A Potential New Role for Zinc in Age-Related Macular Degeneration through Regulation of Endothelial Fenestration
Abstract
:1. Introduction
2. Results
2.1. Measurement of Bioavailable Zinc in the Culture Media for bEND.5 Cells
2.2. Fenestration of BEND.5 Cells
2.3. Zinc Induces a Concentration and Time-Dependent Rearrangement of PV-1 in bEND.5 Cells
2.4. Size Distribution of Zinc-Induced Fenestrae Were Similar to Those Induced by LA
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Fenestrae Induction
4.3. Immunocytochemistry
4.4. Transmission Electron Microscopy (TEM)
4.5. Measurement of Fenestrae Diameters
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
% of Total Fenestrae Formed | ||
---|---|---|
Fenestrae Diameter (nm) | Zinc | LA |
45–54 | 20.9 | 9.7 |
55–64 | 22.4 | 23.0 |
65–74 | 31.0 | 24.8 |
75–84 | 13.0 | 24.0 |
85–94 | 8.7 | 8.1 |
95–104 | 2.0 | 4.4 |
105–114 | 0.5 | 1.9 |
115–124 | 0.5 | 1.7 |
125–134 | 0.3 | 0.9 |
135–144 | 0.0 | 0.4 |
145–154 | 0.0 | 0.1 |
155–164 | 0.0 | 0.3 |
165–174 | 0.0 | 0.4 |
>175 | 0.8 | 0.4 |
Fenestrae analyzed | 393 | 775 |
Number of cells analyzed | 4 | 6 |
References
- de Jong, P.T.V.M. Age-Related Macular Degeneration. N. Engl. J. Med. 2006, 355, 1474–1485. [Google Scholar] [CrossRef] [PubMed]
- Al-Zamil, W.; Yassin, S. Recent developments in age-related macular degeneration: A review. Clin. Interv. Aging 2017, 12, 1313–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vishwanathan, R.; Chung, M.; Johnson, E.J. A Systematic Review on Zinc for the Prevention and Treatment of Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2013, 54, 3985–3998. [Google Scholar] [CrossRef] [PubMed]
- Age-Related Eye Disease Study Research Group. A Randomized, Placebo-Controlled, Clinical Trial of High-Dose Supplementation with Vitamins C and E, Beta Carotene, and Zinc for Age-Related Macular Degeneration and Vision Loss: AREDS Report No. 8. Arch. Ophthalmol. 2001, 119, 1417–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Leeuwen, R.; Boekhoorn, S.; Vingerling, J.R.; Witteman, J.C.M.; Klaver, C.C.W.; Hofman, A.; de Jong, P.T.V.M. Dietary Intake of Antioxidants and Risk of Age-Related Macular Degeneration. JAMA 2005, 294, 3101–3107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, R.; Peto, T.; Lengyel, I.; Emri, E. Zinc Nutrition and Inflammation in the Aging Retina. Mol. Nutr. Food Res. 2019, 63, 1801049. [Google Scholar] [CrossRef] [PubMed]
- Emri, E.; Kortvely, E.; Dammeier, S.; Klose, F.; Simpson, D.; Consortium, E.-R.; den Hollander, A.I.; Ueffing, M.; Lengyel, I. A Multi-Omics Approach Identifies Key Regulatory Pathways Induced by Long-Term Zinc Supplementation in Human Primary Retinal Pigment Epithelium. Nutrients 2020, 12, 3051. [Google Scholar] [CrossRef] [PubMed]
- Lutty, G.A.; Hasegawa, T.; Baba, T.; Grebe, R.; Bhutto, I.; McLeod, D.S. Development of the human choriocapillaris. Eye 2010, 24, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Ioannidou, S.; Deinhardt, K.; Miotla, J.; Bradley, J.; Cheung, E.; Samuelsson, S.; Ng, Y.-S.; Shima, D.T. An in vitro assay reveals a role for the diaphragm protein PV-1 in endothelial fenestra morphogenesis. Proc. Natl. Acad. Sci. USA 2006, 103, 16770–16775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bearer, E.L.; Orci, L. Endothelial fenestral diaphragms: A quick-freeze, deep-etch study. J. Cell Biol. 1985, 100, 418–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLeod, D.S.; Grebe, R.; Bhutto, I.; Merges, C.; Baba, T.; Lutty, G.A. Relationship between RPE and choriocapillaris in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2009, 50, 4982–4991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saint-Geniez, M.; Kurihara, T.; Sekiyama, E.; Maldonado, A.E.; D’Amore, P.A. An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Proc. Natl. Acad. Sci. USA 2009, 106, 18751–18756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pao, P.-J.; Emri, E.; Abdirahman, S.B.; Soorma, T.; Zeng, H.-H.; Hauck, S.M.; Thompson, R.B.; Lengyel, I. The effects of zinc supplementation on primary human retinal pigment epithelium. J. Trace Elem. Med. Biol. 2018, 49, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blasiak, J.; Pawlowska, E.; Chojnacki, J.; Szczepanska, J.; Chojnacki, C.; Kaarniranta, K. Zinc and Autophagy in Age-Related Macular Degeneration. Int. J. Mol. Sci. 2020, 21, 4994. [Google Scholar] [CrossRef] [PubMed]
- Newsome, D.A.; Swartz, M.; Leone, N.C.; Elston, R.C.; Miller, E. Oral zinc in macular degeneration. Arch. Ophthalmol. 1988, 106, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Bozym, R.A.; Chimienti, F.; Giblin, L.J.; Gross, G.W.; Korichneva, I.; Li, Y.; Libert, S.; Maret, W.; Parviz, M.; Frederickson, C.J.; et al. Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro. Exp. Biol. Med. 2010, 235, 741–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernal, P.J.; Bauer, E.M.; Cao, R.; Maniar, S.; Mosher, M.; Chen, J.; Wang, Q.J.; Glorioso, J.C.; Pitt, B.R.; Watkins, S.C.; et al. A role for zinc in regulating hypoxia-induced contractile events in pulmonary endothelium. Am. J. Physiol. Lung Cell. Mol. Physiol. 2011, 300, L874–L886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrin, L.; Roudeau, S.; Carmona, A.; Domart, F.; Petersen, J.D.; Bohic, S.; Yang, Y.; Cloetens, P.; Ortega, R. Zinc and Copper Effects on Stability of Tubulin and Actin Networks in Dendrites and Spines of Hippocampal Neurons. ACS Chem. Neurosci. 2017, 8, 1490–1499. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.A.; Kim, S.J.; Choi, Y.A.; Yoon, H.-J.; Kim, A.; Lee, J. Retinal VEGFA maintains the ultrastructure and function of choriocapillaris by preserving the endothelial PLVAP. Biochem. Biophys. Res. Commun. 2020, 522, 240–246. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunningham, F.; Cahyadi, S.; Lengyel, I. A Potential New Role for Zinc in Age-Related Macular Degeneration through Regulation of Endothelial Fenestration. Int. J. Mol. Sci. 2021, 22, 11974. https://doi.org/10.3390/ijms222111974
Cunningham F, Cahyadi S, Lengyel I. A Potential New Role for Zinc in Age-Related Macular Degeneration through Regulation of Endothelial Fenestration. International Journal of Molecular Sciences. 2021; 22(21):11974. https://doi.org/10.3390/ijms222111974
Chicago/Turabian StyleCunningham, Fiona, Sabrina Cahyadi, and Imre Lengyel. 2021. "A Potential New Role for Zinc in Age-Related Macular Degeneration through Regulation of Endothelial Fenestration" International Journal of Molecular Sciences 22, no. 21: 11974. https://doi.org/10.3390/ijms222111974
APA StyleCunningham, F., Cahyadi, S., & Lengyel, I. (2021). A Potential New Role for Zinc in Age-Related Macular Degeneration through Regulation of Endothelial Fenestration. International Journal of Molecular Sciences, 22(21), 11974. https://doi.org/10.3390/ijms222111974