Biosorption of Zn(II) from Seawater Solution by the Microalgal Biomass of Tetraselmis marina AC16-MESO
Abstract
:1. Introduction
2. Results
2.1. Algal Growth and Maximum Quantum Yield (FV/FM) from Microalgae Tetraselmis marina AC16-MESO in Bacteriological Agar Medium under Different Concentrations of Zn2+
2.2. Zn2+ Adsorption Experiments in Living and Non-Living Biomass from Tetraselmis marina AC16-MESO
2.3. Microalgal Growth, Evaluation on the Formation of Chlorophylls “a” and “b”, and Maximum Quantum Yield (Fv/FM) under Different Concentrations of Zn2+
2.4. “In Vivo” Fluorescence Analysis for Microalgae Tetraselmis marina AC16-MESO under Different Concentrations of Zn2+
3. Discussion
4. Materials and Methods
4.1. Microalgae Culture
4.2. Evaluation of the PSII of Tetraselmis marina AC16-MESO in a Solid Medium in the Presence of Zn2+
4.3. Preparation of Living and Non-Living Microalgal Adsorbent Biomass
4.4. Adsorbent Biomass and Adsorption Experiments
4.5. Langmuir Equation
4.6. Determination of Chlorophylls “a” and “b”
4.7. Measurement of the Fluorescence of Chlorophyll a (Chl-a) in the Living Culture of Tetraselmis marina AC16-MESO
4.8. Flow Cytometric Analysis
4.9. Fluorescence Recovery after Photobleaching (FRAP) Analysis in Microalgal Autofluorescence from Tetraselmis marina AC16-MESO
4.10. Data Analysis and Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, K.S.; Dahms, H.U.; Won, E.J.; Lee, J.S.; Shin, K.H. Microalgae–A promising tool for heavy metal remediation. Ecotoxicol. Environ. Saf. 2015, 113, 329–352. [Google Scholar] [CrossRef] [PubMed]
- Leong, Y.K.; Chang, J.S. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol. 2020, 303, 122886. [Google Scholar] [CrossRef]
- Duruibe, J.O.; Ogwuegbu, M.O.C.; Egwurugwu, J.N. Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar]
- Sun, J.; Cheng, J.; Yang, Z.; Li, K.; Zhou, J.; Cen, K. Microstructures and functional groups of Nannochloropsis sp. cells with arsenic adsorption and lipid accumulation. Bioresour. Technol. 2015, 194, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Nolan, K. Copper Toxicity Syndrome. J. Orthomol. Psychiatry 2003, 12, 270–282. [Google Scholar]
- Moon, W.J.; Yang, Y.; Liu, J. Zn2+-Dependent DNAzymes: From Solution Chemistry to Analytical, Materials and Therapeutic Applications. ChemBioChem. 2020. [Google Scholar] [CrossRef]
- Salamanca, M.A.; Camaño, A.; Jara, B.; Rodriguez, T. Cu, Pb and Zn Distribution in nearshore waters in San Jorge bay, northern Chile. Gayana (Concepc.) 2000, 64. [Google Scholar] [CrossRef]
- Fukai, R.; Huynh-Ngoc, L. Chemical forms of zinc in sea water. J. Oceanogr. 1975, 31, 179–191. [Google Scholar] [CrossRef]
- Ibuot, A.; Dean, A.P.; McIntosh, O.A.; Pittman, J.K. Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater-tolerant microalgae strains. Algal Res. 2017, 24, 89–96. [Google Scholar] [CrossRef]
- Pradhan, D.; Sukla, L.B.; Mishra, B.B.; Devi, N. Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. J. Clean. Prod. 2019, 209, 617–629. [Google Scholar] [CrossRef]
- Nazal, M.K. Marine Algae Bioadsorbents for Adsorptive Removal of Heavy Metals. In Advanced Sorption Process Applications; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Abbas, S.H.; Ali, W.H. Evaluation of biomass type blue Cyanophyta algae for the sorption of Cr (III), Zn (II) and Ni (II) from aqueous solution using batch operation system: Equilibrium, kinetic and thermodynamic studies. Glob. Nest J. 2018, 20, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Banks, J.M. Chlorophyll fluorescence as a tool to identify drought stress in Acer genotypes. Environ. Exp. Bot. 2018, 155, 118–127. [Google Scholar] [CrossRef]
- Gan, T.; Zhao, N.; Yin, G.; Chen, M.; Wang, X.; Liu, J.; Liu, W. Optimal chlorophyll fluorescence parameter selection for rapid and sensitive detection of lead toxicity to marine microalgae Nitzschia closterium based on chlorophyll fluorescence technology. J. Photochem. Photobiol. B, Biol. 2019, 197, 111551. [Google Scholar] [CrossRef]
- Kumar, K.S.; Dahms, H.U.; Lee, J.S.; Kim, H.C.; Lee, W.C.; Shin, K.H. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotoxicol. Environ. Saf. 2014, 104, 51–71. [Google Scholar] [CrossRef]
- Huang, H.; Xiao, X.M.; Ghadouani, A.; Wu, J.; Nie, Z.; Peng, C.; Xu, X.; Shi, J. Effects of natural flavonoids on photosynthetic activity and cell integrity in Microcystis aeruginosa. Toxins 2015, 7, 66–80. [Google Scholar] [CrossRef] [Green Version]
- Axelrod, D.; Koppel, D.E.; Schlessinger, J.; Elson, E.; Webb, W.W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 1976, 16, 1055–1069. [Google Scholar] [CrossRef] [Green Version]
- Lippincott-Schwartz, J.; Altan-Bonnet, N.; Patterson, G.H. Photobleaching and photoactivation: Following protein dynamics in living cells. Nat. Cell Biol. 2003, Suppl, S7–S14. [Google Scholar] [PubMed]
- Mullineaux, C.W. FRAP analysis of photosynthetic membranes. J. Exp. Bot. 2004, 55, 1207–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullineaux, C.W.; Tobin, M.J.; Jones, G.R. Mobility of photosynthetic complexes in thylakoid membranes. Nature 1997, 390, 421–424. [Google Scholar] [CrossRef]
- Mullineaux, C.W.; Kirchhoff, H. Role of lipids in the dynamics of thylakoid membranes. In Lipids in Photosynthesis. Advances in Photosynthesis and Respiration; Springer: Dordrecht, The Netherlands, 2009; pp. 283–294. [Google Scholar]
- Cameron, H.; Mata, M.T.; Riquelme, C. The effect of heavy metals on the viability of Tetraselmis marina AC16-MESO and an evaluation of the potential use of this microalga in bioremediation. PeerJ 2018, 6, e5295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otero, M.; Zabkova, M.; Grande, C.A.; Rodrigues, A.E. Fixed-bed adsorption of salicylic acid onto polymeric adsorbents and activated charcoal. Ind. Eng. Chem. Res. 2005, 44, 927–936. [Google Scholar] [CrossRef]
- Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G.C. (Ed.) Springer Science & Business Media: Dordrecht, The Netherlands, 2007; pp. 1–793. [Google Scholar]
- Monteiro, C.M.; Marques, A.P.; Castro, P.M.; Malcata, F.X. Characterization of Desmodesmus pleiomorphus isolated from a heavy metal-contaminated site: Biosorption of zinc. Biodegradation 2009, 20, 629–641. [Google Scholar] [PubMed]
- Angel, B.M.; Apte, S.C.; Batley, G.E.; Raven, M.D. Lead solubility in seawater: An experimental study. Environ. Chem. 2016, 13, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Ajjabi, L.C.; Chouba, L. Biosorption of Cu2+ and Zn2+ from aqueous solutions by dried marine green macroalga Chaetomorpha linum. J. Environ. Manag. 2009, 90, 3485–3489. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, D.; Müller, A.; Csögör, Z.; Frimmel, F.H.; Posten, C. The adsorption kinetics of metal ions onto different microalgae and siliceous earth. Water Res. 2001, 35, 779–785. [Google Scholar] [CrossRef]
- Xu, X.; Cao, X.; Zhao, L.; Wang, H.; Yu, H.; Gao, B. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ. Sci. Pollut. Res. 2013, 20, 358–368. [Google Scholar] [CrossRef]
- Laib, E.; Leghouchi, E. Cd, Cr, Cu, Pb, and Zn concentrations in Ulva lactuca, Codium fragile, Jania rubens, and Dictyota dichotoma from Rabta Bay, Jijel (Algeria). Environ. Monit. Assess. 2012, 184, 1711–1718. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, J.; Tan, L.; Chen, X. Toxic effects of nano-ZnO on marine microalgae Skeletonema costatum: Attention to the accumulation of intracellular Zn. Aquat. oxicol. 2016, 178, 158–164. [Google Scholar] [CrossRef]
- Pikula, K.; Mintcheva, N.; Kulinich, S.A.; Zakharenko, A.; Markina, Z.; Chaika, V.; Orlova, T.; Mezhuev, Y.; Kokkinakis, E.; Tsatsakis, A.; et al. Aquatic toxicity and mode of action of CdS and ZnS nanoparticles in four microalgae species. Environ. Res. 2020, 186, 109513. [Google Scholar] [CrossRef]
- Knauer, K.; Behra, R.; Sigg, L. Effects of free Cu2+ and Zn2+ ions on growth and metal accumulation in freshwater algae. Environ. Toxicol. Chem. 1997, 16, 220–229. [Google Scholar] [CrossRef]
- Bautista-Chamizo, E.; De Orte, M.R.; DelValls, T.Á.; Riba, I. Simulating CO2 leakages from CCS to determine Zn toxicity using the marine microalgae Pleurochrysis roscoffensis. Chemosphere 2016, 144, 955–965. [Google Scholar] [CrossRef] [PubMed]
- Mullineaux, C.W.; Sarcina, M. Probing the dynamics of photosynthetic membranes with fluorescence recovery after photobleaching. Trends Plant Sci. 2002, 7, 237–240. [Google Scholar] [CrossRef]
- Spence, E.; Sarcina, M.; Ray, N.; Møller, S.G.; Mullineaux, C.W.; Robinson, C. Membrane-specific targeting of green fluorescent protein by the Tat pathway in the cyanobacterium Synechocystis PCC6803. Mol. Microbiol. 2003, 48, 1481–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.N.; Aartsma, T.J.; Thomas, J.C.; Zhou, B.C.; Zhang, Y.Z. FRAP analysis on red alga reveals the fluorescence recovery is ascribed to intrinsic photoprocesses of phycobilisomes than large-scale diffusion. PLoS ONE 2009, 4, e5295. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.; Day, C.A.; Kenworthy, A.K. A novel computational framework for D(t) from Fluorescence Recovery after Photobleaching data reveals various anomalous diffusion types in live cell membranes. Traffic 2019, 20, 867–880. [Google Scholar] [CrossRef]
- Riveros, K.; Sepulveda, C.; Bazaes, J.; Marticorena, P.; Riquelme, C.; Acién, G. Overall development of a bioprocess for the outdoor production of Nannochloropsis gaditana for aquaculture. Aquac. Res. 2018, 49, 165–176. [Google Scholar] [CrossRef]
- Rigobello-Masini, M.; Aidar, E.; Masini, J.C. Extra and intracelular activities of carbonic anhydrase of the marine microalga Tetraselmis gracilis (Chlorophyta). Braz. J. Microbiol. 2003, 34, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Rigobello-Masini, M.; Masini, J.C.; Aidar, E. The profiles of nitrate reductase and carbonic anhydrase activity in batch cultivation of the marine microalgae Tetraselmis gracilis growing under different aeration conditions. FEMS Microbiol. Ecol. 2006, 57, 18–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillard, R.R. Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertebrate Animals; Springer: Boston, MA, USA, 1975; pp. 29–60. [Google Scholar]
- Zhou, G.J.; Peng, F.Q.; Zhang, L.J.; Ying, G.G. Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. Environ. Sci. Pollut. Res. 2012, 19, 2918–2929. [Google Scholar] [CrossRef]
- Alam, M.A.; Wan, C.; Zhao, X.Q.; Chen, L.J.; Chang, J.S.; Bai, F.W. Enhanced removal of Zn2+ or Cd2+ by the flocculating Chlorella vulgaris JSC-7. J. Hazard. Mater. 2015, 289, 38–45. [Google Scholar] [CrossRef]
- Goldman, J.C.; McCarthy, J.J. Steady state growth and ammonium uptake of a fast-growing marine diatom. Limnol. Oceanogr. 1978, 23, 695–703. [Google Scholar] [CrossRef]
- Coimbra, R.N.; Escapa, C.; Vázquez, N.C.; Noriega-Hevia, G.; Otero, M. Utilization of non-living microalgae biomass from two different strains for the adsorptive removal of diclofenac from water. Water 2018, 10, 1401. [Google Scholar] [CrossRef] [Green Version]
- Castillo, A.; Valdés, J. Contenido de metales en Cancer polyodon (Crustacea: Decapoda) en un sistema de bahías del norte de Chile (27S). Lat. Am. J. Aquat. Res. 2011, 39, 461–470. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Jeffrey, S.W.; Humphrey, G.F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz J. 1975, 165, 191–194. [Google Scholar] [CrossRef]
- Schreiber, U. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: An overview. Chlorophyll Fluoresc. 2004, 279–319. [Google Scholar] [CrossRef]
Equilibrium Isotherms | |||
---|---|---|---|
Model | Parameter | Biomass Microalgae Tetraselmis marina AC-16 MESO | |
Non-Living(mg/g) | Living (mg/g) | ||
Qmax | 0.02297 | 0.03051 | |
Langmuir | K | 0.02964 | 0.03249 |
n | 0.84065 | 1.13885 | |
r2 | 0.99345 | 0.98789 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huarachi-Olivera, R.; Mata, M.T.; Valdés, J.; Riquelme, C. Biosorption of Zn(II) from Seawater Solution by the Microalgal Biomass of Tetraselmis marina AC16-MESO. Int. J. Mol. Sci. 2021, 22, 12799. https://doi.org/10.3390/ijms222312799
Huarachi-Olivera R, Mata MT, Valdés J, Riquelme C. Biosorption of Zn(II) from Seawater Solution by the Microalgal Biomass of Tetraselmis marina AC16-MESO. International Journal of Molecular Sciences. 2021; 22(23):12799. https://doi.org/10.3390/ijms222312799
Chicago/Turabian StyleHuarachi-Olivera, Ronald, María Teresa Mata, Jorge Valdés, and Carlos Riquelme. 2021. "Biosorption of Zn(II) from Seawater Solution by the Microalgal Biomass of Tetraselmis marina AC16-MESO" International Journal of Molecular Sciences 22, no. 23: 12799. https://doi.org/10.3390/ijms222312799
APA StyleHuarachi-Olivera, R., Mata, M. T., Valdés, J., & Riquelme, C. (2021). Biosorption of Zn(II) from Seawater Solution by the Microalgal Biomass of Tetraselmis marina AC16-MESO. International Journal of Molecular Sciences, 22(23), 12799. https://doi.org/10.3390/ijms222312799