The Effect of Glycerin Content in Sodium Alginate/Poly(vinyl alcohol)-Based Hydrogels for Wound Dressing Application
Abstract
:1. Introduction
2. Results and Discussion
2.1. Gel Fraction
2.2. Determination of Swelling Behaviour
2.3. Degradation Tests
2.4. FT-IR Analysis
2.5. SEM Analysis
2.6. Thermal Analysis
2.7. Static Tensile Test
2.8. Biological Studies
3. Materials and Methods
3.1. Materials
3.2. Fabrication of Hydrogel Materials
3.3. Gel Fraction
3.4. Determination of Swelling Behaviour
3.5. Degradation Tests
3.6. FT-IR Analysis
3.7. SEM Analysis
3.8. Thermal Analysis
3.9. Static Tensile Test
3.10. Cell Culture and Cytotoxicity Studies
3.11. Cell Adhesion Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duarte, A.P.; Coelho, J.F.; Bordado, J.C.; Cidade, M.T.; Gil, M.H. Surgical adhesives: Systematic review of the main types and development forecast. Prog. Polym. Sci. 2012, 37, 1031–1050. [Google Scholar] [CrossRef]
- Simões, D.; Miguel, S.P.; Ribeiro, M.P.; Coutinho, P.; Mendonça, A.G.; Correia, I.J. Recent advances on antimicrobial wound dressing: A review. Eur. J. Pharm. Biopharm. 2018, 127, 130–141. [Google Scholar] [CrossRef]
- Pan, Z.; Ye, H.; Wu, D. Recent advances on polymeric hydrogels as wound dressings. APL Bioeng. 2021, 5, 011504. [Google Scholar] [CrossRef]
- Powers, J.G.; Higham, C.; Broussard, K.; Phillips, T.J. Wound healing and treating wounds Chronic wound care and management. J. Am. Acad. Dermatol. 2016, 74, 607–625. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Wang, C.; Liu, H.; Li, Q.; Li, R.; Zhang, Y.; Liu, Y.; Shao, Y.; Wang, J. Selection of Appropriate Wound Dressing for Various Wounds. Front. Bioeng. Biotechnol. 2020, 8, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stout, E.I.; McKessor, A. Glycerin-Based Hydrogel for Infection Control. Adv. Wound Care 2012, 1, 48–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Gupta, A.; Gupta, B. Scar free healing mediated by the release of aloe vera and manuka honey from dextran bionanocomposite wound dressings. Int. J. Biol. Macromol. 2018, 120, 1581–1590. [Google Scholar] [CrossRef]
- Sasikala, L.; Durai, B.; Rathinamoorthy, R. Manuka honey loaded chitosan hydrogel films for wound dressing applications. Int. J. PharmTech Res. 2013, 5, 1774–1785. [Google Scholar]
- Tavakoli, J.; Tang, Y. Honey/PVA hybrid wound dressings with controlled release of antibioticsStructural, physico-mechanical and in-vitro biomedical studies. Mater. Sci. Eng. C 2017, 77, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.; Mendes, A.; Bártolo, P. Alginate/Aloe vera hydrogel films for biomedical applications. Procedia CIRP 2013, 5, 210–215. [Google Scholar] [CrossRef]
- Menda, J.P.; Reddy, T.; Deepika, R.; Devi, P.M.; Sastry, T.P. Preparation and Characterization of Wound Healing Composites of Chitosan, Aloe Vera and Calendula officinalis—A Comparative Study. Am. J. Phytomed. Clin. Ther. 2014, 2, 61–76. [Google Scholar]
- Bialik-Wąs, K.; Pluta, K.; Malina, D.; Barczewski, M.; Malarz, K.; Mrozek-Wilczkiewicz, A. Advanced SA/PVA-based hydrogel matrices with prolonged release of Aloe vera as promising wound dressings. Mater. Sci. Eng. C 2021, 120, 111667. [Google Scholar] [CrossRef] [PubMed]
- Bialik-Wąs, K.; Pielichowski, K. Bio-hybrid acrylic hydrogels containing metronidazole—Loaded poly (acrylic acid-co-methyl methacrylate) nanoparticles and Aloe vera as natural healing agent. Int. J. Polym. Mater. Polym. Biomater. 2018, 68, 915–923. [Google Scholar] [CrossRef]
- Bialik-Wąs, K.; Pluta, K.; Malina, D.; Majka, T.M. Alginate/PVA-based hydrogel matrices with Echinacea purpurea extract as a new approach to dermal wound healing. Int. J. Polym. Mater. Polym. Biomater. 2019, 70, 195–206. [Google Scholar] [CrossRef]
- Babu, M.K.; Prasad, O.S.; Murthy, T.E.G.K. Extract Impregnated Collagen and Crosslinked Collagen Scaffolds. J. Chem. Pharm. Res. 2011, 3, 353–362. [Google Scholar]
- Chandran, V.S.; Amritha, T.S.; Rajalekshmi, G.; Pandimadevi, M. A preliminary in vitro study on the bovine collagen film incorporated with azadirachta indica plant extract as a potential wound dressing material. Int. J. PharmTech Res. 2015, 8, 248–257. [Google Scholar]
- Chandran, V.S.; Amritha, T.S.; Sujatha, R.G.; Pandimadevi, M. Collagen-Azadirachta indica (Neem) Leaves Extract Hybrid Film as a Novel Wound Dressing: In vitro Studies. Int. J. Pharm. Sci. Rev. Res. 2015, 32, 193–199. [Google Scholar]
- Suganya, S.; Ram, T.S.; Lakshmi, B.S.; Giridev, V.R. Herbal Drug Incorporated Antibacterial Nanofibrous Mat Fabricated by Electrospinning: An Excellent Matrix For Wound Dressings. J. Appl. Polym. Sci. 2010, 116, 2658–2667. [Google Scholar] [CrossRef]
- Chellamani, K.P.; Balaji, R.S.V.; Veerasubramanian, D.; Sudharsan, J. Wound Healing Ability of Herbal Drug Incorporated PCL (Poly(ε-caprolactone)) Wound Dressing. J. Acad. Ind. Res. 2014, 2, 622–626. [Google Scholar]
- Pourhojat, F.; Sohrabi, M.; Shariati, S.; Mahdavi, H.; Asadpour, L. Evaluation of poly ε-caprolactone electrospun nanofibers loaded with Hypericum perforatum extract as a wound dressing. Res. Chem. Intermed. 2017, 43, 297–320. [Google Scholar] [CrossRef]
- Güneş, S.; Tıhmınlıoğlu, F. Hypericum perforatum incorporated chitosan films as potential bioactive wound dressing material. Int. J. Biol. Macromol. 2017, 102, 933–943. [Google Scholar] [CrossRef]
- Boonmak, N.; Niyompanich, J.; Chuysinuan, P.; Niamlang, P.; Ekabutr, P.; Supaphol, P. Preparation of mangosteen extract-loaded poly(vinyl acetate) for use as an antibacterial spray-on dressing. J. Drug Deliv. Sci. Technol. 2018, 46, 322–329. [Google Scholar] [CrossRef]
- Panawes, S.; Ekabutr, P.; Niamlang, P.; Pavasant, P.; Chuysinuan, P.; Supaphol, P. Antimicrobial mangosteen extract infused alginate-coated gauze wound dressing. J. Drug Deliv. Sci. Technol. 2017, 41, 182–190. [Google Scholar] [CrossRef]
- Amritha, T.S.; VijiChandran, S.; Rajalekshmy, G.; Sujatha, S.; Devi, M. In vitro studies on the wound dressing prepared using collagen and teak leaves (Tectonagrandis). J. Pharm. Res. 2016, 10, 97–105. [Google Scholar]
- Sibbald, R.G.; Jaimangal, R.P.; Coutts, P.M.; Elliott, J.A. Evaluating a Surfactant-Containing Polymeric Membrane Foam Wound Dressing with Glycerin in Patients with Chronic Pilonidal Sinus Disease. Adv. Skin Wound Care 2018, 31, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Yin, F.; Huang, D.; Zheng, W.; Li, L.; Fu, Y. Synergistic enhancement of toughness and antibacterial properties of plant cellulose/glycerin/chitosan degradable composite membranes. J. Chem. Technol. Biotechnol. 2020, 96, 491–501. [Google Scholar] [CrossRef]
- Arango, M.C.; Montoya, Y.; Peresin, M.S.; Bustamante, J.; Álvarez-López, C. Silk sericin as a biomaterial for tissue engineering: A review. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 1115–1129. [Google Scholar] [CrossRef]
- Soni, H.; Singhai, A.K. A Recent Update of Botanicals for Wound Healing Activity. Int. Res. J. Pharm. 2012, 3, 1–7. [Google Scholar]
- Vanimakhal, R.R.; Ezhilarasi Balasubramanian, S. Phytochemical Qualitative Analysis and Total Tannin Content in the Aqueous Extract of Areca catechu Nut. Asian J. Biomed. Pharm. Sci. 2016, 6, 8–10. [Google Scholar]
- Krishnan K, A.; Thomas, S. Recent advances on herb-derived constituents-incorporated wound-dressing materials: A review. Polym. Adv. Technol. 2019, 30, 823–838. [Google Scholar] [CrossRef]
- Becker, L.C.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Glycerin as Used in Cosmetics. Int. J. Toxicol. 2019, 38, 6S–22S. [Google Scholar] [CrossRef]
- Nikitakis, J.; Lange, B.; Shaw, K.; Eisenmann, C. International Cosmetic Ingredient Dictionary and Handbook; Personal Care Products Council: Washington, DC, USA, 2006; ISBN 1882621360. [Google Scholar]
- Christoph, R.; Schmidt, B.; Steinberner, U.; Dilla, W.; Karinen, T. Glycerol; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2006. [Google Scholar]
- US Food and Drug Administration Center for Food Safety & Applied Nutrition (CFSAN). Voluntary Cosmetic Registration Program—Frequency of Use of Cosmetic Ingredients; CFSAN: College Park, MD, USA, 2013.
- Hu, O.; Chen, G.; Gu, J.; Lu, J.; Zhang, J.; Zhang, X.; Hou, L.; Jiang, X. A facile preparation method for anti-freezing, tough, transparent, conductive and thermoplastic poly(vinyl alcohol)/sodium alginate/glycerol organohydrogel electrolyte. Int. J. Biol. Macromol. 2020, 164, 2512–2523. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wu, Z.; Xu, H.; Wu, Q.; Liu, C.; Yang, B.R.; Gui, X.; Xie, X.; Tao, K.; Shen, Y.; et al. An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Mater. Horiz. 2019, 6, 595–603. [Google Scholar] [CrossRef]
- Qin, Z.; Dong, D.; Yao, M.; Yu, Q.; Sun, X.; Guo, Q.; Zhang, H.; Yao, F.; Li, J. Freezing-Tolerant Supramolecular Organohydrogel with High Toughness, Thermoplasticity, and Healable and Adhesive Properties. ACS Appl. Mater. Interfaces 2019, 11, 21184–21193. [Google Scholar] [CrossRef]
- Shi, S.; Peng, X.; Liu, T.; Chen, Y.N.; He, C.; Wang, H. Facile preparation of hydrogen-bonded supramolecular polyvinyl alcohol-glycerol gels with excellent thermoplasticity and mechanical properties. Polymer 2017, 111, 168–176. [Google Scholar] [CrossRef]
- Zhou, Y.; Wan, C.; Yang, Y.; Yang, H.; Wang, S.; Dai, Z.; Ji, K.; Jiang, H.; Chen, X.; Long, Y. Highly Stretchable, Elastic, and Ionic Conductive Hydrogel for Artificial Soft Electronics. Adv. Funct. Mater. 2019, 29, 1806220. [Google Scholar] [CrossRef]
- Jantrawut, P.; Bunrueangtha, J.; Suerthong, J.; Kantrong, N. Fabrication and characterization of low methoxyl pectin/gelatin/carboxymethyl cellulose absorbent hydrogel film for wound dressing applications. Materials 2019, 12, 1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Zhang, L.; Wang, D.; Peng, F.; Zhao, X.; Liang, C.; Li, H.; Wang, H. Thermosensitive -hydrogel-coated titania nanotubes with controlled drug release and immunoregulatory characteristics for orthopedic applications. Mater. Sci. Eng. C 2021, 122, 111878. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, Z.; Zhao, Y.; Feng, Y.; Zvyagin, A.V.; Wang, J.; Yang, X.; Yang, B.; Lin, Q. Novel Diabetic Foot Wound Dressing Based on Multifunctional Hydrogels with Extensive Temperature-Tolerant, Durable, Adhesive, and Intrinsic Antibacterial Properties. ACS Appl. Mater. Interfaces 2021, 13, 26770–26781. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Jin, K.; Liu, L.; Zhang, H. A rapid self-healing hydrogel based on PVA and sodium alginate with conductive and cold-resistant properties. Soft Matter 2020, 16, 3319–3324. [Google Scholar] [CrossRef]
- Gwon, H.J.; Lim, Y.M.; An, S.J.; Youn, M.H.; Han, S.H.; Chang, H.N.; Nho, Y.C. Characterization of PVA/glycerin hydrogels made by γ-irradiation for advanced wound dressings. Korean J. Chem. Eng. 2009, 26, 1686–1688. [Google Scholar] [CrossRef]
- Bialik-Wąs, K.; Królicka, E.; Malina, D. Impact of the type of crosslinking agents on the properties of modified sodium alginate/poly(Vinyl alcohol) hydrogels. Molecules 2021, 26, 2381. [Google Scholar] [CrossRef] [PubMed]
- Safety Data Sheet (SDS) of Glycerin Provided by the Manufacturer. Available online: http://www.poch.com.pl/1/wysw/msds_clp.php?A=549800db5e6d5db70001 (accessed on 5 July 2021).
- Golafshan, N.; Rezahasani, R.; Tarkesh Esfahani, M.; Kharaziha, M.; Khorasani, S.N. Nanohybrid Hydrogels of Laponite: PVA-Alginate as a Potential Wound Healing Material; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Volume 176, ISBN 8415683111. [Google Scholar]
- Dashnau, J.L.; Nucci, N.V.; Sharp, K.A.; Vanderkooi, J.M. Hydrogen bonding and the cryoprotective properties of glycerol/water mixtures. J. Phys. Chem. B 2006, 110, 13670–13677. [Google Scholar] [CrossRef] [PubMed]
- Alpaslan, D.; Dudu, T.E.; Aktaş, N. Synthesis and characterization of novel organo-hydrogel based agar, glycerol and peppermint oil as a natural drug carrier/release material. Mater. Sci. Eng. C 2021, 118, 111534. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Liu, J.; He, H.; Ma, S.; Yao, J. Flame-retardant PNIPAAm/sodium alginate/polyvinyl alcohol hydrogels used for fire-fighting application: Preparation and characteristic evaluations. Corbohydrate Polym. 2021, 255, 117485. [Google Scholar] [CrossRef]
- Abouzeid, R.E.; Khiari, R.; Salama, A.; Diab, M.; Beneventi, D.; Dufresne, A. In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing. Int. J. Biol. Macromol. 2020, 160, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Bergo, P.; Sobral, P.J.A.; Prison, J.M. Effect of glycerol on physical properties of cassava starch films. J. Food Process. Preserv. 2010, 34, 401–410. [Google Scholar] [CrossRef]
- Oh, G.W.; Nam, S.Y.; Heo, S.J.; Kang, D.H.; Jung, W.K. Characterization of ionic cross-linked composite foams with different blend ratios of alginate/pectin on the synergistic effects for wound dressing application. Int. J. Biol. Macromol. 2020, 156, 1565–1573. [Google Scholar] [CrossRef]
- Avella, M.; Di, E.; Immirzi, B.; Impallomeni, G.; Malinconico, M.; Santagata, G. Addition of glycerol plasticizer to seaweeds derived alginates: In X uence of microstructure on chemical-physical properties. Corbohydrate Polym. 2007, 69, 503–511. [Google Scholar] [CrossRef]
- Yang, M.; Shi, J.; Xia, Y. Effect of SiO2, PVA and glycerol concentrations on chemical and mechanical properties of alginate-based films. Int. J. Biol. Macromol. 2018, 107, 2686–2694. [Google Scholar] [CrossRef]
- Ronca, A.; Amora, U.D.; Raucci, M.G.; Lin, H.; Fan, Y.; Zhang, X.; Ambrosio, L. A combined approach of double network hydrogel and nanocomposites based on hyaluronic acid and poly (ethylene glycol) diacrylate blend. Materials 2018, 11, 2454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Yang, K.; Wu, S.; Chen, X.; Yu, F.; Li, J.; Ma, M.; Zhu, Z. Cytotoxicity and wound healing properties of PVA/ws-chitosan/glycerol hydrogels made by irradiation followed by freeze-thawing. Radiat. Phys. Chem. 2010, 79, 606–611. [Google Scholar] [CrossRef]
- Bialik-Was, K.; Malina, D.; Pluta, K. Sposób Otrzymywania Hydrożelowych Materiałów Opatrunkowych 1AD. Patent Application No. P. 432720, 28 January 2020. [Google Scholar]
Sample Symbol | S1G1 | S2G1 | S3G1 | S4G1 | S2G0.5 | S2G0 |
---|---|---|---|---|---|---|
GF [%] | 45.0 ± 1.2 | 52.7 ± 1.9 | 55.9 ± 0.8 | 59.6 ± 0.8 | 63.4 ± 1.8 | 80.5 ± 2.1 |
Sample Symbol | T5 [°C] | T10 [°C] | T50 [°C] | Tf [°C] | Residual Mass [%] |
---|---|---|---|---|---|
S1G1 | 88.7 | 153.7 | 153.7 | 412.8 | 4.4 |
S2G1 | 106.0 | 163.5 | 163.5 | 397.2 | 7.8 |
S3G1 | 111.3 | 172.5 | 172.5 | 415.7 | 4.4 |
S4G1 | 117.6 | 183.7 | 183.7 | 412.9 | 6.1 |
S2G0.5 | 109.1 | 171.1 | 171.1 | 408.5 | 6.6 |
S2G0 | 161.5 | 273.9 | 273.9 | 411.2 | 6.0 |
Substrate | Producer | Purity Degree |
---|---|---|
Sodium alginate | Sigma-Aldrich Inc. | Reagent grade |
Poly(vinyl alcohol) (Mw 72,000 g/mol) | Avantor Performance Materials Poland S.A. | Reagent grade |
Diacrylate poly(ethylene glycol) Mn. 700 (PEGDA) | Sigma-Aldrich Inc. | Reagent grade |
Ammonium persulphate | Avantor Performance Materials Poland S.A. | Reagent grade |
Glycerin | Avantor Performance Materials Poland S.A. | Reagent grade |
Phosphate buffered saline pH 7.4 ± 0.2 | OXOID™ | n.d. |
Sample Symbol | PVA Concentration [%] | SA Concentration [%] | Glycerin Content [%] |
---|---|---|---|
S1G1 | 5 | 1.5 | 3.4 |
S2G1 | 5 | 2 | 3.4 |
S3G1 | 10 | 1.5 | 3.4 |
S4G1 | 10 | 2 | 3.4 |
S2G0.5 | 5 | 2 | 1.7 |
S2G0 | 5 | 2 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bialik-Wąs, K.; Pluta, K.; Malina, D.; Barczewski, M.; Malarz, K.; Mrozek-Wilczkiewicz, A. The Effect of Glycerin Content in Sodium Alginate/Poly(vinyl alcohol)-Based Hydrogels for Wound Dressing Application. Int. J. Mol. Sci. 2021, 22, 12022. https://doi.org/10.3390/ijms222112022
Bialik-Wąs K, Pluta K, Malina D, Barczewski M, Malarz K, Mrozek-Wilczkiewicz A. The Effect of Glycerin Content in Sodium Alginate/Poly(vinyl alcohol)-Based Hydrogels for Wound Dressing Application. International Journal of Molecular Sciences. 2021; 22(21):12022. https://doi.org/10.3390/ijms222112022
Chicago/Turabian StyleBialik-Wąs, Katarzyna, Klaudia Pluta, Dagmara Malina, Mateusz Barczewski, Katarzyna Malarz, and Anna Mrozek-Wilczkiewicz. 2021. "The Effect of Glycerin Content in Sodium Alginate/Poly(vinyl alcohol)-Based Hydrogels for Wound Dressing Application" International Journal of Molecular Sciences 22, no. 21: 12022. https://doi.org/10.3390/ijms222112022
APA StyleBialik-Wąs, K., Pluta, K., Malina, D., Barczewski, M., Malarz, K., & Mrozek-Wilczkiewicz, A. (2021). The Effect of Glycerin Content in Sodium Alginate/Poly(vinyl alcohol)-Based Hydrogels for Wound Dressing Application. International Journal of Molecular Sciences, 22(21), 12022. https://doi.org/10.3390/ijms222112022