R-Loop Tracker: Web Access-Based Tool for R-Loop Detection and Analysis in Genomic DNA Sequences
Abstract
:1. Introduction
2. Methods and Results
2.1. Features
2.2. Input and Analysis
2.3. R-Loop Detection
2.4. R-Loop Tracker Web Application Output
2.5. Output Formats
2.6. API Usage
3. Discussion
4. Materials and Methods
4.1. Algorithm Validation
Comparison Method
4.2. Validation
- TP (true positive)—at least one R-loop was detected both by DRIPc sequencing and the R-loop tracker algorithm.
- TN (true negative)—not a single R-loop was detected with the experimental method nor with the R-loop tracker algorithm.
- FP (false positive)—DRIPc sequencing did not detect any R-loop in a given area, but the R-loop tracker found at least one R-loop in a given area.
- FN (false negative)—at least one R-loop was detected by DRIPc sequencing but none was found by the R-loop tracker in a given area.
- Accuracy
- Sensitivity
- Specificity
- Precision
- Matthews Correlation Coefficient
4.3. R-Loop Tracker Effectivity
- 100 kB
- 300 kB
- 500 kB
- 750 kB
- 1 MB
- 3 MB
- 5 MB
- 10 MB
- Linux time utility measuring the script run time
- Time difference calculation from web server logfile
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watson, J.D.; Crick, F.H.C. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef]
- Brázda, V.; Laister, R.C.; Jagelská, E.B.; Arrowsmith, C. Cruciform Structures Are a Common DNA Feature Important for Regulating Biological Processes. BMC Mol. Biol. 2011, 12, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentry, M.; Hennig, L. A Structural Bisulfite Assay to Identify DNA Cruciforms. Mol. Plant 2016, 9, 1328–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rich, A.; Zhang, S. Timeline: Z-DNA: The Long Road to Biological Function. Nat. Rev. Genet. 2003, 4, 566–572. [Google Scholar] [CrossRef]
- Li, H.; Xiao, J.; Li, J.; Lu, L.; Feng, S.; Droge, P. Human Genomic Z-DNA Segments Probed by the Z Domain of ADAR1. Nucleic Acids Res. 2009, 37, 2737–2746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, A.; Rajeswari, M.R.; Ahmed, F. Formation and Thermodynamic Stability of Intermolecular (R*R Center Dot Y) DNA Triplex in GAA/TTC Repeats Associated with Freidreich’s Ataxia. J. Biomol. Struct. Dyn. 2002, 19, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-T.; Khutsishvili, I.; Marky, L.A. DNA Complexes Containing Joined Triplex and Duplex Motifs: Melting Behavior of Intramolecular and Bimolecular Complexes with Similar Sequences. J. Phys. Chem. B 2010, 114, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Huppert, J.L.; Balasubramanian, S. G-Quadruplexes in Promoters throughout the Human Genome. Nucleic Acids Res. 2007, 35, 406–413. [Google Scholar] [CrossRef]
- Lam, E.Y.N.; Beraldi, D.; Tannahill, D.; Balasubramanian, S. G-Quadruplex Structures Are Stable and Detectable in Human Genomic DNA. Nat. Commun. 2013, 4, 1796. [Google Scholar] [CrossRef] [Green Version]
- Kamura, T.; Katsuda, Y.; Kitamura, Y.; Ihara, T. G-Quadruplexes in MRNA: A Key Structure for Biological Function. Biochem. Biophys. Res. Commun. 2020, 526, 261–266. [Google Scholar] [CrossRef]
- Bedrat, A.; Lacroix, L.; Mergny, J.-L. Re-Evaluation of G-Quadruplex Propensity with G4Hunter. Nucleic Acids Res. 2016, 44, 1746–1759. [Google Scholar] [CrossRef] [PubMed]
- Brázda, V.; Coufal, J. Recognition of Local DNA Structures by P53 Protein. Int J Mol Sci 2017, 18, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartas, M.; Čutová, M.; Brázda, V.; Kaura, P.; Šťastný, J.; Kolomazník, J.; Coufal, J.; Goswami, P.; Červeň, J.; Pečinka, P. The Presence and Localization of G-Quadruplex Forming Sequences in the Domain of Bacteria. Molecules 2019, 24, 1711. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Jiang, N.; Chen, X.; Zhou, X.; Ding, L.; Duan, F. R-Loop Structure: The Formation and the Effects on Genomic Stability. Yi Chuan Hered. 2014, 36, 1185–1194. [Google Scholar] [CrossRef]
- Groh, M.; Lufino, M.M.P.; Wade-Martins, R.; Gromak, N. R-Loops Associated with Triplet Repeat Expansions Promote Gene Silencing in Friedreich Ataxia and Fragile X Syndrome. PLoS Genet. 2014, 10, e1004318. [Google Scholar] [CrossRef] [Green Version]
- Richard, P.; Manley, J.L. R Loops and Links to Human Disease. J. Mol. Biol. 2017, 429, 3168–3180. [Google Scholar] [CrossRef] [Green Version]
- Cristini, A.; Gromak, N.; Sordet, O. Transcription-Dependent DNA Double-Strand Breaks and Human Disease. Mol. Cell. Oncol. 2020, 7, 1691905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chasovskikh, S.; Dimtchev, A.; Smulson, M.; Dritschilo, A. DNA Transitions Induced by Binding of PARP-1 to Cruciform Structures in Supercoiled Plasmids. Cytom. Part J. Int. Soc. Anal. Cytol. 2005, 68, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Mizuguchi, G.; Hamiche, A.; Wu, C. A Chromatin Remodelling Complex Involved in Transcription and DNA Processing. Nature 2000, 406, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P. New Insight into the Biology of R-Loops. Mutat. Res. 2020, 821, 111711. [Google Scholar] [CrossRef]
- Cer, R.; Bruce, K.; Donohue, D.; Temiz, N.; Mudunuri, U.; Yi, M.; Volfovsky, N.; Bacolla, A.; Luke, B.; Collins, J.R.; et al. Searching for Non-B DNA-Forming Motifs Using NBMST (Non-B DNA Motif Search Tool). Curr. Protoc. Hum. Genet. 2012, 73, 18.7.1–18.7.22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brázda, V.; Kolomazník, J.; Lýsek, J.; Hároníková, L.; Coufal, J.; Št’astný, J. Palindrome Analyser—A New Web-Based Server for Predicting and Evaluating Inverted Repeats in Nucleotide Sequences. Biochem. Biophys. Res. Commun. 2016, 478, 1739–1745. [Google Scholar] [CrossRef] [PubMed]
- Brázda, V.; Kolomazník, J.; Lýsek, J.; Bartas, M.; Fojta, M.; Šťastný, J.; Mergny, J.-L. G4Hunter Web Application: A Web Server for G-Quadruplex Prediction. Bioinformatics 2019, 35, 3493–3495. [Google Scholar] [CrossRef] [Green Version]
- Puig Lombardi, E.; Londoño-Vallejo, A. A Guide to Computational Methods for G-Quadruplex Prediction. Nucleic Acids Res. 2019, 48, 1603. [Google Scholar] [CrossRef] [Green Version]
- Jenjaroenpun, P.; Wongsurawat, T.; Yenamandra, S.P.; Kuznetsov, V.A. QmRLFS-Finder: A Model, Web Server and Stand-Alone Tool for Prediction and Analysis of R-Loop Forming Sequences. Nucleic Acids Res. 2015, 43, W527–W534. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Lieber, M.R. G Clustering Is Important for the Initiation of Transcription-Induced R-Loops in Vitro, Whereas High G Density without Clustering Is Sufficient Thereafter. Mol. Cell. Biol. 2009, 29, 3124–3133. [Google Scholar] [CrossRef] [Green Version]
- Haeussler, M.; Zweig, A.S.; Tyner, C.; Speir, M.L.; Rosenbloom, K.R.; Raney, B.J.; Lee, C.M.; Lee, B.T.; Hinrichs, A.S.; Gonzalez, J.N.; et al. The UCSC Genome Browser Database: 2019 Update. Nucleic Acids Res. 2019, 47, D853–D858. [Google Scholar] [CrossRef] [Green Version]
- Kim, A.; Wang, G.G. R-Loop and Its Functions at the Regulatory Interfaces between Transcription and (Epi)Genome. Biochim. Biophys. Acta BBA Gene Regul. Mech. 2021, 1864, 194750. [Google Scholar] [CrossRef]
- Brambati, A.; Zardoni, L.; Nardini, E.; Pellicioli, A.; Liberi, G. The Dark Side of RNA:DNA Hybrids. Mutat. Res. 2020, 784, 108300. [Google Scholar] [CrossRef] [PubMed]
- Ui, A.; Chiba, N.; Yasui, A. Relationship among DNA Double-Strand Break (DSB), DSB Repair, and Transcription Prevents Genome Instability and Cancer. Cancer Sci. 2020, 111, 1443–1451. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Liu, Z.; Song, M.; Wu, Z.; Xu, W.; Li, K.; Ji, Q.; Wang, S.; Liu, X.; Yan, K.; et al. Genome-Wide R-Loop Landscapes during Cell Differentiation and Reprogramming. Cell Rep. 2020, 32, 107870. [Google Scholar] [CrossRef]
- Wang, K.; Wang, H.; Li, C.; Yin, Z.; Xiao, R.; Li, Q.; Xiang, Y.; Wang, W.; Huang, J.; Chen, L.; et al. Genomic Profiling of Native R Loops with a DNA-RNA Hybrid Recognition Sensor. Sci. Adv. 2017, 7, eabe3516. [Google Scholar] [CrossRef] [PubMed]
- Sanz, L.A.; Castillo-Guzman, D.; Chédin, F. Mapping R-Loops and RNA:DNA Hybrids with S9.6-Based Immunoprecipitation Methods. JoVE J. Vis. Exp. 2021, 174, e62455. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.S.; Kawamura, R.; Littlehale, M.L.; Marko, J.F.; Laub, M.T. High-Resolution, Genome-Wide Mapping of Positive Supercoiling in Chromosomes. eLife 2021, 10, e67236. [Google Scholar] [CrossRef] [PubMed]
- Sanz, L.A.; Chédin, F. High-Resolution, Strand-Specific R-Loop Mapping via S9.6-Based DNA-RNA Immunoprecipitation and High-Throughput Sequencing. Nat. Protoc. 2019, 14, 1734–1755. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.; De Lucca, B.; Flati, T.; Gioiosa, S.; Chillemi, G.; Capranico, G. DROPA: DRIP-Seq Optimized Peak Annotator. BMC Bioinformatics 2019, 20, 414. [Google Scholar] [CrossRef]
- Zhang, P.; Feng, Y.; Wei, H.; Zhang, W. R-Loop Identification and Profiling in Plants. Trends Plant Sci. 2019, 24, 971–972. [Google Scholar] [CrossRef]
- Nadel, J.; Athanasiadou, R.; Lemetre, C.; Wijetunga, N.A.; Broin, Ó.P.; Sato, H.; Zhang, Z.; Jeddeloh, J.; Montagna, C.; Golden, A.; et al. RNA:DNA Hybrids in the Human Genome Have Distinctive Nucleotide Characteristics, Chromatin Composition, and Transcriptional Relationships. Epigenet. Chromatin 2015, 8, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Positive Strand | Negative Strand | |
---|---|---|
Accuracy [%] | 78.57 | 64.29 |
Sensitivity [%] | 25 | 40 |
Specificity [%] | 100 | 77.78 |
Precision [%] | 76.92 | 70 |
Matthews Correlation Coefficient | 0.44 | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brázda, V.; Havlík, J.; Kolomazník, J.; Trenz, O.; Šťastný, J. R-Loop Tracker: Web Access-Based Tool for R-Loop Detection and Analysis in Genomic DNA Sequences. Int. J. Mol. Sci. 2021, 22, 12857. https://doi.org/10.3390/ijms222312857
Brázda V, Havlík J, Kolomazník J, Trenz O, Šťastný J. R-Loop Tracker: Web Access-Based Tool for R-Loop Detection and Analysis in Genomic DNA Sequences. International Journal of Molecular Sciences. 2021; 22(23):12857. https://doi.org/10.3390/ijms222312857
Chicago/Turabian StyleBrázda, Václav, Jan Havlík, Jan Kolomazník, Oldřich Trenz, and Jiří Šťastný. 2021. "R-Loop Tracker: Web Access-Based Tool for R-Loop Detection and Analysis in Genomic DNA Sequences" International Journal of Molecular Sciences 22, no. 23: 12857. https://doi.org/10.3390/ijms222312857
APA StyleBrázda, V., Havlík, J., Kolomazník, J., Trenz, O., & Šťastný, J. (2021). R-Loop Tracker: Web Access-Based Tool for R-Loop Detection and Analysis in Genomic DNA Sequences. International Journal of Molecular Sciences, 22(23), 12857. https://doi.org/10.3390/ijms222312857