MicroRNA Expression Profiling in Porcine Liver, Jejunum and Serum upon Dietary DON Exposure Reveals Candidate Toxicity Biomarkers
Abstract
:1. Introduction
2. Results
2.1. DON Induces Only Slight Changes in microRNA Expression in Jejunum and Liver
2.2. DON Induces Significant Differential microRNA Expression in the Serum
2.3. Upregulation of microRNA Expression in the Serum Was Validated by qPCR
2.4. DON Effects on microRNA Expression Increase with Longer Exposure Times
2.5. Four microRNAs in Serum Effectively Classify DON Exposed Pigs
2.6. MicroRNA Expression Does Not Correlate with Animal Performance
2.7. Target Genes of Upregulated microRNAs Are Enriched for Critical Signaling Pathways
3. Discussion
4. Materials and Methods
4.1. Animal Experiment
4.1.1. Animals and Study Design
4.1.2. Clinical Examination, Necropsy and Sample Collection
4.2. MicroRNA Analysis in Tissues
4.2.1. MicroRNA Extraction
4.2.2. MicroRNA Sequencing
4.3. MicroRNA Analysis in Serum
4.3.1. MicroRNA Extraction
4.3.2. MicroRNA Sequencing
4.3.3. Validation of microRNA Expression in Serum by qPCR
4.4. Bioinformatics and Data Analysis
4.4.1. MicroRNA Sequencing Data
4.4.2. MicroRNA qPCR Data
4.4.3. Target Gene Prediction
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pestka, J.J. Deoxynivalenol: Toxicity, Mechanisms and Animal Health Risks. Anim. Feed Sci. Technol. 2007, 137, 283–298. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [Green Version]
- Pestka, J. Toxicological Mechanisms and Potential Health Effects of Deoxynivalenol and Nivalenol. World Mycotoxin J. 2010, 3, 323–347. [Google Scholar] [CrossRef]
- Dänicke, S.; Brezina, U. Kinetics and Metabolism of the Fusarium Toxin Deoxynivalenol in Farm Animals: Consequences for Diagnosis of Exposure and Intoxication and Carry Over. Food Chem. Toxicol. 2013, 60, 58–75. [Google Scholar] [CrossRef]
- Pierron, A.; Alassane-Kpembi, I.; Oswald, I.P. Impact of Two Mycotoxins Deoxynivalenol and Fumonisin on Pig Intestinal Health. Porc. Health Manag. 2016, 2, 21. [Google Scholar] [CrossRef] [PubMed]
- Andretta, I.; Kipper, M.; Lehnen, C.R.; Hauschild, L.; Vale, M.M.; Lovatto, P.A. Meta-Analytical Study of Productive and Nutritional Interactions of Mycotoxins in Growing Pigs. Animal 2012, 6, 1476–1482. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-K. Extracellular MicroRNAs as Biomarkers in Human Disease. Chonnam Med. J. 2015, 51, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Ghai, V.; Wang, K. Recent Progress toward the Use of Circulating MicroRNAs as Clinical Biomarkers. Arch. Toxicol. 2016, 90, 2959–2978. [Google Scholar] [CrossRef]
- Schraml, E.; Hackl, M.; Grillari, J. MicroRNAs and Toxicology: A Love Marriage. Toxicol. Rep. 2017, 4, 634–636. [Google Scholar] [CrossRef]
- Miretti, S.; Lecchi, C.; Ceciliani, F.; Baratta, M. MicroRNAs as Biomarkers for Animal Health and Welfare in Livestock. Front. Vet. Sci. 2020, 7, 578193. [Google Scholar] [CrossRef] [PubMed]
- Rong, X.; Sun-Waterhouse, D.; Wang, D.; Jiang, Y.; Li, F.; Chen, Y.; Zhao, S.; Li, D. The Significance of Regulatory MicroRNAs: Their Roles in Toxicodynamics of Mycotoxins and in the Protection Offered by Dietary Therapeutics Against Mycotoxin-Induced Toxicity. Compr. Rev. Food Sci. Food Saf. 2019, 18, 48–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, M.; Chen, T.; Xi, Q.; Hou, L.; Luo, J.; Zeng, B.; Li, M.; Sun, J.; Zhang, Y. Porcine Milk Exosome MiRNAs Protect Intestinal Epithelial Cells against Deoxynivalenol-Induced Damage. Biochem. Pharmacol. 2020, 175, 113898. [Google Scholar] [CrossRef]
- Hou, L.; Tong, X.; Lin, S.; Yu, M.; Ye, W.-C.; Xie, M. MiR-221/222 Ameliorates Deoxynivalenol-Induced Apoptosis and Proliferation Inhibition in Intestinal Epithelial Cells by Targeting PTEN. Front. Cell Dev. Biol. 2021, 9, 1097. [Google Scholar] [CrossRef] [PubMed]
- Brzuzan, P.; Woźny, M.; Wolińska-Nizioł, L.; Piasecka, A.; Florczyk, M.; Jakimiuk, E.; Góra, M.; Łuczyński, M.K.; Gajȩcki, M. MicroRNA Expression Profiles in Liver and Colon of Sexually Immature Gilts after Exposure to Fusarium Mycotoxins. Pol. J. Vet. Sci. 2015, 18, 29–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schelstraete, W.; Devreese, M.; Croubels, S. Comparative Toxicokinetics of Fusarium Mycotoxins in Pigs and Humans. Food Chem. Toxicol. 2020, 137, 111140. [Google Scholar] [CrossRef] [PubMed]
- Bünger, M.; Dippel, M.; Ruczizka, U.; Nagl, V.; Grenier, B.; Ladinig, A. Mykotoxine Und Ihr Einfluss Auf Die Schweinegesundheit. Tieraerztl Umsch/Pferd Nutztier 2020, 3, 22–28. [Google Scholar]
- Friedman, R.C.; Farh, K.K.-H.; Burge, C.B.; Bartel, D.P. Most Mammalian MRNAs Are Conserved Targets of MicroRNAs. Genome Res. 2008, 19, 92–105. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Grasl-Kraupp, B.; et al. Risks to Human and Animal Health Related to the Presence of Deoxynivalenol and Its Acetylated and Modified Forms in Food and Feed. EFSA J. 2017, 15, e04718. [Google Scholar] [CrossRef]
- Grenier, B.; Applegate, T. Modulation of Intestinal Functions Following Mycotoxin Ingestion: Meta-Analysis of Published Experiments in Animals. Toxins 2013, 5, 396–430. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Chen, L.; Nüssler, A.K.; Liu, L.; Yang, W. Current Sights for Mechanisms of Deoxynivalenol-Induced Hepatotoxicity and Prospective Views for Future Scientific Research: A Mini Review. J. Appl. Toxicol. 2017, 37, 518–529. [Google Scholar] [CrossRef]
- Grenier, B.; Bracarense, A.F.L.; Schwartz, H.E.; Lucioli, J.; Cossalter, A.; Moll, W.; Schatzmayr, G.; Oswald, I.P. Biotransformation Approaches To Alleviate the Effects Induced by Fusarium Mycotoxins in Swine. J. Agric. Food Chem. 2013, 61, 6711–6719. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.; Zheng, Y.; Jagadeeswaran, G.; Macmil, S.L.; Graham, W.B.; Roe, B.A.; Desilva, U.; Zhang, W.; Sunkar, R. Cloning, Characterization and Expression Analysis of Porcine MicroRNAs. BMC Genom. 2009, 10, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pestka, J.J. Deoxynivalenol-Induced Proinflammatory Gene Expression: Mechanisms and Pathological Sequelae. Toxins 2010, 2, 1300–1317. [Google Scholar] [CrossRef] [Green Version]
- Cui, C.; Cui, Q. The Relationship of Human Tissue MicroRNAs with Those from Body Fluids. Sci. Rep. 2020, 10, 5644. [Google Scholar] [CrossRef] [Green Version]
- Tao, X.; Xu, Z.; Men, X. Analysis of Serum MicroRNA Expression Profiles and Comparison with Small Intestinal MicroRNA Expression Profiles in Weaned Piglets. PLoS ONE 2016, 11, e0162776. [Google Scholar] [CrossRef] [PubMed]
- Pestka, J.J. Deoxynivalenol-Induced IgA Production and IgA Nephropathy-Aberrant Mucosal Immune Response with Systemic Repercussions. Toxicol. Lett. 2003, 140–141, 287–295. [Google Scholar] [CrossRef]
- Gajęcka, M.; Tarasiuk, M.; Zielonka, Ł.; Dąbrowski, M.; Nicpoń, J.; Baranowski, M.; Gajęcki, M.T. Changes in the Metabolic Profile and Body Weight of Pre-Pubertal Gilts during Prolonged Monotonic Exposure to Low Doses of Zearalenone and Deoxynivalenol. Toxicon 2017, 125, 32–43. [Google Scholar] [CrossRef]
- Kim, J.; Cho, I.S.; Hong, J.S.; Choi, Y.K.; Kim, H.; Lee, Y.S. Identification and Characterization of New MicroRNAs from Pig. Mamm. Genome 2008, 19, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, E.O.; Bracarense, A.P.F.L.; Oswald, I.P. Mycotoxins and Oxidative Stress: Where Are We? World Mycotoxin J. 2018, 11, 113–133. [Google Scholar] [CrossRef]
- Tang, Y.; Li, J.; Li, F.; Hu, C.A.A.; Liao, P.; Tan, K.; Tan, B.; Xiong, X.; Liu, G.; Li, T.; et al. Autophagy Protects Intestinal Epithelial Cells against Deoxynivalenol Toxicity by Alleviating Oxidative Stress via IKK Signaling Pathway. Free Radic. Biol. Med. 2015, 89, 944–951. [Google Scholar] [CrossRef]
- Wu, Q.-H.; Wang, X.; Yang, W.; Nüssler, A.K.; Xiong, L.-Y.; Kuča, K.; Dohnal, V.; Zhang, X.-J.; Yuan, Z.-H. Oxidative Stress-Mediated Cytotoxicity and Metabolism of T-2 Toxin and Deoxynivalenol in Animals and Humans: An Update. Arch. Toxicol. 2014, 88, 1309–1326. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Li, Q.; Cao, Q.; Wang, S.; Liu, H.; Li, Q. Integrated Analysis of MiRNA-MRNA Interaction Network in Porcine Granulosa Cells Undergoing Oxidative Stress. Oxid. Med. Cell. Longev. 2019, 2019, 1041583. [Google Scholar] [CrossRef] [Green Version]
- Wan, L.Y.M.; Turner, P.C.; El-Nezami, H. Individual and Combined Cytotoxic Effects of Fusarium Toxins (Deoxynivalenol, Nivalenol, Zearalenone and Fumonisins B1) on Swine Jejunal Epithelial Cells. Food Chem. Toxicol. 2013, 57, 276–283. [Google Scholar] [CrossRef]
- Gu, X.; Guo, W.; Zhao, Y.; Liu, G.; Wu, J.; Chang, C. Deoxynivalenol-Induced Cytotoxicity and Apoptosis in IPEC-J2 Cells through the Activation of Autophagy by Inhibiting PI3K-AKT-MTOR Signaling Pathway. ACS Omega 2019, 4, 18478–18486. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Wang, Q.-C.; Zhu, C.-C.; Liu, J.; Zhang, Y.; Cui, X.-S.; Kim, N.-H.; Sun, S.-C. Deoxynivalenol Exposure Induces Autophagy/Apoptosis and Epigenetic Modification Changes during Porcine Oocyte Maturation. Toxicol. Appl. Pharmacol. 2016, 300, 70–76. [Google Scholar] [CrossRef]
- Zhang, Z.-Q.; Wang, S.-B.; Wang, R.-G.; Zhang, W.; Wang, P.-L.; Su, X.-O. Phosphoproteome Analysis Reveals the Molecular Mechanisms Underlying Deoxynivalenol-Induced Intestinal Toxicity in IPEC-J2 Cells. Toxins 2016, 8, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, K.; Cui, Y.; Sun, T.; Qi, X.; Zhang, Y.; Lin, H. Antagonistic Effect of Selenium on Lead-Induced Neutrophil Apoptosis in Chickens via MiR-16-5p Targeting of PiK3R1 and IGF1R. Chemosphere 2020, 246, 125794. [Google Scholar] [CrossRef]
- Pan, X.; Whitten, D.A.; Wu, M.; Chan, C.; Wilkerson, C.G.; Pestka, J.J. Early Phosphoproteomic Changes in the Mouse Spleen during Deoxynivalenol-Induced Ribotoxic Stress. Toxicol. Sci. 2013, 135, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhu, M.; Chen, M.; Fan, H.; Fu, H.; Zhou, J.; Zhai, Z.; Gao, C.; Yan, H.; Wang, X. Acute Exposure to Deoxynivalenol Inhibits Porcine Enteroid Activity via Suppression of the Wnt/β-Catenin Pathway. Toxicol. Lett. 2019, 305, 19–31. [Google Scholar] [CrossRef]
- Tang, S.; Chen, S.; Huang, B.; Jiang, J.; Wen, J.; Deng, Y. Deoxynivalenol Induces Inhibition of Cell Proliferation via the Wnt/β-Catenin Signaling Pathway. Biochem. Pharmacol. 2019, 166, 12–22. [Google Scholar] [CrossRef]
- Gulei, D.; Magdo, L.; Jurj, A.; Raduly, L.; Cojocneanu-Petric, R.; Moldovan, A.; Moldovan, C.; Florea, A.; Pasca, S.; Pop, L.; et al. The Silent Healer: MiR-205-5p up-Regulation Inhibits Epithelial to Mesenchymal Transition in Colon Cancer Cells by Indirectly up-Regulating E-Cadherin Expression. Cell Death Dis. 2018, 9, 66. [Google Scholar] [CrossRef]
- Cao, L.; Yang, J.; Fu, X.; Lin, Y.; Lin, F.; Huang, B. The MicroRNA MiR-205 Inhibits Epithelial-Messenchymal Transition in HK-2 Cells by down-Regulating ZEB1 and ZEB2 Expressions. J. South. Med. Univ. 2016, 36, 1700–1705. [Google Scholar]
- Liu, R.; Wang, M.; Su, L.; Li, X.; Zhao, S.; Yu, M. The Expression Pattern of MicroRNAs and the Associated Pathways Involved in the Development of Porcine Placental Folds That Contribute to the Expansion of the Exchange Surface Area. Biol. Reprod. 2015, 93, 1–13. [Google Scholar] [CrossRef]
- Campbell, H.K.; Maiers, J.L.; DeMali, K.A. Interplay between Tight Junctions and Adherens Junctions. Exp. Cell Res. 2017, 358, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Tang, S.; Tan, B.; Li, J.; Qi, M.; Cui, Z.; Zha, A.; Wang, Y.; Yin, Y.; Sun, P.; et al. Chloroquine Improves Deoxynivalenol-Induced Inflammatory Response and Intestinal Mucosal Damage in Piglets. Oxid. Med. Cell. Longev. 2020, 2020, 9834813. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, E.O.; Gerez, J.R.; Hohmann, M.S.N.; Verri, W.A.; Bracarense, A.P.F.R.L. Phytic Acid Decreases Oxidative Stress and Intestinal Lesions Induced by Fumonisin B1 and Deoxynivalenol in Intestinal Explants of Pigs. Toxins 2019, 11, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierron, A.; Bracarense, A.P.F.L.; Cossalter, A.-M.; Laffitte, J.; Schwartz-Zimmermann, H.E.; Schatzmayr, G.; Pinton, P.; Moll, W.-D.; Oswald, I.P. Deepoxy-Deoxynivalenol Retains Some Immune-Modulatory Properties of the Parent Molecule Deoxynivalenol in Piglets. Arch. Toxicol. 2018, 92, 3381–3389. [Google Scholar] [CrossRef]
- Basso, K.; Gomes, F.; Bracarense, A. Deoxynivanelol and Fumonisin, Alone or in Combination, Induce Changes on Intestinal Junction Complexes and in E-Cadherin Expression. Toxins 2013, 5, 2341–2352. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, L.; Zhang, G. A Proteomic Study on the Protective Effect of Kaempferol Pretreatment against Deoxynivalenol-Induced Intestinal Barrier Dysfunction in a Caco-2 Cell Model. Food Funct. 2020, 11, 7266–7279. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Terciolo, C.; Bracarense, A.P.F.L.; Payros, D.; Pinton, P.; Oswald, I.P. In Vitro and in Vivo Effects of a Mycotoxin, Deoxynivalenol, and a Trace Metal, Cadmium, Alone or in a Mixture on the Intestinal Barrier. Environ. Int. 2019, 132, 105082. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Huang, W.; Sun, Y.; Li, Y. Deoxynivalenol Induced Spermatogenesis Disorder by Blood-Testis Barrier Disruption Associated with Testosterone Deficiency and Inflammation in Mice. Environ. Pollut. 2020, 264, 114748. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Liu, Y.; Bian, X.; Zhang, Y.; Li, Y.; Zhang, Q.; Yin, M. MiR-205-5p Inhibits Psoriasis-associated Proliferation and Angiogenesis: Wnt/Β-catenin and Mitogen-activated Protein Kinase Signaling Pathway Are Involved. J. Dermatol. 2020, 47, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, X.; Li, J.; He, S.; Zhuang, J.; Wang, G.; Ye, Y.; Xia, W. LncRNA Gas5 Regulates Granulosa Cell Apoptosis and Viability Following Radiation by X-Ray through Sponging MiR-205-5p and Wnt/β-Catenin Signaling Pathway Ingranulosa Cell Tumor of Ovary. Trop. J. Pharm. Res. 2021, 19, 2491–2498. [Google Scholar] [CrossRef]
- European Commission. Commission Recommendation of 17 August 2006 on the Presence of Deoxynivalenol, Zearalenone, Ochratoxin A, T-2 and HT-2 and Fumonisins in Products Intended for Animal Feeding. Off. J. Eur. Union 2006, L229, 7–9. [Google Scholar]
- Saenz, J.S.; Kurz, A.; Ruczizka, U.; Bünger, M.; Dippel, M.; Nagl, V.; Grenier, B.; Ladinig, A.; Seifert, J.; Selberherr, E. Metaproteomics Reveals Alteration of the Gut Microbiome in Weaned Piglets Due to the Ingestion of the Mycotoxins Deoxynivalenol and Zearalenone. Toxins 2021, 13, 583. [Google Scholar] [CrossRef]
- Grenier, B.; Hackl, M.; Skalicky, S.; Thamhesl, M.; Moll, W.-D.; Berrios, R.; Schatzmayr, G.; Nagl, V. MicroRNAs in Porcine Uterus and Serum Are Affected by Zearalenone and Represent a New Target for Mycotoxin Biomarker Discovery. Sci. Rep. 2019, 9, 9408. [Google Scholar] [CrossRef]
- Kirschner, M.B.; Kao, S.C.; Edelman, J.J.; Armstrong, N.J.; Vallely, M.P.; van Zandwijk, N.; Reid, G. Haemolysis during Sample Preparation Alters MicroRNA Content of Plasma. PLoS ONE 2011, 6, e24145. [Google Scholar] [CrossRef]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and Memory-Efficient Alignment of Short DNA Sequences to the Human Genome. Genome Biol. 2009, 10, R25. [Google Scholar] [CrossRef] [Green Version]
- Kozomara, A.; Griffiths-Jones, S. MiRBase: Annotating High Confidence MicroRNAs Using Deep Sequencing Data. Nucleic Acids Res. 2014, 42, 68–73. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. PROC: An Open-Source Package for R and S+ to Analyze and Compare ROC Curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Vlachos, I.S.; Zagganas, K.; Paraskevopoulou, M.D.; Georgakilas, G.; Karagkouni, D.; Vergoulis, T.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-MiRPath v3.0: Deciphering MicroRNA Function with Experimental Support. Nucleic Acids Res. 2015, 43, W460–W466. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.Y.; Lin, Y.C.D.; Li, J.; Huang, K.Y.; Shrestha, S.; Hong, H.C.; Tang, Y.; Chen, Y.G.; Jin, C.N.; Yu, Y.; et al. MiRTarBase 2020: Updates to the Experimentally Validated MicroRNA-Target Interaction Database. Nucleic Acids Res. 2020, 48, D148–D154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paraskevopoulou, M.D.; Georgakilas, G.; Kostoulas, N.; Vlachos, I.S.; Vergoulis, T.; Reczko, M.; Filippidis, C.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-MicroT Web Server v5.0: Service Integration into MiRNA Functional Analysis Workflows. Nucleic Acids Res. 2013, 41, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A Graphical Gene-Set Enrichment Tool for Animals and Plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
MicroRNA ID | Fold-Change Treated vs. Control | Adj. p-Value vs. Control | |||
---|---|---|---|---|---|
DON_LOW | DON_HIGH | DON_LOW | DON_HIGH | ||
Upregulated microRNAs | ssc-miR-16 | 2.325 | 1.709 | 0.082 | 0.067 |
ssc-miR-17-5p | n.s. | 2.288 | n.s. | 0.053 | |
ssc-miR-92a | n.s. | 1.391 | n.s. | 0.067 | |
ssc-miR-128 | 2.180 | 1.849 | 0.070 | 0.053 | |
ssc-miR-148a-3p | n.s. | 1.435 | n.s. | 0.014 | |
ssc-miR-205 | 54.720 | 34.344 | 0.059 | 0.032 | |
ssc-miR-339 | 2.540 | n.s. | 0.082 | n.s. | |
ssc-miR-339-5p | 2.542 | n.s. | 0.082 | n.s. | |
ssc-miR-361-3p | 4.064 | n.s. | 0.082 | n.s. | |
ssc-miR-451 | 2.594 | 1.751 | 0.073 | 0.052 | |
Downregulated microRNAs | ssc-miR-10b | 0.457 | 0.593 | 0.059 | 0.033 |
ssc-miR-10a-5p | 0.572 | n.s. | 0.082 | n.s. | |
ssc-miR-92b-3p | 0.480 | n.s. | 0.082 | n.s. | |
ssc-miR-99b | 0.381 | 0.428 | 0.070 | 0.013 | |
ssc-miR-103 | n.s. | 0.646 | 0.013 | n.s. | |
ssc-miR-107 | n.s. | 0.651 | 0.013 | n.s. | |
ssc-miR-126-5p | 0.407 | n.s. | 0.059 | n.s. | |
ssc-miR-192 | 0.456 | 0.526 | 0.082 | 0.017 | |
ssc-miR-374a-3p | 0.414 | 0.368 | 0.070 | 0.016 | |
ssc-miR-1388 | 0.412 | n.s. | 0.07 | n.s. | |
ssc-let-7a | n.s. | 0.706 | n.s. | 0.097 | |
ssc-let-7f-5p | n.s. | 0.706 | n.s. | 0.048 | |
ssc-let-7g | n.s. | 1.582 | n.s. | 0.097 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segura-Wang, M.; Grenier, B.; Ilic, S.; Ruczizka, U.; Dippel, M.; Bünger, M.; Hackl, M.; Nagl, V. MicroRNA Expression Profiling in Porcine Liver, Jejunum and Serum upon Dietary DON Exposure Reveals Candidate Toxicity Biomarkers. Int. J. Mol. Sci. 2021, 22, 12043. https://doi.org/10.3390/ijms222112043
Segura-Wang M, Grenier B, Ilic S, Ruczizka U, Dippel M, Bünger M, Hackl M, Nagl V. MicroRNA Expression Profiling in Porcine Liver, Jejunum and Serum upon Dietary DON Exposure Reveals Candidate Toxicity Biomarkers. International Journal of Molecular Sciences. 2021; 22(21):12043. https://doi.org/10.3390/ijms222112043
Chicago/Turabian StyleSegura-Wang, Maia, Bertrand Grenier, Suzana Ilic, Ursula Ruczizka, Maximiliane Dippel, Moritz Bünger, Matthias Hackl, and Veronika Nagl. 2021. "MicroRNA Expression Profiling in Porcine Liver, Jejunum and Serum upon Dietary DON Exposure Reveals Candidate Toxicity Biomarkers" International Journal of Molecular Sciences 22, no. 21: 12043. https://doi.org/10.3390/ijms222112043
APA StyleSegura-Wang, M., Grenier, B., Ilic, S., Ruczizka, U., Dippel, M., Bünger, M., Hackl, M., & Nagl, V. (2021). MicroRNA Expression Profiling in Porcine Liver, Jejunum and Serum upon Dietary DON Exposure Reveals Candidate Toxicity Biomarkers. International Journal of Molecular Sciences, 22(21), 12043. https://doi.org/10.3390/ijms222112043