9 components in plants. J. Genet. Eng. Biotechnol. 2020, 18, 1–11. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Z.-B.; Xing, A.; Moon, B.P.; Koellhoffer, J.P.; Huang, L.; Ward, R.T.; Clifton, E.; Falco, S.C.; Cigan, A.M. Cas9-guide RNA directed genome editing in soybean. Plant Physiol. 2015, 169, 960–970. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Chen, K.; Zhang, Y.; Liu, J.; Yin, K.; Qiu, J.-L.; Gao, C. Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nat. Protoc. 2018, 13, 413–430. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Nannas, N.J.; Fu, F.-f.; Shi, J.; Aspinwall, B.; Parrott, W.A.; Dawe, R.K. Genome-scale sequence disruption following biolistic transformation in rice and maize. Plant Cell 2019, 31, 368–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Zhu, H.; Liu, J.; Yang, Q.; Shao, X.; Bi, F.; Hu, C.; Huo, H.; Chen, K.; Yi, G. Establishment of a PEG-mediated protoplast transformation system based on DNA and CRISPR/Cas9 ribonucleoprotein complexes for banana. BMC Plant Biol. 2020, 20, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Veillet, F.; Perrot, L.; Chauvin, L.; Kermarrec, M.-P.; Guyon-Debast, A.; Chauvin, J.-E.; Nogué, F.; Mazier, M. Transgene-free genome editing in tomato and potato plants using agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. Int. J. Mol. Sci. 2019, 20, 402. [Google Scholar] [CrossRef] [Green Version]
- Danilo, B.; Perrot, L.; Mara, K.; Botton, E.; Nogué, F.; Mazier, M. Efficient and transgene-free gene targeting using Agrobacterium-mediated delivery of the CRISPR/Cas9 system in tomato. Plant Cell Rep. 2019, 38, 459–462. [Google Scholar] [CrossRef]
- Ali, Z.; Abul-Faraj, A.; Li, L.; Ghosh, N.; Piatek, M.; Mahjoub, A.; Aouida, M.; Piatek, A.; Baltes, N.J.; Voytas, D.F. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol. Plant 2015, 8, 1288–1291. [Google Scholar] [CrossRef] [Green Version]
- Marton, I.; Zuker, A.; Shklarman, E.; Zeevi, V.; Tovkach, A.; Roffe, S.; Ovadis, M.; Tzfira, T.; Vainstein, A. Nontransgenic genome modification in plant cells. Plant Physiol. 2010, 154, 1079–1087. [Google Scholar] [CrossRef] [Green Version]
- Yin, K.; Han, T.; Liu, G.; Chen, T.; Wang, Y.; Yu, A.Y.L.; Liu, Y. A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci. Rep. 2015, 5, 1–10. [Google Scholar] [CrossRef]
- Nadakuduti, S.S.; Enciso-Rodríguez, F. Advances in genome editing with CRISPR systems and transformation technologies for plant DNA manipulation. Front. Plant Sci. 2021, 11, 2267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qi, Y. CRISPR enables directed evolution in plants. Genome Biol. 2019, 20, 1–4. [Google Scholar] [CrossRef]
- Bharat, S.S.; Li, S.; Li, J.; Yan, L.; Xia, L. Base editing in plants: Current status and challenges. Crop J. 2020, 8, 384–395. [Google Scholar] [CrossRef]
- Schmidt, S.M.; Belisle, M.; Frommer, W.B. The evolving landscape around genome editing in agriculture: Many countries have exempted or move to exempt forms of genome editing from GMO regulation of crop plants. EMBO Rep. 2020, 21, e50680. [Google Scholar] [CrossRef]
- Biswas, S.; Zhang, D.; Shi, J. CRISPR/Cas systems: Opportunities and challenges for crop breeding. Plant Cell Rep. 2021, 40, 1979–1998. [Google Scholar] [CrossRef]
- Stella, S.; Alcon, P.; Montoya, G. Class 2 CRISPR–Cas RNA-guided endonucleases: Swiss Army knives of genome editing. Nat. Struct. Mol. Biol. 2017, 24, 882–892. [Google Scholar] [CrossRef]
- Hamada, H.; Liu, Y.; Nagira, Y.; Miki, R.; Taoka, N.; Imai, R. Biolistic-delivery-based transient CRISPR/Cas9 expression enables in planta genome editing in wheat. Sci. Rep. 2018, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Zhou, H.; Bi, H.; Fromm, M.; Yang, B.; Weeks, D.P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 2013, 41, e188. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liang, Z.; Zong, Y.; Wang, Y.; Liu, J.; Chen, K.; Qiu, J.-L.; Gao, C. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 2016, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Svitashev, S.; Schwartz, C.; Lenderts, B.; Young, J.K.; Cigan, A.M. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat. Commun. 2016, 7, 1–7. [Google Scholar] [CrossRef]
- Malnoy, M.; Viola, R.; Jung, M.-H.; Koo, O.-J.; Kim, S.; Kim, J.-S.; Velasco, R.; Nagamangala Kanchiswamy, C. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front. Plant Sci. 2016, 7, 1904. [Google Scholar] [CrossRef] [PubMed]
- Lino, C.A.; Harper, J.C.; Carney, J.P.; Timlin, J.A. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv. 2018, 25, 1234–1257. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Rudis, M.R.; Cheplick, M.H.; Millwood, R.J.; Yang, J.-P.; Ondzighi-Assoume, C.A.; Montgomery, G.A.; Burris, K.P.; Mazarei, M.; Chesnut, J.D. Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells. Plant Cell Rep. 2020, 39, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Lee, J.; Choi, S.A.; Kim, Y.-S.; Koo, O.; Choi, S.H.; Ahn, W.S.; Jie, E.Y.; Kim, S.W. Efficient genome editing using CRISPR–Cas9 RNP delivery into cabbage protoplasts via electro-transfection. Plant Biotechnol. Rep. 2020, 14, 695–702. [Google Scholar] [CrossRef]
- Park, R.V.; Asbury, H.; Miller, S.M. Modification of a Chlamydomonas reinhardtii CRISPR/Cas9 transformation protocol for use with widely available electroporation equipment. MethodsX 2020, 7, 100855. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Sander, J.D.; Reyon, D.; Cascio, V.M.; Joung, J.K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 2014, 32, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Munawar, N.; Ahmad, A. CRISPR/Cas System: An Introduction. In CRISPR Crops; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–35. [Google Scholar]
- Turchiano, G.; Blattner, G.; Cavazza, A.; Thrasher, A. Gene editing and genotoxicity: Targeting the off-targets. Front. Genome Ed. 2020, 2, 22. [Google Scholar]
- Kim, S.; Koo, T.; Jee, H.-G.; Cho, H.-Y.; Lee, G.; Lim, D.-G.; Shin, H.S.; Kim, J.-S. CRISPR RNAs trigger innate immune responses in human cells. Genome Res. 2018, 28, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Wolt, J.D. Safety, security, and policy considerations for plant genome editing. Prog. Mol. Biol. Transl. Sci. 2017, 149, 215–241. [Google Scholar] [PubMed]
- Zhou, X.; Xin, J.; Fan, N.; Zou, Q.; Huang, J.; Ouyang, Z.; Zhao, Y.; Zhao, B.; Liu, Z.; Lai, S. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell. Mol. Life Sci. 2015, 72, 1175–1184. [Google Scholar] [CrossRef]
- Deykin, A.V.; Kubekina, M.V.; Silaeva, Y.Y.; Krivonogova, A.S.; Isaeva, A.G. Using CRISPR/Cas9 for generation the cd209 knockout is a way to get cattle breeds resistant to the bovine leukemia virus (BLV). E3S Web Conf. 2020, 176, 01007. [Google Scholar] [CrossRef]
- Anderson, K.R.; Haeussler, M.; Watanabe, C.; Janakiraman, V.; Lund, J.; Modrusan, Z.; Stinson, J.; Bei, Q.; Buechler, A.; Yu, C. CRISPR off-target analysis in genetically engineered rats and mice. Nat. Methods 2018, 15, 512–514. [Google Scholar] [CrossRef] [PubMed]
- Brazelton Jr, V.A.; Zarecor, S.; Wright, D.A.; Wang, Y.; Liu, J.; Chen, K.; Yang, B.; Lawrence-Dill, C.J. A quick guide to CRISPR sgRNA design tools. GM Crop. Food 2015, 6, 266–276. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Lu, L.; Liu, H.-Y.; Li, S.; Xing, F.; Chen, L.-L. CRISPR-P: A web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol. Plant 2014, 7, 1494–1496. [Google Scholar] [CrossRef] [Green Version]
- Labun, K.; Montague, T.G.; Gagnon, J.A.; Thyme, S.B.; Valen, E. CHOPCHOP v2: A web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. 2016, 44, W272–W276. [Google Scholar] [CrossRef]
- Hajiahmadi, Z.; Movahedi, A.; Wei, H.; Li, D.; Orooji, Y.; Ruan, H.; Zhuge, Q. Strategies to increase on-target and reduce off-target effects of the CRISPR/Cas9 system in plants. Int. J. Mol. Sci. 2019, 20, 3719. [Google Scholar] [CrossRef] [Green Version]
- Naeem, M.; Majeed, S.; Hoque, M.Z.; Ahmad, I. Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing. Cells 2020, 9, 1608. [Google Scholar] [CrossRef]
- He, Y.; Zhao, Y. Technological breakthroughs in generating transgene-free and genetically stable CRISPR-edited plants. aBIOTECH 2020, 1, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Min, J.; Smidler, A.L.; Najjar, D.; Esvelt, K.M. Harnessing gene drive. J. Responsible Innov. 2018, 5, S40–S65. [Google Scholar] [CrossRef] [Green Version]
- Jampol, L.M.; Goldstein, D.A. Zika virus infection and the eye. JAMA Ophthalmol. 2016, 134, 535–536. [Google Scholar] [CrossRef] [Green Version]
- Servick, K. How will we keep controversial gene drive technology in check. Science 2017. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Brossard, D.; Belluck, P.; Gould, F.; Wirz, C.D. Promises and perils of gene drives: Navigating the communication of complex, post-normal science. Proc. Natl. Acad. Sci. USA 2019, 116, 7692–7697. [Google Scholar] [CrossRef] [Green Version]
- Joshi, R.K.; Bharat, S.S.; Mishra, R. Engineering drought tolerance in plants through CRISPR/Cas genome editing. 3 Biotech 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Farhat, S.; Jain, N.; Singh, N.; Sreevathsa, R.; Dash, P.K.; Rai, R.; Yadav, S.; Kumar, P.; Sarkar, A.K.; Jain, A. CRISPR-Cas9 directed genome engineering for enhancing salt stress tolerance in rice. Semin. Cell Dev. Biol. 2019, 96, 91–99. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Zhou, Y.; Duanmu, D. Use of CRISPR/Cas9 for symbiotic nitrogen fixation research in legumes. Prog. Mol. Biol. Transl. Sci. 2017, 149, 187–213. [Google Scholar] [PubMed]
- Wang, H.; Nakamura, M.; Abbott, T.R.; Zhao, D.; Luo, K.; Yu, C.; Nguyen, C.M.; Lo, A.; Daley, T.P.; La Russa, M. CRISPR-mediated live imaging of genome editing and transcription. Science 2019, 365, 1301–1305. [Google Scholar] [CrossRef]
- Huang, J.; Xu, Y.; Zuo, Y.; Yang, Y.; Tabashnik, B.E.; Wu, Y. Evaluation of five candidate receptors for three Bt toxins in the beet armyworm using CRISPR-mediated gene knockouts. Insect Biochem. Mol. Biol. 2020, 121, 103361. [Google Scholar] [CrossRef]
- Langner, T.; Kamoun, S.; Belhaj, K. CRISPR crops: Plant genome editing toward disease resistance. Annu. Rev. Phytopathol. 2018, 56, 479–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mubarik, M.S.; Khan, S.H.; Sajjad, M. Key Applications of CRISPR/Cas for Yield and Nutritional Improvement. In CRISPR Crops; Springer: Berlin/Heidelberg, Germany, 2021; pp. 213–230. [Google Scholar]
- Haque, E.; Taniguchi, H.; Hassan, M.; Bhowmik, P.; Karim, M.R.; Śmiech, M.; Zhao, K.; Rahman, M.; Islam, T. Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: Recent progress, prospects, and challenges. Front. Plant Sci. 2018, 9, 617. [Google Scholar] [CrossRef] [PubMed]
- Lassoued, R.; Macall, D.M.; Smyth, S.J.; Phillips, P.W.; Hesseln, H. How should we regulate products of new breeding techniques? Opinion of surveyed experts in plant biotechnology. Biotechnol. Rep. 2020, 26, e00460. [Google Scholar] [CrossRef]
- Callaway, E. CRISPR plants now subject to tough GM laws in European Union. Nature 2018, 560, 16–17. [Google Scholar] [CrossRef]
- Hessels, L.K.; Van Lente, H.; Smits, R. In search of relevance: The changing contract between science and society. Sci. Public Policy 2009, 36, 387–401. [Google Scholar] [CrossRef] [Green Version]
- Eckerstorfer, M.F.; Engelhard, M.; Heissenberger, A.; Simon, S.; Teichmann, H. Plants developed by new genetic modification techniques—Comparison of existing regulatory frameworks in the EU and non-EU countries. Front. Bioeng. Biotechnol. 2019, 7, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, M.; Rasooly, R. Review of the inhibition of biological activities of food-related selected toxins by natural compounds. Toxins 2013, 5, 743–775. [Google Scholar] [CrossRef]
- Marshall, A. GM soybeans and health safety—A controversy reexamined. Nat. Biotechnol. 2007, 25, 981–987. [Google Scholar] [CrossRef]
- Romeis, J.; Raybould, A.; Bigler, F.; Candolfi, M.P.; Hellmich, R.L.; Huesing, J.E.; Shelton, A.M. Deriving criteria to select arthropod species for laboratory tests to assess the ecological risks from cultivating arthropod-resistant genetically engineered crops. Chemosphere 2013, 90, 901–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartholomaeus, A.; Parrott, W.; Bondy, G.; Walker, K.; ILSI International Food Biotechnology Committee Task Force on the Use of Mammalian Toxicology Studies in the Safety Assessment of GM Foods. The use of whole food animal studies in the safety assessment of genetically modified crops: Limitations and recommendations. Crit. Rev. Toxicol. 2013, 43, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Paul, V.; Guertler, P.; Wiedemann, S.; Meyer, H.H. Degradation of Cry1Ab protein from genetically modified maize (MON810) in relation to total dietary feed proteins in dairy cow digestion. Transgenic Res. 2010, 19, 683–689. [Google Scholar] [CrossRef] [Green Version]
- Zdziarski, I.; Edwards, J.; Carman, J.; Haynes, J. GM crops and the rat digestive tract: A critical review. Environ. Int. 2014, 73, 423–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, T.; Araki, M. Consumer acceptance of food crops developed by genome editing. Plant Cell Rep. 2016, 35, 1507–1518. [Google Scholar] [CrossRef]
- Kleinstiver, B.P.; Pattanayak, V.; Prew, M.S.; Tsai, S.Q.; Nguyen, N.T.; Zheng, Z.; Joung, J.K. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 2016, 529, 490–495. [Google Scholar] [CrossRef] [Green Version]
- Zetsche, B.; Volz, S.E.; Zhang, F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 2015, 33, 139–142. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Bae, S.; Park, J.; Kim, E.; Kim, S.; Yu, H.R.; Hwang, J.; Kim, J.-I.; Kim, J.-S. Digenome-seq: Genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 2015, 12, 237–243. [Google Scholar] [CrossRef]
- Tsai, S.Q.; Zheng, Z.; Nguyen, N.T.; Liebers, M.; Topkar, V.V.; Thapar, V.; Wyvekens, N.; Khayter, C.; Iafrate, A.J.; Le, L.P. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 2015, 33, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Voytas, D.F.; Gao, C. Precision genome engineering and agriculture: Opportunities and regulatory challenges. PLoS Biol. 2014, 12, e1001877. [Google Scholar] [CrossRef] [PubMed]
- Committee, L.M.; Lemaire, O.; Moneyron, A.; Masson, J.E. “Interactive technology assessment” and beyond: The field trial of genetically modified grapevines at INRA-Colmar. PLoS Biol. 2010, 8, e1000551. [Google Scholar]
- Kling, J. Labeling for better or worse. Nat. Biotechnol. 2014, 32, 1180–1183. [Google Scholar] [CrossRef]
- Whelan, A.I.; Lema, M.A. Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crop. Food 2015, 6, 253–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duensing, N.; Sprink, T.; Parrott, W.A.; Fedorova, M.; Lema, M.A.; Wolt, J.D.; Bartsch, D. Novel features and considerations for ERA and regulation of crops produced by genome editing. Front. Bioeng. Biotechnol. 2018, 6, 79. [Google Scholar] [CrossRef] [Green Version]
- Suter, G.; II, L.; Barnthouse, S.; Bartell, T.; Mill, D.M.; Paterson, S. Ecological Risk Assessment Lewis; Chelsea MI: Ann Arbor, MI, USA, 1993. [Google Scholar]
- Zhang, E.; He, X.; Zhang, C.; Su, J.; Lu, X.; Si, X.; Chen, J.; Yin, D.; Han, L.; De, W. A novel long noncoding RNA HOXC-AS3 mediates tumorigenesis of gastric cancer by binding to YBX1. Genome Biol. 2018, 19, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hilbeck, A.; Meyer, H.; Wynne, B.; Millstone, E. GMO regulations and their interpretation: How EFSA’s guidance on risk assessments of GMOs is bound to fail. Environ. Sci. Eur. 2020, 32, 1–15. [Google Scholar] [CrossRef]
- Mathur, V.; Javid, L.; Kulshrestha, S.; Mandal, A.; Reddy, A.A. World cultivation of genetically modified crops: Opportunities and risks. In Sustainable Agriculture Reviews; Springer: Berlin/Heidelberg, Germany, 2017; pp. 45–87. [Google Scholar]
- Brookes, G.; Barfoot, P. The global income and production effects of genetically modified (GM) crops 1996–2011. GM Crop. Food 2013, 4, 74–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, F.F.; Domené-Painenao, O.; Cruces, J.M. The history of agroecology in Venezuela: A complex and multifocal process. Agroecol. Sustain. Food Syst. 2017, 41, 401–415. [Google Scholar] [CrossRef]
- Lombardo, L.; Grando, M.S. Genetically modified plants for nutritionally improved food: A promise kept? Food Rev. Int. 2020, 36, 58–76. [Google Scholar] [CrossRef]
- Chaturvedi, S. Biosafety regulation: Need for fine balancing. Econ. Political Wkly. 2004, 39, 3693–3697. [Google Scholar]
- Sánchez, M. Chile as a key enabler country for global plant breeding, agricultural innovation, and biotechnology. GM Crop. Food 2020, 11, 130–139. [Google Scholar] [CrossRef]
- Sánchez, M.A.; León, G. Status of market, regulation and research of genetically modified crops in Chile. New Biotechnol. 2016, 33, 815–823. [Google Scholar] [CrossRef]
- Wasmer, M. Roads forward for European GMO Policy—Uncertainties in wake of ECJ judgment have to be mitigated by regulatory reform. Front. Bioeng. Biotechnol. 2019, 7, 132. [Google Scholar] [CrossRef]
- Eriksson, D.; Custers, R.; Björnberg, K.E.; Hansson, S.O.; Purnhagen, K.; Qaim, M.; Romeis, J.; Schiemann, J.; Schleissing, S.; Tosun, J. Options to reform the European Union legislation on GMOs: Scope and definitions. Trends Biotechnol. 2020, 38, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Council Directive. Council Directive 90/219/EEC of 23 April 1990 on the contained use of genetically modified micro-organisms. Off. J. L 1990, 117, 05. [Google Scholar]
- H.A.T. Directive. Council Directive 90/220/EEC of 23 April 1990 on the deliberate release into the environment of genetically modified organisms. Off. J. L 1990, 117, 0015–0027. [Google Scholar]
- Windels, P.; Alcalde, E.; Lecoq, E.; Legris, G.; Pleysier, A.; Tinland, B.; Wandelt, C. General surveillance for import and processing: The EuropaBio approach. J. Verbrauch. Lebensm. 2009, 3, 14–16. [Google Scholar] [CrossRef]
- Wang, S.; Yi, F.; Qu, J. Eliminate mitochondrial diseases by gene editing in germ-line cells and embryos. Protein Cell 2015, 6, 472–475. [Google Scholar] [CrossRef] [Green Version]
- Dima, O.; Inzé, D. The role of scientists in policy making for more sustainable agriculture. Curr. Biol. 2021, 31, R218–R220. [Google Scholar] [CrossRef]
- Bratlie, S.; Halvorsen, K.; Myskja, B.K.; Mellegård, H.; Bjorvatn, C.; Frost, P.; Heiene, G.; Hofmann, B.; Holst-Jensen, A.; Holst-Larsen, T. A novel governance framework for GMO: A tiered, more flexible regulation for GMO s would help to stimulate innovation and public debate. EMBO Rep. 2019, 20, e47812. [Google Scholar] [CrossRef]
- Shukla, M.; Al-Busaidi, K.T.; Trivedi, M.; Tiwari, R.K. Status of research, regulations and challenges for genetically modified crops in India. GM Crop. Food 2018, 9, 173–188. [Google Scholar] [CrossRef]
- Kolady, D.E.; Herring, R.J. Regulation of genetically engineered crops in India: Implications of policy uncertainty for social welfare, competition, and innovation. Can. J. Agric. Econ./Rev. Can. D’agroeconomie 2014, 62, 471–490. [Google Scholar] [CrossRef]
- Lynch, D.; Vogel, D. The Regulation of GMOs in Europe and the United States: A Case-Study of Contemporary European Regulatory Politics; Council on Foreign Relations: New York, NY, USA, 2001. [Google Scholar]
- Waltz, E. Gene-edited CRISPR mushroom escapes US regulation. Nat. News 2016, 532, 293. [Google Scholar] [CrossRef] [Green Version]
- Sprink, T.; Metje, J.; Schiemann, J.; Hartung, F. Plant genome editing in the European Union—To be or not to be—A GMO. Plant Biotechnol. Rep. 2016, 10, 345–351. [Google Scholar] [CrossRef]
- Wolt, J.D.; Wolf, C. Policy and governance perspectives for regulation of genome edited crops in the United States. Front. Plant Sci. 2018, 9, 1606. [Google Scholar] [CrossRef]
- Briefs, I. Global status of commercialized biotech/GM crops in 2017: Biotech crop adoption surges as economic benefits accumulate in 22 years. ISAAA Brief 2017, 53, 25–26. [Google Scholar]
- Smyth, S.J. Canadian regulatory perspectives on genome engineered crops. GM Crop. Food 2017, 8, 35–43. [Google Scholar] [CrossRef]
- Whelan, A.I.; Gutti, P.; Lema, M.A. Gene editing regulation and innovation economics. Front. Bioeng. Biotechnol. 2020, 8, 303. [Google Scholar] [CrossRef]
- Whelan, A.I.; Lema, M.A. Regulation of genome editing in plant biotechnology: Argentina. In Regulation of Genome Editing in Plant Biotechnology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 19–62. [Google Scholar]
- Benítez Candia, N.; Fernández Ríos, D.; Vicién, C. paraguay’s path toward the simplification of procedures in the approval of ge crops. Front. Bioeng. Biotechnol. 2020, 8, 1023. [Google Scholar] [CrossRef]
- Gatica-Arias, A. The regulatory current status of plant breeding technologies in some Latin American and the Caribbean countries. Plant Cell Tissue Organ Cult. (PCTOC) 2020, 141, 229–242. [Google Scholar] [CrossRef]
- Norero, D. Ecuador Passes Law Allowing GMO Crop Research; Genetic Literacy Project, Science Literacy Project: Atlanta GA, USA, 2017. [Google Scholar]
- Branford, S. Peru: A 10-Year Ban on GMOs; Lat Am Bur: London, UK, 2013. [Google Scholar]
- Dondanville, T.; Dougherty, M.L. Porousness and Peru’s moratorium on genetically modified organisms: Stakeholder epistemologies and neoliberal science. Environ. Sociol. 2020, 6, 107–119. [Google Scholar] [CrossRef]
- Kaur, A. Genetically modified crops in India: Experiments with Bt Cotton to explore the road ahead. Open Agric. 2020, 5, 386–394. [Google Scholar] [CrossRef]
- Choudhary, B.; Gheysen, G.; Buysse, J.; van der Meer, P.; Burssens, S. Regulatory options for genetically modified crops in India. Plant Biotechnol. J. 2014, 12, 135–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J. Genetically modified foods in China: Regulation, deregulation, or governance? In Innovation, Economic Development, and Intellectual Property in India and China; Springer: Singapore, 2019; pp. 347–366. [Google Scholar]
- Arujanan, M.; Teng, P.P. Legal, regulatory and labelling status of biotech crops. Adv. Bot. Res. 2018, 86, 45–88. [Google Scholar]
- Li, Y.; Hallerman, E.M.; Wu, K.; Peng, Y. Insect-resistant genetically engineered crops in China: Development, application, and prospects for use. Annu. Rev. Entomol. 2020, 65, 273–292. [Google Scholar] [CrossRef] [Green Version]
- Ebata, A.; Punt, M.; Wesseler, J. For the Approval Process of GMOs: The Japanese Case. AgBioForum 2013, 16, 140–160. [Google Scholar]
- Gupta, K.; Karihaloo, J.; Khetarpal, R. Biosafety Regulations for GM Crops in Asia-Pacific; Asia-Pacific Consortium on Agricultural Biotechnology, New Delhi and Asia-Pacific Association of Agricultural Research Institutions: Bangkok, Thailand, 2014; pp. 1–160. [Google Scholar]
- Takahashi, T. Laws and Regulations on Food Safety and Food Quality in Japan. 2009. Available online: http://au-auone.net/foodsafetyqualityinJapan.pdf (accessed on 22 October 2021).
- Yamanouchi, K. Regulatory considerations in the development and application of biotechnology in Japan. Rev. Sci. Et Tech.-Off. Int. Des Épizooties 2005, 24, 109. [Google Scholar] [CrossRef]
- Noda, N. Recent advances in the research and development of blue flowers. Breed. Sci. 2018, 68, 17132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsushita, A.; Goto, H.; Takahashi, Y.; Tsuda, M.; Ohsawa, R. Consideration of familiarity accumulated in the confined field trials for environmental risk assessment of genetically modified soybean (Glycine max) in Japan. Transgenic Res. 2020, 29, 229–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adenle, A.A. Global capture of crop biotechnology in developing world over a decade. J. Genet. Eng. Biotechnol. 2011, 9, 83–95. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.; Jackson, L.A. GM crop technology and trade restraints: Economic implications for Australia and New Zealand. Aust. J. Agric. Resour. Econ. 2005, 49, 263–281. [Google Scholar] [CrossRef] [Green Version]
- Fritsche, S.; Poovaiah, C.; MacRae, E.; Thorlby, G. A New Zealand perspective on the application and regulation of gene editing. Front. Plant Sci. 2018, 9, 1323. [Google Scholar] [CrossRef]
- Thygesen, P. Clarifying the regulation of genome editing in Australia: Situation for genetically modified organisms. Transgenic Res. 2019, 28, 151–159. [Google Scholar] [CrossRef] [PubMed]
Continent | Country | Regulatory Agencies | GMO Commercial Cultivation Area (Million Hectares) | Approved Genome Edited Crops | Approve Year | Regulation Governing the Release of Gene-Edited Crops | SDN1 | SDN2 | SDN3 | References |
---|---|---|---|---|---|---|---|---|---|---|
North America | US | USDA, APHIS, FDA, and EPA | 75 | Corn | 2018 | Coordinated Framework for Regulation of Biotechnology, New SECURE rules (2020) | Deregulated | Deregulated | Case by case | [221,222,223] |
Tomato | 2018 | |||||||||
Soybean | 2017 | |||||||||
Mushroom | 2016 | |||||||||
Flax | 2017 | |||||||||
Non browning apple | ||||||||||
Canada | Canadian Food Inspection Agency (CFIA) | 11 | Non browning Potato | 2016 | Directive 94–08 (Dir 94–08) Assessment Criteria for Determining Environmental Safety of Plants with Novel Traits | Novelty based regulation | Novelty based regulation | Novelty based regulation | [222,223,224] | |
Herbicide resistant canola | 2015 | |||||||||
Latin America | Argentina | Argentine Biosafety Commission (CONABIA) | 24.5 | HB4 drought resistant wheat | 2020 | Resolution No. 173/15 (2015) | Deregulated | Deregulated | De-regulated (If not transgenic) | [222,223,225] |
Brazil | National Technical Commission for Biosafety (CTNBio) | 53 | No approved crops | Normative Resolution No. 16 (2018) | Deregulated | Deregulated | De-regulated (If not transgenic) | [222,223,226] | ||
Chile | Ministry of Agricultural and Livestock Services (SAG) | Less than 1 | No approved crops | Introduction of methodological procedure (2017) | Deregulated | Deregulated | De-regulated (If not transgenic) | [195,223,227] | ||
Columbia | Colombian Agricutural Institute (ICA) | 0.1 | No approved crops | Resolution No. 00029299 (2019) | Case by case | Case by case | De-regulated (If not transgenic) | [195,223,228] | ||
Honduras | National Committee of Biotechnology and Biosecurity (NCBB) | Less than 1 | No approved crops | Agreement SENASA 008-2019 (2019) | Case by case | Case by case | De-regulated (If not transgenic) | [195,223,229] | ||
Asia and the Pacific | Australia | Food Standards Australia New Zealand (FSANZ) | 0.9 | No approved crops | Gene Technology Act (Measures No. 1) to regulations (2019) | Deregulated | Deregulated | Regulated | [195,223,230] | |
China | National Biosafety Committee (NBC), Ministry of Agriculture and Rural Affairs (MARA) | 2.8 | No approved crops | Administrative rules for safety of agricutural GMOs | Under development | Under development | Under development | [195,223,231] | ||
India | Indian Ministry of Science and Technology (2020), Genetic Engineering Appraisal Committee (GEAC) | 11.4 | No approved crops | Regulatory Framework and Guidelines for Risk Assessment (2020) | Under development | Under development | Under development | [195,222,223] | ||
Japan | The Ministry of Agriculture, Forestary and Fishries (MAFF) | No | Tomato | 2021 | GMO as defined under Cartagena Act (2019) | Deregulated | Deregulated | Regulated | [223,232] | |
New Zealand | Food Standards Australia New Zealand (FSANZ) | No | No approved crops | Hazardous Substances and New Organisms Act (1998) after court decision NZHC 1067 (2014) | Regulated | Regulated | Regulated | [223,233] | ||
Pakistan | National biosafety committee | 2.9 | No approved crops | Pakistan Biosafety Rules, 2005 | Under development | Under development | Under development | [167,234] | ||
European Union | Only Spain and Portugal | 0.1 | No approved crops | Directive 18/2001/EC (2001) after court decision in case C-528/16 | Regulated | Regulated | Regulated | [24,195,222,235] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, A.; Munawar, N.; Khan, Z.; Qusmani, A.T.; Khan, S.H.; Jamil, A.; Ashraf, S.; Ghouri, M.Z.; Aslam, S.; Mubarik, M.S.; et al. An Outlook on Global Regulatory Landscape for Genome-Edited Crops. Int. J. Mol. Sci. 2021, 22, 11753. https://doi.org/10.3390/ijms222111753
Ahmad A, Munawar N, Khan Z, Qusmani AT, Khan SH, Jamil A, Ashraf S, Ghouri MZ, Aslam S, Mubarik MS, et al. An Outlook on Global Regulatory Landscape for Genome-Edited Crops. International Journal of Molecular Sciences. 2021; 22(21):11753. https://doi.org/10.3390/ijms222111753
Chicago/Turabian StyleAhmad, Aftab, Nayla Munawar, Zulqurnain Khan, Alaa T. Qusmani, Sultan Habibullah Khan, Amer Jamil, Sidra Ashraf, Muhammad Zubair Ghouri, Sabin Aslam, Muhammad Salman Mubarik, and et al. 2021. "An Outlook on Global Regulatory Landscape for Genome-Edited Crops" International Journal of Molecular Sciences 22, no. 21: 11753. https://doi.org/10.3390/ijms222111753
APA StyleAhmad, A., Munawar, N., Khan, Z., Qusmani, A. T., Khan, S. H., Jamil, A., Ashraf, S., Ghouri, M. Z., Aslam, S., Mubarik, M. S., Munir, A., Sultan, Q., Abd-Elsalam, K. A., & Qari, S. H. (2021). An Outlook on Global Regulatory Landscape for Genome-Edited Crops. International Journal of Molecular Sciences, 22(21), 11753. https://doi.org/10.3390/ijms222111753