Study of the Spatio-Chemical Heterogeneity of Tannin-Furanic Foams: From 1D FTIR Spectroscopy to 3D FTIR Micro-Computed Tomography
Abstract
:1. Introduction
2. Results and Discussion
2.1. 1D ATR-FTIR of Tannin Foams
2.2. 2D-FTIR Imaging of Tannin Foams
2.3. 3D FTIR µ-CT
3. Conclusions
4. Materials and Methods
4.1. Sample Preparation
4.2. ATR-FTIR Measurements
4.3. FTIR-µCT Data Acquisition
4.4. FTIR-µCT Data Processing
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Baker, M.J.; Trevisan, J.; Bassan, P.; Bhargava, R.; Butler, H.J.; Dorling, K.M.; Fielden, P.R.; Fogarty, S.W.; Fullwood, N.J.; Heys, K.A.; et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 2014, 9, 1771–1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt, J.; Flemming, H.-C. FTIR-spectroscopy in microbial and material analysis. Int. Biodeterior. Biodegrad. 1998, 41, 1–11. [Google Scholar] [CrossRef]
- Hirschmugl, C.J.; Gough, K.M. Fourier Transform Infrared Spectrochemical Imaging: Review of Design and Applications with a Focal Plane Array and Multiple Beam Synchrotron Radiation Source. Appl. Spectrosc. AS 2012, 66, 475–491. [Google Scholar] [CrossRef]
- Pilling, M.; Gardner, P. Fundamental developments in infrared spectroscopic imaging for biomedical applications. Chem. Soc. Rev. 2016, 45, 1935–1957. [Google Scholar] [CrossRef]
- Kazarian, S.G.; Chan, K.L.A. FTIR Imaging of Polymeric Materials. In Polymer Morphology; John Wiley & Sons, Ltd.: London, UK, 2016; pp. 118–130. ISBN 978-1-118-89275-6. [Google Scholar]
- Rosi, F.; Cartechini, L.; Sali, D.; Miliani, C. Recent trends in the application of Fourier Transform Infrared (FT-IR) spectroscopy in Heritage Science: From micro- to non-invasive FT-IR. Phys. Sci. Rev. 2019, 4, 121–150. [Google Scholar] [CrossRef]
- Martin, M.C.; Dabat-Blondeau, C.; Unger, M.; Sedlmair, J.; Parkinson, D.Y.; Bechtel, H.A.; Illman, B.; Castro, J.M.; Keiluweit, M.; Buschke, D.; et al. 3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography. Nat. Methods 2013, 10, 861–864. [Google Scholar] [CrossRef]
- Quaroni, L.; Obst, M.; Nowak, M.; Zobi, F. Three-Dimensional Mid-Infrared Tomographic Imaging of Endogenous and Exogenous Molecules in a Single Intact Cell with Subcellular Resolution. Angew. Chem. Int. Ed. 2015, 54, 318–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Findlay, C.; Morrison, J.; Mundy, C.J.; Sedlmair, J.; Hirschmugl, C.J.; Gough, K.M. Thermal source Fourier transform infrared microtomography applied to Arctic sea ice diatoms. Analyst 2017, 142, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Donato, S.; Cefarin, N.; Reyer, A.; Sepperer, T.; Dreossi, D.; Sodini, N.; Surowka, A.; Birarda, G.; Vaccari, L.; Musso, M.; et al. X-ray and FTIR µ-CTs for morphological and chemical characterization of eco-sustainable insulating foams. In Proceedings of the 9th International Conference on Industrial Computed Tomography, Padova, Italy, 13–15 February 2019. [Google Scholar]
- Dionnet, Z.; Aléon-Toppani, A.; Borondics, F.; Brunetto, R.; Buellet, A.C.; Djouadi, Z.; King, A.; Rubino, S.; Troadec, D. FTIR Micro-tomography of Five Itokawa Particles and one Primitive Carbonaceous Chondrite. Microsc. Microanal. 2018, 24, 2100–2101. [Google Scholar] [CrossRef] [Green Version]
- Yesiltas, M.; Sedlmair, J.; Peale, R.E.; Hirschmugl, C.J. Synchrotron-Based Three-Dimensional Fourier-Transform Infrared Spectro-Microtomography of Murchison Meteorite Grain. Appl. Spectrosc. 2017, 71, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- Pizzi, A.; Celzard, A.; Fierro, V.; Tondi, G. Chemistry, Morphology, Microtomography and Activation of Natural and Carbonized Tannin Foams for Different Applications. Macromol. Symp. 2012, 313–314, 100–111. [Google Scholar] [CrossRef]
- Tondi, G.; Zhao, W.; Pizzi, A.; Du, G.; Fierro, V.; Celzard, A. Tannin-based rigid foams: A survey of chemical and physical properties. Bioresour. Technol. 2009, 100, 5162–5169. [Google Scholar] [CrossRef] [PubMed]
- Tondi, G.; Blacher, S.; Léonard, A.; Pizzi, A.; Fierro, V.; Leban, J.M.; Celzard, A. X-ray Microtomography Studies of Tannin-Derived Organic and Carbon Foams. Microsc. Microanal. 2009, 15, 384–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Link, M.; Kolbitsch, C.; Tondi, G.; Ebner, M.; Wieland, S.; Petutschnigg, A. Formaldehyde-Free Tannin Based Foams and Their Use as Lightweight Panels. BioResources 2011, 6, 4218–4228. [Google Scholar]
- Perez, R.F.; Fraga, M.A. Hemicellulose-derived chemicals: One-step production of furfuryl alcohol from xylose. Green Chem. 2014, 16, 3942–3950. [Google Scholar] [CrossRef]
- Shirotori, M.; Nishimura, S.; Ebitani, K. One-pot synthesis of furfural derivatives from pentoses using solid acid and base catalysts. Catal. Sci. Technol. 2014, 4, 971–978. [Google Scholar] [CrossRef]
- Tondi, G.; Cefarin, N.; Sepperer, T.; D’Amico, F.; Berger, R.J.F.; Musso, M.; Birarda, G.; Reyer, A.; Schnabel, T.; Vaccari, L. Understanding the Polymerization of Polyfurfuryl Alcohol: Ring Opening and Diels-Alder Reactions. Polymers 2019, 11, 2126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Amico, F.; Musso, M.E.; Berger, R.J.F.; Cefarin, N.; Birarda, G.; Tondi, G.; Bertoldo Menezes, D.; Reyer, A.; Scarabattoli, L.; Sepperer, T.; et al. Chemical constitution of polyfurfuryl alcohol investigated by FTIR and Resonant Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 262, 120090. [Google Scholar] [CrossRef]
- Tondi, G. Tannin-Based Copolymer Resins: Synthesis and Characterization by Solid State 13C NMR and FT-IR Spectroscopy. Polymers 2017, 9, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricci, A.; Olejar, K.J.; Parpinello, G.P.; Kilmartin, P.A.; Versari, A. Application of Fourier Transform Infrared (FTIR) Spectroscopy in the Characterization of Tannins. Appl. Spectrosc. Rev. 2015, 50, 407–442. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2004; Available online: https://www.wiley.com/en-it/Infrared+and+Raman+Characteristic+Group+Frequencies%3A+Tables+and+Charts%2C+3rd+Edition-p-9780470093078 (accessed on 6 July 2021).
- Larkin, P.J. Chapter 6—IR and Raman Spectra–Structure Correlations: Characteristic Group Frequencies. In Infrared and Raman Spectroscopy, 2nd ed.; Larkin, P.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 85–134. ISBN 978-0-12-804162-8. [Google Scholar]
- Khedkar, J.K.; Gobre, V.V.; Pinjari, R.V.; Gejji, S.P. Electronic Structure and Normal Vibrations in (+)-Catechin and (−)-Epicatechin Encapsulated β-Cyclodextrin. J. Phys. Chem. A. 2010, 114, 7725–7732. Available online: https://pubs.acs.org/doi/abs/10.1021/jp102304j (accessed on 6 July 2021). [CrossRef] [PubMed]
- Kim, S.; Kim, H.-J. Curing behavior and viscoelastic properties of pine and wattle tannin-based adhesives studied by dynamic mechanical thermal analysis and FT-IR-ATR spectroscopy. J. Adhes. Sci. Technol. 2003, 17, 1369–1383. [Google Scholar] [CrossRef]
- Jensen, J.S.; Egebo, M.; Meyer, A.S. Identification of Spectral Regions for the Quantification of Red Wine Tannins with Fourier Transform Mid-Infrared Spectroscopy. J. Agric. Food Chem. 2008, 56, 3493–3499. Available online: https://pubs.acs.org/doi/10.1021/jf703573f (accessed on 6 July 2021). [CrossRef] [PubMed]
- Laghi, L.; Parpinello, G.P.; Rio, D.D.; Calani, L.; Mattioli, A.U.; Versari, A. Fingerprint of enological tannins by multiple techniques approach. Food Chem. 2010, 121, 783–788. [Google Scholar] [CrossRef]
- Falcão, L.; Araújo, M.E.M. Tannins characterization in historic leathers by complementary analytical techniques ATR-FTIR, UV-Vis and chemical tests. J. Cult. Herit. 2013, 14, 499–508. [Google Scholar] [CrossRef]
- Tondi, G.; Link, M.; Oo, C.W.; Petutschnigg, A. A Simple Approach to Distinguish Classic and Formaldehyde-Free Tannin Based Rigid Foams by ATR FT-IR. J. Spectrosc. 2015, 2015, e902340. [Google Scholar] [CrossRef]
- Tondi, G.; Link, M.; Kolbitsch, C.; Lesacher, R.; Petutschnigg, A. Pilot plant up-scaling of tannin foams. Ind. Crop. Prod. 2016, 79, 211–218. [Google Scholar] [CrossRef]
- Demšar, J.; Curk, T.; Erjavec, A.; Demsar, J.; Curk, T.; Erjave, A.; Gorup, C.; Hocevar, T.; Milutinovic, M.; Mozina, M.; et al. Orange: Data Mining Toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353. [Google Scholar]
- Lupi, S.; Nucara, A.; Perucchi, A.; Calvani, P.; Ortolani, M.; Quaroni, L.; Kiskinova, M. Performance of SISSI, the infrared beamline of the ELETTRA storage ring. J. Opt. Soc. Am. B 2007, 24, 959–964. [Google Scholar] [CrossRef]
- Balerna, A.; Cestelli-Guidi, M.; Cimino, R.; Commisso, M.; Grilli, A.; Pietropaoli, M.; Raco, A.; Sciarra, V.; Tullio, V.; Viviani, G.; et al. DAFNE-Light INFN-LNF Synchrotron Radiation Facility. AIP Conf. Proc. 2010, 1234, 285–288. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- van der Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy Array: A Structure for Efficient Numerical Computation. Comput. Sci. Eng. 2011, 13, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appendix—IR Correlation Charts. In Infrared and Raman Spectroscopy, 2nd ed.; Larkin, P.J. (Ed.) Elsevier: Amsterdam, The Netherlands, 2018; pp. 261–263. ISBN 978-0-12-804162-8. [Google Scholar]
- Tondi, G.; Petutschnigg, A. Middle infrared (ATR FT-MIR) characterization of industrial tannin extracts. Ind. Crop. Prod. 2015, 65, 422–428. [Google Scholar] [CrossRef]
- dos Santos Grasel, F.; Ferrão, M.F.; Wolf, C.R. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 153, 94–101. [Google Scholar] [CrossRef]
- Baggett, N.; Barker, S.A.; Foster, A.B.; Moore, R.H.; Whiffen, D.H. 882. Infrared spectra of carbohydrates. Part VIII. Hydropyranols and hydrofuranols. J. Chem. Soc. 1960, 4565–4570. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Brombal, L.; Donato, S.; Brun, F.; Delogu, P.; Fanti, V.; Oliva, P.; Rigon, L.; Di Trapani, V.; Longo, R.; Golosio, B. Large-area single-photon-counting CdTe detector for synchrotron radiation computed tomography: A dedicated pre-processing procedure. J. Synchrotron Rad. 2018, 25, 1068–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kak, A.C.; Slaney, M. Principles of Computerized Tomographic Imaging; Classics in Applied Mathematics; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2001; ISBN 978-0-89871-494-4. [Google Scholar]
Band [cm−1] | Vibrational mode | Assignment |
---|---|---|
3360 | -OH str. | Polyphenolic matrix |
3100 | =C-H str. | Aromatic C-H [22,23,24] |
~2930, ~2850 | CH2 asym., sym str. | Methylene group [22] |
1748, 1718, 1703 | C=O str. | α,β-unsaturated γ-lactone [19] and ketones |
1626, 1620, 1616 | -C=C- Ar. str. | Catechin [25], Catechol structure (ring B) [22], Epicatechin [25] |
1610 | -C4-C8- str. | Linking bond between flavanol monomers [26] |
-C=C- Ar. str. | Resorcinol structure (ring A) [22] | |
1595, 1560, 1505 | -C=C- Ar. str. | Catechol, resorcinol and phenols [22], 2,5-disubstituted furan ring in PFA [23], 1,2,4-trisubstituted aromatic ring, cathecol [23] |
1453, 1435 | -C=C- Ar. str. | Phenols |
-C-H def. [23] | Aliphatic chains | |
-CH2 scis. [26] | Pyranic ring | |
1360, 1325 | C-OH def. | Phenolic compounds |
1285 | -C(Aryl)-O(Pyranic)- asym. str. | Pyranic ring [27] |
1230, 1195,1157 | C-OH str. | Phenolic compounds |
1175 | C-O-C vibrations | Diels Alder arrangement PFA [19] |
1105 | -C(Alkyl)-O(Pyranic)- asym. str. | Pyranic ring |
1080 | C-OH str. | Alicyclic secondary alcohol (pyranic ring) |
1048 | C-C str. | Skeletal vibrations [22] |
C-O asym. str. | Polyphenols [28,29] | |
1014, 960, 880 | C-H vib. | Furanic ring [19,30] |
960, 845 | C-H out of plane ben. | Aromatic rings [22,27] |
Tannin [g] | H20 [g] | FOH [g] | H2SO4 [g] | Temp [°C] | |
---|---|---|---|---|---|
Reference | 5 | 0.93 | 3.15 | 2.22 | 90 |
Acid High | 5 | 0.93 | 3.15 | 4.44 | 90 |
Acid Low | 5 | 0.93 | 3.15 | 0.22 | 90 |
FOH High | 5 | 0.93 | 6.30 | 2.22 | 90 |
FOH Low | 5 | 4.00 | 0.32 | 2.22 | 90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cefarin, N.; Bedolla, D.E.; Surowka, A.; Donato, S.; Sepperer, T.; Tondi, G.; Dreossi, D.; Sodini, N.; Birarda, G.; Vaccari, L. Study of the Spatio-Chemical Heterogeneity of Tannin-Furanic Foams: From 1D FTIR Spectroscopy to 3D FTIR Micro-Computed Tomography. Int. J. Mol. Sci. 2021, 22, 12869. https://doi.org/10.3390/ijms222312869
Cefarin N, Bedolla DE, Surowka A, Donato S, Sepperer T, Tondi G, Dreossi D, Sodini N, Birarda G, Vaccari L. Study of the Spatio-Chemical Heterogeneity of Tannin-Furanic Foams: From 1D FTIR Spectroscopy to 3D FTIR Micro-Computed Tomography. International Journal of Molecular Sciences. 2021; 22(23):12869. https://doi.org/10.3390/ijms222312869
Chicago/Turabian StyleCefarin, Nicola, Diana E. Bedolla, Artur Surowka, Sandro Donato, Thomas Sepperer, Gianluca Tondi, Diego Dreossi, Nicola Sodini, Giovanni Birarda, and Lisa Vaccari. 2021. "Study of the Spatio-Chemical Heterogeneity of Tannin-Furanic Foams: From 1D FTIR Spectroscopy to 3D FTIR Micro-Computed Tomography" International Journal of Molecular Sciences 22, no. 23: 12869. https://doi.org/10.3390/ijms222312869
APA StyleCefarin, N., Bedolla, D. E., Surowka, A., Donato, S., Sepperer, T., Tondi, G., Dreossi, D., Sodini, N., Birarda, G., & Vaccari, L. (2021). Study of the Spatio-Chemical Heterogeneity of Tannin-Furanic Foams: From 1D FTIR Spectroscopy to 3D FTIR Micro-Computed Tomography. International Journal of Molecular Sciences, 22(23), 12869. https://doi.org/10.3390/ijms222312869