Nanoparticle-Based Drug Delivery Systems for Photodynamic Therapy of Metastatic Melanoma: A Review
Abstract
:1. Introduction
2. Photodynamic Therapy
2.1. PDT-Mediated Modes of Cell Death Induction
2.2. PSs Utilized in Metastatic Melanoma Treatment
2.3. Limitations of PDT in Metastatic Melanoma Treatment
3. Nanotechnology
3.1. Application of Nanotechnology in PDT Treatment
3.2. Passive PDT Nanoparticle-Mediated PS Delivery Platforms for MM Treatment
3.3. Active PDT Nanoparticle-Mediated PS Delivery Platforms for MM Treatment
3.4. Applications of Active-Mediated NP Delivery Platforms in PDT Treatment of 3-D Tumor Models of MM
4. Clinical Studies
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
3D | Three-dimensional |
5-ALA | 5-aminolevulinic acid |
AMP | Amphipathic peptide |
AgNPs | Silver nanoparticles |
AlPcS4Cl | Aluminum (III) phthalocyanine chloride tetrasulphate |
ATP | Adenosine triphosphate |
AuNP | Gold nanoparticles |
BCC | Basal cell carcinoma |
Bcl-2 | B-cell lymphoma 2 |
BDP | BODIPY |
BRAF | B-Raf serine/threonine-protein |
CAT | Catalase |
Ce6 | Chlorin e6 |
CPP | Chitosan/methoxy polyethylene glycol-polylactic acid |
CPMV | Cowpea mosaic virus |
CTLA-4 | Cytotoxic T-lymphocyte-associated protein 4 |
CTX | Cabazitaxel |
DPPC | 1,2-dipalmitoyl-sn-glycero-3-phosphocholine |
DRB | Daunorubicin |
DTIC | Dacarbazine |
ECM | Extracellular matrix |
EPR | Enhanced permeability and retention effect |
FDA | Food and drug administration |
Fe-CHL | Ferrous chlorophyllin |
HA | Hyaluronic acid |
HpD | Hematoporphyrin derivative |
Hyp | Hypericin |
ICG | Indocyanine green |
LDH | Layered double hydroxide |
mAb | Monoclonal antibodies |
MB | Methylene blue |
MC1 | Melanocortin receptor |
MIA | Melanoma inhibitory activity |
MPc | Metallophthalocyanine |
m-THPC | Meta-tetrahydroxyphenylchlorin |
MM | Metastatic melanoma |
MSNs | Mesoporous silica nanoparticles |
NMSC | Non-melanoma skin cancer |
NAP | Naproxen amides |
NP | Nanoparticle |
PEG | Polyethylene glycol |
PAMAM | Poly amino-amine |
PD-1 | Programmed cell death 1 |
PDT | Photodynamic therapy |
PdTCPP | Palladium porphyrin |
PFCs | Perfluorocarbons |
PMs | polymeric micelles |
Pcs | phthalocyanines |
PLGA | Poly lactic-co-glycolic acid |
POR | 5,10,15,20-Tetrakis(2,4-dihydroxyphenyl) porphyrin |
PpIX | Protoporphyrin IX |
PS | Photosensitizer |
PTU | Phenylthiourea |
RB | Rose Bengal |
RGD | Arginylglycylaspartic acid |
ROS | Reactive oxygen species (ROS), |
SCC | Squamous cell carcinoma |
TMV | Tobacco mosaic virus nanorods |
TMZ | Temozolomide |
TRAIL | TNF-related apoptosis inducing ligand |
Ver | Verteporfin |
WHO | World Health Organization |
UV | Ultraviolet radiation |
Zn-EpPor | Zinc n-based porphyrin |
ZnMCPPc | Zinc monocarboxyphenoxy phthalocyanine |
ZnPcOC | Zinc octacarboxyphthalocyanine |
ZnPcS | Zinc phthalocyanine |
ZnPcSO4 | Zinc Phthalocyanine Tetrasulphonate |
References
- Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled Drug Delivery Vehicles for Cancer Treatment and Their Performance. Signal Transduct. Target. Ther. 2018, 3, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Apalla, Z.; Nashan, D.; Weller, R.B.; Castellsagué, X. Skin Cancer: Epidemiology, Disease Burden, Pathophysiology, Diagnosis, and Therapeutic Approaches. Dermatol. Ther. 2017, 7, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Liu-Smith, F.; Jia, J.; Zheng, Y. UV-Induced Molecular Signaling Differences in Melanoma and Non-melanoma Skin Cancer. In Ultraviolet Light in Human Health, Diseases and Environment; Ahmad, S.I., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2017; pp. 27–40. ISBN 978-3-319-56017-5. [Google Scholar]
- Naidoo, C.; Kruger, C.A.; Abrahamse, H. Photodynamic Therapy for Metastatic Melanoma Treatment: A Review. Technol. Cancer Res. Treat. 2018, 17, 1533033818791795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monge-Fuentes, V.; Muehlmann, L.A.; de Azevedo, R.B. Perspectives on the Application of Nanotechnology in Photodynamic Therapy for the Treatment of Melanoma. Nano Rev. 2014, 5, 24381. [Google Scholar] [CrossRef] [Green Version]
- Naves, L.B.; Dhand, C.; Venugopal, J.R.; Rajamani, L.; Ramakrishna, S.; Almeida, L. Nanotechnology for the Treatment of Melanoma Skin Cancer. Prog. Biomater. 2017, 6, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, S.K.; Porter, S.L.; Rizk, N.; Sheng, Y.; McKaig, T.; Burnett, K.; White, B.; Nesbitt, H.; Matin, R.N.; McHale, A.P.; et al. Rose Bengal–Amphiphilic Peptide Conjugate for Enhanced Photodynamic Therapy of Malignant Melanoma. J. Med. Chem. 2020, 63, 1328–1336. [Google Scholar] [CrossRef]
- Nguyen, K.; Hignett, E.; Khachemoune, A. Current and Emerging Treatment Options for Metastatic Melanoma: A Focused Review. Dermatol. Online J. 2020, 26, 9551. [Google Scholar] [CrossRef]
- Domingues, B.; Lopes, J.M.; Soares, P.; Pópulo, H. Melanoma Treatment in Review. Immunotargets Ther. 2018, 7, 35–49. [Google Scholar] [CrossRef] [Green Version]
- Madamsetty, V.S.; Paul, M.K.; Mukherjee, A.; Mukherjee, S. Functionalization of Nanomaterials and Their Application in Melanoma Cancer Theranostics. ACS Biomater. Sci. Eng. 2020, 6, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Y.; Tan, L.-C.; Dong, L.-W.; Zhang, W.-Q.; Shen, X.-X.; Lu, X.; Zheng, H.; Lu, Y.-G. Susceptibility and Resistance Mechanisms During Photodynamic Therapy of Melanoma. Front. Oncol. 2020, 10, 597. [Google Scholar] [CrossRef] [PubMed]
- Tambunlertchai, S.; Geary, S.M.; Salem, A.K. Skin Penetration Enhancement Strategies Used in the Development of Melanoma Topical Treatments. AAPS J. 2021, 23, 19. [Google Scholar] [CrossRef]
- Tang, J.-Q.; Hou, X.-Y.; Yang, C.-S.; Li, Y.-X.; Xin, Y.; Guo, W.-W.; Wei, Z.-P.; Liu, Y.-Q.; Jiang, G. Recent Developments in Nanomedicine for Melanoma Treatment. Int. J. Cancer 2017, 141, 646–653. [Google Scholar] [CrossRef] [Green Version]
- Khanna, S.; Chauhan, A.; Bhatt, A.N.; Dwarakanath, B.S.R. Chapter 13—Multicellular tumor spheroids as in vitro models for studying tumor responses to anticancer therapies. In Animal Biotechnology, 2nd ed.; Verma, A.S., Singh, A., Eds.; Academic Press: Boston, MI, USA, 2020; pp. 251–268. ISBN 978-0-12-811710-1. [Google Scholar]
- Mohammad-Hadi, L.; MacRobert, A.J.; Loizidou, M.; Yaghini, E. Photodynamic Therapy in 3D Cancer Models and the Utilisation of Nanodelivery Systems. Nanoscale 2018, 10, 1570–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemany-Ribes, M.; García-Díaz, M.; Busom, M.; Nonell, S.; Semino, C.E. Toward a 3D Cellular Model for Studying in Vitro the Outcome of Photodynamic Treatments: Accounting for the Effects of Tissue Complexity. Tissue Eng. Part A 2013, 19, 1665–1674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Sabanayagam, C.R.; Harrington, D.A.; Farach-Carson, M.C.; Jia, X. A Hydrogel-Based Tumor Model for the Evaluation of Nanoparticle-Based Cancer Therapeutics. Biomaterials 2014, 35, 3319–3330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Boughton, P.; Rose, B.; Lee, C.S.; Hong, A.M. The Use of Porous Scaffold as a Tumor Model. Int. J. Biomater. 2013, 2013, 396056. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.-W.; Gao, J.-Q. Application of 3D Cultured Multicellular Spheroid Tumor Models in Tumor-Targeted Drug Delivery System Research. J. Control. Release 2018, 270, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Pinto, B.; Henriques, A.C.; Silva, P.M.A.; Bousbaa, H. Three-Dimensional Spheroids as In Vitro Preclinical Models for Cancer Research. Pharmaceutics 2020, 12, 1186. [Google Scholar] [CrossRef]
- Montaseri, H.; Kruger, C.; Abrahamse, H. Inorganic Nanoparticles Applied for Active Targeted Photodynamic Therapy of Breast Cancer. Pharmaceutics 2021, 13, 296. [Google Scholar] [CrossRef]
- Mfouo-Tynga, I.S.; Dias, L.D.; Inada, N.M.; Kurachi, C. Features of Third Generation Photosensitizers Used in Anticancer Photodynamic Therapy: Review. Photodiagnosis Photodyn. Ther. 2021, 34, 102091. [Google Scholar] [CrossRef]
- Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic Therapy—Mechanisms, Photosensitizers and Combinations. Biomed. Pharmacother. 2018, 106, 1098–1107. [Google Scholar] [CrossRef]
- Nkune, N.; Kruger, C.; Abrahamse, H. Possible Enhancement of Photodynamic Therapy (PDT) Colorectal Cancer Treatment When Combined with Cannabidiol. Anti-Cancer Agents Med. Chem. 2020, 20, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Amos-Tautua, B.M.; Songca, S.P.; Oluwafemi, O.S. Application of Porphyrins in Antibacterial Photodynamic Therapy. Molecules 2019, 24, 2456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muniyandi, K.; George, B.; Parimelazhagan, T.; Abrahamse, H. Role of Photoactive Phytocompounds in Photodynamic Therapy of Cancer. Molecules 2020, 25, 4102. [Google Scholar] [CrossRef] [PubMed]
- Gift, M.; Ann, K.; Mfouo Tynga, I.; Abrahamse, H. A Review of Nanoparticle Photosensitizer Drug Delivery Uptake Systems for Photodynamic Treatment of Lung Cancer. Photodiagnosis Photodyn. Ther. 2018, 22, 147–154. [Google Scholar] [CrossRef]
- Doherty, J.; Baehrecke, E.H. Life, Death and Autophagy. Nat. Cell Biol. 2018, 20, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Yun, C.W.; Lee, S.H. The Roles of Autophagy in Cancer. Int. J. Mol. Sci. 2018, 19, 3466. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Yang, X.; Liu, R.; Zhao, D.; Guo, C.; Zhu, A.; Wen, M.; Liu, Z.; Qu, G.; Meng, H. Pathological Mechanism of Photodynamic Therapy and Photothermal Therapy Based on Nanoparticles. Int. J. Nanomed. 2020, 15, 6827–6838. [Google Scholar] [CrossRef]
- van Straten, D.; Mashayekhi, V.; de Bruijn, H.S.; Oliveira, S.; Robinson, D.J. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers 2017, 9, 19. [Google Scholar] [CrossRef]
- Yalazan, H.; Köç, M.; Fandaklı, S.; Nas, A.; Durmuş, M.; Kantekin, H. Synthesis, Characterization, and Photochemical Properties of Novel Peripherally and Non-Peripherally Tetra Substituted Zinc(II) and Magnesium(II) Phthalocyanines Containing 4-(1,5-Diphenyl-4,5-Dihydro-1H-Pyrazol-3-Yl)Phenol Units. Polyhedron 2019, 170, 576–583. [Google Scholar] [CrossRef]
- Valli, F.; García Vior, M.C.; Roguin, L.P.; Marino, J. Oxidative Stress Generated by Irradiation of a Zinc(II) Phthalocyanine Induces a Dual Apoptotic and Necrotic Response in Melanoma Cells. Apoptosis 2019, 24, 119–134. [Google Scholar] [CrossRef]
- Chang, C.-J.; Yu, J.-S.; Wei, F.-C. In Vitro and in Vivo Photosensitizing Applications of Photofrin in Malignant Melanoma Cells. Chang Gung Med. J. 2008, 31, 260–267. [Google Scholar]
- Saczko, J.; Kulbacka, J.; Chwiłkowska, A.; Drag-Zalesińiska, M.; Wysocka, T.; Ługowski, M.; Banaś, T. The Influence of Photodynamic Therapy on Apoptosis in Human Melanoma Cell Line. Folia Histochem. Cytobiol. Pol. Acad. Sci. Pol. Histochem. Cytochem. Soc. 2005, 43, 129–132. [Google Scholar] [CrossRef]
- Schmitt, F.; Govindaswamy, P.; Zava, O.; Süss-Fink, G.; Juillerat-Jeanneret, L.; Therrien, B. Combined Arene Ruthenium Porphyrins as Chemotherapeutics and Photosensitizers for Cancer Therapy. J. Biol. Inorg. Chem. 2009, 14, 101–109. [Google Scholar] [CrossRef]
- Serra, A.; Pineiro, M.; Santos, C.I.; Rocha Gonsalves, A.M.d.A.; Abrantes, M.; Laranjo, M.; Botelho, M.F. In Vitro Photodynamic Activity of 5,15-Bis(3-Hydroxyphenyl)Porphyrin and Its Halogenated Derivatives Against Cancer Cells. Photochem. Photobiol. 2010, 86, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Nowak-Sliwinska, P.; Karocki, A.; Elas, M.; Pawlak, A.; Stochel, G.; Urbanska, K. Verteporfin, Photofrin II, and Merocyanine 540 as PDT Photosensitizers against Melanoma Cells. Biochem. Biophys. Res. Commun. 2006, 349, 549–555. [Google Scholar] [CrossRef]
- Thibaut, S.; Bourré, L.; Hernot, D.; Rousset, N.; Lajat, Y.; Patrice, T. Effects of BAPTA-AM, Forskolin, DSF and Z.VAD.fmk on PDT-induced apoptosis and m-THPC phototoxicity on B16 cells. Apoptosis 2002, 7, 99–106. [Google Scholar] [CrossRef] [PubMed]
- A Novel Pro-Apoptotic Role of Zinc Octacarboxyphthalocyanine in Melanoma Me45 Cancer Cell’s Photodynamic Therapy (PDT). J. Photochem. Photobiol. B Biol. 2019, 190, 146–153. [CrossRef] [PubMed]
- Ndhundhuma, I.M.; Abrahamse, H. Susceptibility of In Vitro Melanoma Skin Cancer to Photoactivated Hypericin versus Aluminium(III) Phthalocyanine Chloride Tetrasulphonate. BioMed Res. Int. 2017, 2017, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Yue, J.; Liang, L.; Shen, Y.; Guan, X.; Zhang, J.; Li, Z.; Deng, R.; Xu, S.; Liang, C.; Shi, W.; et al. Investigating Dynamic Molecular Events in Melanoma Cell Nucleus During Photodynamic Therapy by SERS. Front. Chem. 2019, 6, 665. [Google Scholar] [CrossRef] [Green Version]
- Kleemann, B.; Loos, B.; Scriba, T.J.; Lang, D.; Davids, L.M. St John’s Wort (Hypericum Perforatum L.) Photomedicine: Hypericin-Photodynamic Therapy Induces Metastatic Melanoma Cell Death. PLoS ONE 2014, 9, e103762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, J.; Zheng, Q.; Huang, H.; Li, B. 5-Aminolevulinic Acid Mediated Photodynamic Therapy Inhibits Survival Activity and Promotes Apoptosis of A375 and A431 Cells. Photodiagnosis Photodyn. Ther. 2018, 21, 257–262. [Google Scholar] [CrossRef]
- Robertson, C.A.; Abrahamse, H. The in Vitro PDT Efficacy of a Novel Metallophthalocyanine (MPc) Derivative and Established 5-ALA Photosensitizing Dyes against Human Metastatic Melanoma Cells. Lasers Surg. Med. 2010, 42, 926–936. [Google Scholar] [CrossRef]
- Kastl, A.; Dieckmann, S.; Wähler, K.; Völker, T.; Kastl, L.; Merkel, A.L.; Vultur, A.; Shannan, B.; Harms, K.; Ocker, M.; et al. Rhenium Complexes with Visible-Light-Induced Anticancer Activity. ChemMedChem 2013, 8, 924–927. [Google Scholar] [CrossRef]
- Raza, A.; Archer, S.A.; Fairbanks, S.D.; Smitten, K.L.; Botchway, S.W.; Thomas, J.A.; MacNeil, S.; Haycock, J.W. A Dinuclear Ruthenium(II) Complex Excited by Near-Infrared Light through Two-Photon Absorption Induces Phototoxicity Deep within Hypoxic Regions of Melanoma Cancer Spheroids. J. Am. Chem. Soc. 2020, 142, 4639–4647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valli, F.; García Vior, M.C.; Roguin, L.P.; Marino, J. Crosstalk between Oxidative Stress-Induced Apoptotic and Autophagic Signaling Pathways in Zn(II) Phthalocyanine Photodynamic Therapy of Melanoma. Free Radic. Biol. Med. 2020, 152, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Sparsa, A.; Bellaton, S.; Naves, T.; Jauberteau, M.-O.; Bonnetblanc, J.-M.; Sol, V.; Verdier, M.; Ratinaud, M.-H. Photodynamic Treatment Induces Cell Death by Apoptosis or Autophagy Depending on the Melanin Content in Two B16 Melanoma Cell Lines. Oncol. Rep. 2013, 29, 1196–1200. [Google Scholar] [CrossRef] [Green Version]
- Córdoba, F.; Braathen, L.R.; Weissenberger, J.; Vallan, C.; Kato, M.; Nakashima, I.; Weis, J.; Felbert, V.V. 5-Aminolaevulinic Acid Photodynamic Therapy in a Transgenic Mouse Model of Skin Melanoma. Exp. Dermatol. 2005, 14, 429–437. [Google Scholar] [CrossRef]
- Sharma, S.K.; Huang, Y.-Y.; Hamblin, M.R. Melanoma Resistance to Photodynamic Therapy. In Resistance to Photodynamic Therapy in Cancer; Rapozzi, V., Jori, G., Eds.; Resistance to Targeted Anti-Cancer Therapeutics; Springer International Publishing: Cham, Switzerland, 2015; pp. 229–246. ISBN 978-3-319-12730-9. [Google Scholar]
- Sharma, K.V.; Bowers, N.; Davids, L.M. Photodynamic Therapy-Induced Killing Is Enhanced in Depigmented Metastatic Melanoma Cells. Cell Biol. Int. 2011, 35, 939–944. [Google Scholar] [CrossRef]
- Sharma, K.V.; Davids, L.M. Depigmentation in Melanomas Increases the Efficacy of Hypericin-Mediated Photodynamic-Induced Cell Death. Photodiagnosis Photodyn. Ther. 2012, 9, 156–163. [Google Scholar] [CrossRef]
- Pucelik, B.; Sułek, A.; Barzowska, A.; Dąbrowski, J.M. Recent Advances in Strategies for Overcoming Hypoxia in Photodynamic Therapy of Cancer. Cancer Lett. 2020, 492, 116–135. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Qin, W.-J.; Bai, X.-F.; Zhang, X.-Z. Nanomaterials to Relieve Tumor Hypoxia for Enhanced Photodynamic Therapy. Nano Today 2020, 35, 100960. [Google Scholar] [CrossRef]
- Li, J.; Xue, Y.; Tian, J.; Liu, Z.; Zhuang, A.; Gu, P.; Zhou, H.; Zhang, W.; Fan, X. Fluorinated-Functionalized Hyaluronic Acid Nanoparticles for Enhanced Photodynamic Therapy of Ocular Choroidal Melanoma by Ameliorating Hypoxia. Carbohydr. Polym. 2020, 237, 116119. [Google Scholar] [CrossRef] [PubMed]
- Sahu, T.; Ratre, Y.K.; Chauhan, S.; Bhaskar, L.V.K.S.; Nair, M.P.; Verma, H.K. Nanotechnology Based Drug Delivery System: Current Strategies and Emerging Therapeutic Potential for Medical Science. J. Drug Deliv. Sci. Technol. 2021, 63, 102487. [Google Scholar] [CrossRef]
- Liao, Z.; Wong, S.W.; Yeo, H.L.; Zhao, Y. Smart Nanocarriers for Cancer Treatment: Clinical Impact and Safety. NanoImpact 2020, 20, 100253. [Google Scholar] [CrossRef]
- Verma, M.; Sheoran, P.; Chaudhury, A. Application of Nanotechnology for Cancer Treatment. In Advances in Animal Biotechnology and its Applications; Gahlawat, S.K., Duhan, J.S., Salar, R.K., Siwach, P., Kumar, S., Kaur, P., Eds.; Springer: Singapore, 2018; pp. 161–178. ISBN 978-981-10-4702-2. [Google Scholar]
- Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart Nanoparticles for Drug Delivery Application: Development of Versatile Nanocarrier Platforms in Biotechnology and Nanomedicine. J. Nanomater. 2019, 2019, 1–26. [Google Scholar] [CrossRef]
- Edis, Z.; Wang, J.; Waqas, M.K.; Ijaz, M.; Ijaz, M. Nanocarriers-Mediated Drug Delivery Systems for Anticancer Agents: An Overview and Perspectives. Int. J. Nanomed. 2021, 16, 1313–1330. [Google Scholar] [CrossRef]
- Barani, M.; Bilal, M.; Rahdar, A.; Arshad, R.; Kumar, A.; Hamishekar, H.; Kyzas, G.Z. Nanodiagnosis and Nanotreatment of Colorectal Cancer: An Overview. J. Nanopart. Res. 2021, 23, 18. [Google Scholar] [CrossRef]
- Hong, E.J.; Choi, D.G.; Shim, M.S. Targeted and Effective Photodynamic Therapy for Cancer Using Functionalized Nanomaterials. Acta Pharm. Sin. B 2016, 6, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Rao, Y. Current Status of Nanoscale Drug Delivery Systems for Colorectal Cancer Liver Metastasis. Biomed. Pharmacother. 2019, 114, 108764. [Google Scholar] [CrossRef]
- Matea, C.T.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum Dots in Imaging, Drug Delivery and Sensor Applications. Int. J. Nanomed. 2017, 12, 5421–5431. [Google Scholar] [CrossRef] [Green Version]
- Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic Nanoparticles: Preparation, Physical Properties, and Applications in Biomedicine. Nanoscale Res. Lett. 2012, 7, 144. [Google Scholar] [CrossRef] [Green Version]
- Rizvi, S.A.A.; Saleh, A.M. Applications of Nanoparticle Systems in Drug Delivery Technology. Saudi Pharm. J. 2018, 26, 64–70. [Google Scholar] [CrossRef]
- Kruger, C.A.; Abrahamse, H. Utilisation of Targeted Nanoparticle Photosensitiser Drug Delivery Systems for the Enhancement of Photodynamic Therapy. Molecules 2018, 23, 2628. [Google Scholar] [CrossRef] [Green Version]
- Aftab, S.; Shah, A.; Nadhman, A.; Kurbanoglu, S.; Aysıl Ozkan, S.; Dionysiou, D.D.; Shukla, S.S.; Aminabhavi, T.M. Nanomedicine: An Effective Tool in Cancer Therapy. Int. J. Pharm. 2018, 540, 132–149. [Google Scholar] [CrossRef]
- Hodgkinson, N.; Kruger, C.A.; Abrahamse, H. Targeted photodynamic therapy as potential treatment modality for the eradication of colon cancer and colon cancer stem cells. Tumor Biol. 2017, 39, 4691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goto, P.L.; Siqueira-Moura, M.P.; Tedesco, A.C. Application of Aluminum Chloride Phthalocyanine-Loaded Solid Lipid Nanoparticles for Photodynamic Inactivation of Melanoma Cells. Int. J. Pharm. 2017, 518, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.-H.; Lim, S.-J.; Lee, M.-K. Chitosan-Coated Liposomes to Stabilize and Enhance Transdermal Delivery of Indocyanine Green for Photodynamic Therapy of Melanoma. Carbohydr. Polym. 2019, 224, 115143. [Google Scholar] [CrossRef]
- Tokarska, K.; Lamch, Ł.; Piechota, B.; Żukowski, K.; Chudy, M.; Wilk, K.A.; Brzózka, Z. Co-Delivery of IR-768 and Daunorubicin Using MPEG-b-PLGA Micelles for Synergistic Enhancement of Combination Therapy of Melanoma. J. Photochem. Photobiol. B Biol. 2020, 211, 111981. [Google Scholar] [CrossRef]
- de Toledo, M.C.M.C.; Abreu, A.d.S.; Carvalho, J.A.; Ambrósio, J.A.R.; da Godoy, D.S.; dos Santos Pinto, B.C.; Beltrame Junior, M.; Simioni, A.R. Zinc Phthalocyanine Tetrasulfonate-Loaded Polyelectrolytic PLGA Nanoparticles for Photodynamic Therapy Applications. Photodiagnosis Photodyn. Ther. 2020, 32, 101966. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.B.d.; Silva, C.L.d.; Davanzo, N.N.; Souza, R.d.S.; Correa, R.J.; Tedesco, A.C.; Pierre, M.B.R. Protoporphyrin IX (PpIX) Loaded PLGA Nanoparticles for Topical Photodynamic Therapy on Melanoma Cells. Photodiagnosis Photodyn. Ther. 2021, 35, 102317. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.L.; Carpenter, B.L.; Wen, A.M.; Ghiladi, R.A.; Steinmetz, N.F. High Aspect Ratio Nanotubes Formed by Tobacco Mosaic Virus for Delivery of Photodynamic Agents Targeting Melanoma. ACS Biomater. Sci. Eng. 2016, 2, 838–844. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, P.G.; Dige, N.C.; Vanjare, B.D.; Eo, S.-H.; Seo, S.-Y.; Kim, S.J.; Hong, S.-K.; Choi, C.-S.; Lee, K.H. A Potential Mediator for Photodynamic Therapy Based on Silver Nanoparticles Functionalized with Porphyrin. J. Photochem. Photobiol. A Chem. 2019, 377, 26–35. [Google Scholar] [CrossRef]
- Manoto, S.; Oluwole, D.; Malabi, R.; Maphanga, C.; Ombinda Lemboumba, S.; Nyokong, T.; Mthunzi-Kufa, P. Phototoxic Effects of Free Phthalocyanine and Phthalocyanine Conjugated to Gold Nanoparticles for Targeted Photodynamic Therapy of Melanoma Cancer; International Society for Optics and Photonics: Bellingham, WA, USA, 2017. [Google Scholar]
- Morais, F.A.P.d.; Gonçalves, R.S.; Vilsinski, B.H.; Lazarin-Bidóia, D.; Balbinot, R.B.; Tsubone, T.M.; Brunaldi, K.; Nakamura, C.V.; Hioka, N.; Caetano, W. Hypericin Photodynamic Activity in DPPC Liposomes—Part II: Stability and Application in Melanoma B16-F10 Cancer Cells. Photochem. Photobiol. Sci. 2020, 19, 620–630. [Google Scholar] [CrossRef]
- Clemente, N.; Miletto, I.; Gianotti, E.; Invernizzi, M.; Marchese, L.; Dianzani, U.; Renò, F. Verteporfin-Loaded Mesoporous Silica Nanoparticles Inhibit Mouse Melanoma Proliferation in Vitro and in Vivo. J. Photochem. Photobiol. B Biol. 2019, 197, 111533. [Google Scholar] [CrossRef]
- Wen, L.; Hyoju, R.; Wang, P.; Shi, L.; Li, C.; Li, M.; Wang, X. Hydrogen-Peroxide-Responsive Protein Biomimetic Nanoparticles for Photothermal-Photodynamic Combination Therapy of Melanoma. Lasers Surg. Med. 2021, 53, 390–399. [Google Scholar] [CrossRef]
- Chen, Z.-A.; Kuthati, Y.; Kankala, R.K.; Chang, Y.-C.; Liu, C.-L.; Weng, C.-F.; Mou, C.-Y.; Lee, C.-H. Encapsulation of Palladium Porphyrin Photosensitizer in Layered Metal Oxide Nanoparticles for Photodynamic Therapy against Skin Melanoma. Sci. Technol. Adv. Mater. 2015, 16, 054205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbugli, P.A.; Alves, C.P.; Espreafico, E.M.; Tedesco, A.C. Photodynamic Therapy Utilizing Liposomal ClAlPc in Human Melanoma 3D Cell Cultures. Exp. Dermatol. 2015, 24, 970–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Chen, X.; Bian, Q.; Zhang, F.; Wu, H.; Wang, H.; Gao, J. Photosensitizer-Stabilized Self-Assembling Nanoparticles Potentiate Chemo/Photodynamic Efficacy of Patient-Derived Melanoma. J. Control. Release 2020, 328, 325–338. [Google Scholar] [CrossRef]
- Keyal, U.; Luo, Q.; Bhatta, A.K.; Luan, H.; Zhang, P.; Wu, Q.; Zhang, H.; Liu, P.; Zhang, L.; Wang, P.; et al. Zinc Pthalocyanine-Loaded Chitosan/MPEG-PLA Nanoparticles-Mediated Photodynamic Therapy for the Treatment of Cutaneous Squamous Cell Carcinoma. J. Biophotonics 2018, 11, e201800114. [Google Scholar] [CrossRef]
- Naidoo, C.; Kruger, C.A.; Abrahamse, H. Simultaneous Photodiagnosis and Photodynamic Treatment of Metastatic Melanoma. Molecules 2019, 24, 3153. [Google Scholar] [CrossRef] [Green Version]
- Coló, G.P.; Lafuente, E.M.; Teixidó, J. The MRL Proteins: Adapting Cell Adhesion, Migration and Growth. Eur. J. Cell Biol. 2012, 91, 861–868. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Ni, F.; Zhang, T.; Yuan, X.; Li, J.; Xiao, W. Knockdown of NLE1 Inhibits Development of Malignant Melanoma in Vitro and in Vivo NLE1 Promotes Development of Malignant Melanoma. Exp. Cell Res. 2021, 404, 112636. [Google Scholar] [CrossRef] [PubMed]
- Sadeqzadeh, E.; Bock, C.E.d.; Zhang, X.D.; Shipman, K.L.; Scott, N.M.; Song, C.; Yeadon, T.; Oliveira, C.S.; Jin, B.; Hersey, P.; et al. Dual Processing of FAT1 Cadherin Protein by Human Melanoma Cells Generates Distinct Protein Products. J. Biol. Chem. 2011, 286, 28181–28191. [Google Scholar] [CrossRef] [Green Version]
- Bazak, R.; Houri, M.; El Achy, S.; Kamel, S.; Refaat, T. Cancer Active Targeting by Nanoparticles: A Comprehensive Review of Literature. J. Cancer Res. Clin. Oncol. 2015, 141, 769–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naidoo, C.; Kruger, C.A.; Abrahamse, H. Targeted Photodynamic Therapy Treatment of in Vitro A375 Metastatic Melanoma Cells. Oncotarget 2019, 10, 6079–6095. [Google Scholar] [CrossRef] [Green Version]
- Sebak, A.A.; Gomaa, I.E.O.; ElMeshad, A.N.; AbdelKader, M.H. Targeted Photodynamic-Induced Singlet Oxygen Production by Peptide-Conjugated Biodegradable Nanoparticles for Treatment of Skin Melanoma. Photodiagnosis Photodyn. Ther. 2018, 23, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Wen, A.M.; Lee, K.L.; Cao, P.; Pangilinan, K.; Carpenter, B.L.; Lam, P.; Veliz, F.A.; Ghiladi, R.A.; Advincula, R.C.; Steinmetz, N.F. Utilizing Viral Nanoparticle/Dendron Hybrid Conjugates in Photodynamic Therapy for Dual Delivery to Macrophages and Cancer Cells. Bioconjugate Chem. 2016, 27, 1227–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bigliardi, P.L.; Rout, B.; Pant, A.; Krishnan-Kutty, V.; Eberle, A.N.; Srinivas, R.; Burkett, B.A.; Bigliardi-Qi, M. Specific Targeting of Melanotic Cells with Peptide Ligated Photosensitizers for Photodynamic Therapy. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jung, E.; Shim, I.; An, J.; Ji, M.S.; Jangili, P.; Chi, S.-G.; Kim, J.S. Phenylthiourea-Conjugated BODIPY as an Efficient Photosensitizer for Tyrosinase-Positive Melanoma-Targeted Photodynamic Therapy. ACS Appl. Bio Mater. 2021, 4, 2120–2127. [Google Scholar] [CrossRef]
- Tang, J.; Zhou, H.; Hou, X.; Wang, L.; Li, Y.; Pang, Y.; Chen, C.; Jiang, G.; Liu, Y. Enhanced Anti-Tumor Efficacy of Temozolomide-Loaded Carboxylated Poly(Amido-Amine) Combined with Photothermal/Photodynamic Therapy for Melanoma Treatment. Cancer Lett. 2018, 423, 16–26. [Google Scholar] [CrossRef]
- Hou, X.; Tao, Y.; Li, X.; Pang, Y.; Yang, C.; Jiang, G.; Liu, Y. CD44-Targeting Oxygen Self-Sufficient Nanoparticles for Enhanced Photodynamic Therapy Against Malignant Melanoma. Int. J. Nanomed. 2020, 15, 10401–10416. [Google Scholar] [CrossRef]
- Oh, D.S.; Kim, H.; Oh, J.E.; Jung, H.E.; Lee, Y.S.; Park, J.-H.; Lee, H.K. Intratumoral Depletion of Regulatory T Cells Using CD25-Targeted Photodynamic Therapy in a Mouse Melanoma Model Induces Antitumoral Immune Responses. Oncotarget 2017, 8, 47440–47453. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, Y.; Wang, H. Targeting Antitumor Immune Response for Enhancing the Efficacy of Photodynamic Therapy of Cancer: Recent Advances and Future Perspectives. Oxid. Med. Cell Longev. 2016, 2016, 5274084. [Google Scholar] [CrossRef] [Green Version]
- Chaicharoenaudomrung, N.; Kunhorm, P.; Noisa, P. Three-Dimensional Cell Culture Systems as an in Vitro Platform for Cancer and Stem Cell Modeling. World J. Stem Cells 2019, 11, 1065–1083. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Stenzel, M.H. Multicellular Tumor Spheroids (MCTS) as a 3D In Vitro Evaluation Tool of Nanoparticles. Small 2018, 14, e1702858. [Google Scholar] [CrossRef] [PubMed]
- Yuan, A.; Yang, B.; Wu, J.; Hu, Y.; Ming, X. Dendritic Nanoconjugates of Photosensitizer for Targeted Photodynamic Therapy. Acta Biomater. 2015, 21, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Tham, H.P.; Xu, K.; Lim, W.Q.; Chen, H.; Zheng, M.; Thng, T.G.S.; Venkatraman, S.S.; Xu, C.; Zhao, Y. Microneedle-Assisted Topical Delivery of Photodynamically Active Mesoporous Formulation for Combination Therapy of Deep-Seated Melanoma. ACS Nano 2018, 12, 11936–11948. [Google Scholar] [CrossRef] [PubMed]
- Barbazetto, I.A.; Lee, T.C.; Rollins, I.S.; Chang, S.; Abramson, D.H. Treatment of Choroidal Melanoma Using Photodynamic Therapy. Am. J. Ophthalmol. 2003, 135, 898–899. [Google Scholar] [CrossRef]
- Donaldson, M.J.; Lim, L.; Harper, C.A.; Mackenzie, J.; G Campbell, W. Primary Treatment of Choroidal Amelanotic Melanoma with Photodynamic Therapy. Clin. Exp. Ophthalmol. 2005, 33, 548–549. [Google Scholar] [CrossRef]
- Soucek, P.; Cihelkova, I. Photodynamic Therapy with Verteporfin in Subfoveal Amelanotic Choroidal Melanoma (A Controlled Case). Neuro Endocrinol. Lett. 2006, 27, 145–148. [Google Scholar] [PubMed]
- Tuncer, S.; Kir, N.; Shields, C.L. Dramatic Regression of Amelanotic Choroidal Melanoma with PDT Following Poor Response to Brachytherapy. Ophthalmic Surg. Lasers Imaging 2012, 43, e38–e40. [Google Scholar] [CrossRef]
- Campbell, W.G.; Pejnovic, T.M. Treatment of amelanotic choroidal melanoma with photodynamic therapy. Retina 2012, 32, 1356–1362. [Google Scholar] [CrossRef]
- O’Day, R.F.; Pejnovic, T.M.; Isaacs, T.; Muecke, J.S.; Glasson, W.J.; Campbell, W.G. Australian and new zealand study of photodynamic therapy in choroidal amelanotic melanoma. Retina 2020, 40, 972–976. [Google Scholar] [CrossRef]
- Turkoglu, E.B.; Pointdujour-Lim, R.; Mashayekhi, A.; Shields, C.L. Photodynamic therapy as primary treatment for small choroidal melanoma. Retina 2019, 39, 1319–1325. [Google Scholar] [CrossRef]
- Fabian, I.D.; Stacey, A.W.; Papastefanou, V.; Al Harby, L.; Arora, A.K.; Sagoo, M.S.; Cohen, V.M.L. Primary Photodynamic Therapy with Verteporfin for Small Pigmented Posterior Pole Choroidal Melanoma. Eye 2017, 31, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Sheleg, S.V.; Zhavrid, E.A.; Khodina, T.V.; Kochubeev, G.A.; Istomin, Y.P.; Chalov, V.N.; Zhuravkin, I.N. Photodynamic Therapy with Chlorin E6 for Skin Metastases of Melanoma. Photoderm. Photoimm. Photomed. 2004, 20, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Alloo, A.; Garibyan, L.; LeBoeuf, N.; Lin, G.; Werchniak, A.; Hodi, F.S.; Flaherty, K.T.; Lawrence, D.P.; Lin, J.Y. Photodynamic Therapy for Multiple Eruptive Keratoacanthomas Associated with Vemurafenib Treatment for Metastatic Melanoma. Arch. Derm. 2012, 148, 363–366. [Google Scholar] [CrossRef] [Green Version]
- Canal-Fontcuberta, I.; Salomão, D.R.; Robertson, D.; Cantrill, H.L.; Koozekanani, D.; Rath, P.P.; Pulido, J.S. Clinical and Histopathologic Findings after Photodynamic Therapy of Choroidal Melanoma. Retina 2012, 32, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.-K.; Yun, J.-H.; Son, Y.-M.; Roh, J.-Y.; Lee, J.-R. Photodynamic Therapy for Bowen’s Disease of the Vulva Area. Ann. Derm. 2014, 26, 241–245. [Google Scholar] [CrossRef] [Green Version]
- Lecluse, L.L.A.; Spuls, P.I. Photodynamic Therapy versus Topical Imiquimod versus Topical Fluorouracil for Treatment of Superficial Basal-Cell Carcinoma: A Single Blind, Non-Inferiority, Randomised Controlled Trial: A Critical Appraisal. Br. J. Derm. 2015, 172, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Lucky, S.; Soo, K.; Zhang, Y. Nanoparticles in Photodynamic Therapy. Chem. Rev. 2015, 115, 1990–2042. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.-H.; Lo, L.-W. Inorganic Nanoparticles for Enhanced Photodynamic Cancer Therapy. Curr. Drug Discov. Technol. 2011, 8, 269–276. [Google Scholar] [CrossRef] [PubMed]
Generation | PS | Wavelength (nm) | Fluency (J/cm2) | Dose | Cell Line | Tumor Model | Outcome | Ref. |
---|---|---|---|---|---|---|---|---|
1st | Porfimer sodium | 630 | 10 and 100 | 0.1–10 µg/mL | MCC 1 | Monolayers, in vivo | Electron microscopy reported a significant destruction of MCCs in vitro and in vivo. | [34] |
Photofrin II | 632.8 | 6 | 15 and 30 µg/mL | Beidegröm | Monolayers | Irradiated 15 μg/mL and 30 μg/mL of PS resulted in 71.9% and 90% apoptotic cell population, respectfully. | [35] | |
2nd | Ruthenium porphyrins | 652 | 20 | 5 µM | ME300 2 | Monolayers | 80% reduction in cell viability | [36] |
Halogenated porphyrin | 630 | 10 | 10 µM | A375 3 | Monolayers | Improved singlet oxygen generation. | [37] | |
Verteporfin | 480 | 0.05–0.18 | 2 µg/mL | S91/13 4 | Monolayers | Significant cytodamage at a low concentration. | [38] | |
m-THPC 5 | 514 | 10–25 | 10 µg/mL | B16 6 | Monolayers | PS showed an inhibitory effect in a dose and energy intensity dependent manner, overcoming apoptosis inhibitors. | [39] | |
ZnPcOC 7 | 685 | 2.5–7.5 | 30 µM | Me45 8 8 | Monolayers | PDT triggered apoptosis in cancer with minimal effects on normal human cells. | [40] | |
AlPcS4Cl 9 and Hyp 10 | 594 and 682 | 10 | 10 µM | A375 | Monolayers | AlPcS4Cl inflicted more photodamage than Hyp, 15% and 10%, respectively. | [41] | |
Ce6 11 | 650 | 10 | 1.2 µM | B16 | Monolayers | Ce6 and PDT resulted in 22.5% cell viability. | [42] | |
Hyp | 680 | 1 | 3 µM | A375, Mel-1 12 and 501 Mel 13 | Monolayers | Significant photodamage to mitochondria, endoplasmic reticulum, and cell membrane, which resulted in necroptosis. | [43] | |
5-ALA 14 | 643 | 0.58 | 0.8 mM | A375 | Monolayers | PDT caused loss of viability in a dose-dependent manner and elicited 90% apoptosis cell death in A375 cells. | [44] | |
5-ALA and MPc 15 | 680 | 10 | 10 and 4 µM | A375 | Monolayers | PDT reported a drastic reduction in cell viability ranging from 60% to 80% and induced apoptosis. | [45] | |
Rhenium (I) complexes | 330 | 528 | 5 µM | 1205Lu 16 | 3-D cell cultures | Loss of spheroid integrity on the edges. | [46] | |
Dinuclear Ruthenium(II) Complex | 900 | 15.56 | 100 µM | C8161 17 | 3-D cell cultures | Photodamage was observed in spheroid hypoxic regions. | [47] | |
ZnPc | 675 ± 15 | 340 | 20 µM | A375 | 3-D cell cultures | Significant photodamage was observed via induction of apoptosis. | [48] | |
5-ALA | 631 | 37 | 5 and 10 mM | B16F10 and B16G4F | In vivo | PDT noted a significant photodamage in both cell lines. Non-melanin pigmented B16G4F cells were more susceptible to the treatment than pigmented B16F10. | [49] | |
5-ALA | 420–1400 | 45–90 | 100 g/mL | Mel25 A375, B16-F0 and IH3T3 | Monolayers, in vivo | Significant loss in cell viability was observed in vitro, whereas in vivo MT-rat mice tumors were unresponsive PDT. | [50] |
Type of NPs | NPs | Benefits | Ref. |
---|---|---|---|
Organic | Liposomes NPs | Biocompatible and biodegradable with minimal toxicity, can contain both hydrophilic and hydrophobic agents and protect encapsulated drugs from degradation by biological barriers. | [58] |
Micelle/polymeric NPs | High loading capacity, good biocompatibility, easy synthesis, versatile modification, and ability to evade biological barriers. | [60] | |
Poly NPs (lactic-co-glycolic acid) (PLGA) | Superior nanocarriers due to their safety profile, no dark toxicity upon administration, and being biocompatible and biodegradable, and stable and poorly immunogenic. | [23] | |
Dendrimers | Diverse functional surface molecules; flexible and tunable surfaces; highly monodispersed nanoconjugates; easy delivery of hydrophobic agents, hydrophilic internal cores, and multivalences; and biocompatible and fast clearance from body. | [61,62] | |
Carbon nanotubes | High loading capacity, photothermal ablation, high permeability, highly modifiable surface, and good photodynamic properties. | [58,63] | |
Inorganic | Gold NPs (AuNP) | Exceptional stability, high surface to volume ratio, easy surface functionalization, high biocompatibility, high scattering energy, and strong absorption within the NIR region. | [64] |
Quantum dots | Tunable optical properties, excellent photo and chemical stability, high quantum yield, and size-tunable absorption bands. | [65] | |
Silica NPs (inorganic) | Easy incorporation of both hydrophobic and hydrophilic drugs, efficient evasion from biological barriers, ease of functionalization, high biocompatibility, and high stability. | [63] | |
Upconversion NPs | High optical absorption coefficients in the near NIR region and low phototoxicity. | [21] | |
Ceramic NPs | High biocompatibility and stability, incorporation of both hydrophilic and hydrophobic molecules, and fast release of drugs. | [4,21] | |
Magnetic NPs | Easy surface modification, selective photothermal destruction of cancer cells, strong superparamagnetic activity, and excellent PDT ability. | [5,66] |
PS | Nanocarrier | Cell Line | Tumor Models | Outcome | Ref. |
---|---|---|---|---|---|
Aluminum chloride phthalocyanine (ClAlPc) | Solid lipid nanoparticles (SLN) | B16-F10 | Monolayers | CIAIc-SLN decreased cell viability by 64.4%, while free PS showed a 54.1% decrease in B16F10 cells | [71] |
Indocyanine green (ICG) | Chitosan-coated liposomes | B16-F10 | Monolayers | ICG bioavailability increased by 2-fold in cells. | [72] |
IR768 Daunorubicin (DRB) | polymeric micelles (PMs) | A375 | Monolayers | Increased mitochondrial uptake, decreased cell viability below 20%. | [73] |
Zinc Phthalocyanine Tetrasulphonate (ZnPcSO4) | poly (lactic acid-glycolic acid) (PLGA) | B16-F10 | Monolayers | PS nanoconjugate induced 90% of cell death against 20% for free PS. | [74] |
Protoporphyrin IX (PpIX) | poly (D, L lactic-co-glycolic acid) (PLGA) | B16-F10 | Monolayers | PLGA maintained photophysical properties of PpIX, which reduced cell viability by 80%. | [75] |
Zn-based porphyrin (Zn-EpPor) | Tobacco mosaic virus nanorods (TMVs) | B16-F10 | Monolayers | PS-TMV exhibited improved cell uptake and stronger cytotoxicity than free PS. | [76] |
5,10,15,20-Tetrakis(2,4-dihydroxyphenyl) porphyrin (POR) | Silver nanoparticles (AgNPs) | A375 | Monolayers | PS-Ag showed in increased singlet oxygen quantum yield and cellular uptake than free PS. | [77] |
Zinc monocarboxyphenoxy phthalocyanine (ZnMCPPc) | Gold nanoparticles (AuNPs) | A375 | Monolayers | ZnMCPPc-Au showed a stronger PDT efficacy when compared to free ZnMCPPc. | [78] |
Hypericin (Hyp) | 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) | B16-F10 | Monolayers | Hyp-DPPC showed an increased singlet oxygen quantum yield compared to free Hyp. | [79] |
Verteporfin (Ver) | Mesoporous silica nanoparticles (MSNs) | B16-F10 | Monolayers, in vivo 8-week-old female C57BL6/J mice | Ver-MSNs exhibited significant antiproliferative effects than free Ver and reduce tumor by 50.2 ± 6.6%. | [80] |
Indocyanine green (ICG) | Hydrogen-peroxide-responsive protein biomimetic | B16-F10 | Monolayers, in vivo 6–8-week-old BALB/c nude female mice | Improved stability, cellular uptake and phototoxicity | [81] |
Palladium porphyrin (PdTCPP) | Layered double hydroxide (LDH) | B16-F10 | Monolayers, in vivo 8-week-old male mice | PS-NP showed only 10% decrease in absorbance post PDT versus 85% loss by free PS, and decreased tumor growth by 7-fold in vivo. | [82] |
Aluminum chloride phthalocyanine (ClAlPc) | Liposomes | WM1617 | 3-D cell cultures | PS-NP was efficiently taken up by 3-D tumor spheroids and induced more than 80% cell death. | [83] |
Cabazitaxel (CTX) | psTKdC NAs | A375 | In vivo, 6–8-week-old BALB/c nude female mice | Decreased tumor volume from 82.2 ± 41.4 mm3 to 21.5 ± 23.9 mm3 on day 0. | [84] |
Zinc phthalocyanine (ZnPc) | Chitosan/methoxy polyethylene glycol-polylactic acid (CPP) | A431 | In vivo, 6–8-week-old hairless female SKH-1 mice | PS-NP showed 75% cell death, compared to 50% for free PS. | [85] |
PS | Active PS Delivery System | Cell Line | Tumor Model | Outcomes | Ref. |
---|---|---|---|---|---|
Zinc phthalocyanine tetra-sulphonic acid (ZnPcS4) | Anti-Melanoma Inhibitory Activity (Anti-MIA) combined with AuNPs | A375 | Monolayers | The bioconjugate concentrated the PS within the cytoplasm and nuclei, triggering a 65% apoptotic cell population | [91] |
Ferrous chlorophyllin (Fe-CHL) | PLGA NPs loaded with cRGDyk peptide | B16-F10 | Monolayers | The combination therapy showed enhanced accumulation of the PS and singlet oxygen generation in B16-F10 cells | [92] |
Zinc ethynylphenyl porphyrin (Zn-EpPor) | Cowpea mosaic virus (CPMV) bioconjugated to dendron hybrids | B16-F10 | Monolayers | 2 PS-CPMV achieved a 2-fold increase in efficacy when compared to free PS. | [93] |
Methylene blue (MB) | Naproxen amides (NAPs) | B16-F10 | Monolayers | MB-NAP induced high levels of toxicity on MC-1 receptor-expressing B16-F10 cells, leaving only 4% of cells viable. | [94] |
BODIPY (BDP) | Phenylthiourea (PTU) | B16-F10 | Monolayers | BDP-PTU showed an enhanced cellular uptake, resulting in 20% cell viability. | [95] |
Rose Bengal (RB) | Amphipathic peptide (AMP) C(KLAKLAK)2 | B16-F10-Luc2 | Monolayers, in vivo C57 mice | The target specificity and PDT effects of RB significantly reduced the viability of B16-F10-Luc2 cells to 6%. | [7] |
Pyropheophorbide | Perfluorocarbons (PFCs) anchored onto hyaluronic acid (HA) | OM431 | Monolayers, in vivo 4-week-old BALB/c male mice | The nanocomposite increased singlet oxygen production, which reduced cell viability to 30% in vitro and tumor weight to 0.05 g in vivo. | [56] |
Indocyanine Green (ICG) With temozolomide (TMZ) | Hyaluronic acid (HA)-modified with Poly(amino-amine) (PAMAM) | A375 | Monolayers, in vivo 6–8-week-old nude BALB/c female mice | ICG active nanophotosensitizer showed the strongest tumor cell-killing effect and revealed a cell viability of 17.1%. | [96] |
IR820 | Catalase (CAT) encapsulated in (PLGA) NPs | MV3 | monolayers, in vivo 6–8-week-old BALB/c nude female mice | Displayed increased cellular uptake with 10% cell viability in vitro and a significant tumor regression in vivo. | [97] |
Chlorin e6 (Ce6) | Anti-CD25 | B16-F10 | In vivo, C57BL/6-Tg (Foxp3-GFP) 90Pkraj/J mice | Ce6-CD25-targeted PDT induced apoptosis in 60–70% of melanoma tumors and caused tumor regression. | [98] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nkune, N.W.; Abrahamse, H. Nanoparticle-Based Drug Delivery Systems for Photodynamic Therapy of Metastatic Melanoma: A Review. Int. J. Mol. Sci. 2021, 22, 12549. https://doi.org/10.3390/ijms222212549
Nkune NW, Abrahamse H. Nanoparticle-Based Drug Delivery Systems for Photodynamic Therapy of Metastatic Melanoma: A Review. International Journal of Molecular Sciences. 2021; 22(22):12549. https://doi.org/10.3390/ijms222212549
Chicago/Turabian StyleNkune, Nkune Williams, and Heidi Abrahamse. 2021. "Nanoparticle-Based Drug Delivery Systems for Photodynamic Therapy of Metastatic Melanoma: A Review" International Journal of Molecular Sciences 22, no. 22: 12549. https://doi.org/10.3390/ijms222212549
APA StyleNkune, N. W., & Abrahamse, H. (2021). Nanoparticle-Based Drug Delivery Systems for Photodynamic Therapy of Metastatic Melanoma: A Review. International Journal of Molecular Sciences, 22(22), 12549. https://doi.org/10.3390/ijms222212549