Human Genetic Disorders Resulting in Systemic Selenoprotein Deficiency
Abstract
:1. Introduction
2. SECISBP2 Mutations
3. TRU-TCA1-1 Mutations
4. SEPSECS Mutations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferreira, R.; Sena-Evangelista, K.; de Azevedo, E.P.; Pinheiro, F.I.; Cobucci, R.N.; Pedrosa, L. Selenium in Human Health and Gut Microflora: Bioavailability of Selenocompounds and Relationship With Diseases. Frontiers in nutrition 2021, 8, 685317. [Google Scholar] [CrossRef]
- Turanov, A.A.; Xu, X.M.; Carlson, B.A.; Yoo, M.H.; Gladyshev, V.N.; Hatfield, D.L. Biosynthesis of selenocysteine, the 21st amino acid in the genetic code, and a novel pathway for cysteine biosynthesis. Ad. Nutr. 2011, 2, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: Molecular pathways and physiological roles. Physiol. Rev. 2014, 94, 739–777. [Google Scholar] [CrossRef] [Green Version]
- Copeland, P.R.; Fletcher, J.E.; Carlson, B.A.; Hatfield, D.L.; Driscoll, D.M. A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J. 2000, 19, 306–314. [Google Scholar] [CrossRef]
- Martin, G.W.; Harney, J.W.; Berry, M.J. Selenocysteine incorporation in eukaryotes: Insights into mechanism and efficiency from sequence, structure, and spacing proximity studies of the type 1 deiodinase SECIS element. RNA 1996, 2, 171–182. [Google Scholar]
- Zoidis, E.; Seremelis, I.; Kontopoulos, N.; Danezis, G.P. Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins. Antioxidants 2018, 7, 66–91. [Google Scholar] [CrossRef] [Green Version]
- Bösl, M.R.; Takaku, K.; Oshima, M.; Nishimura, S.; Taketo, M.M. Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp). PNAS 1997, 94, 5531–5534. [Google Scholar] [CrossRef] [Green Version]
- Seeher, S.; Atassi, T.; Mahdi, Y.; Carlson, B.A.; Braun, D.; Wirth, E.K.; Klein, M.O.; Reix, N.; Miniard, A.C.; Schomburg, L.; et al. Secisbp2 is essential for embryonic development and enhances selenoprotein expression. Antioxid. Redox Signal 2014, 21, 835–849. [Google Scholar] [CrossRef] [Green Version]
- Sunde, R.A.; Raines, A.M. Selenium regulation of the selenoprotein and nonselenoprotein transcriptomes in rodents. Ad. Nutr. 2011, 2, 138–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copeland, P.R.; Driscoll, D.M. Purification, redox sensitivity, and RNA binding properties of SECIS-binding protein 2, a protein involved in selenoprotein biosynthesis. J. Biol. Chem. 1999, 274, 25447–25454. [Google Scholar] [CrossRef] [Green Version]
- Caban, K.; Kinzy, S.A.; Copeland, P.R. The L7Ae RNA binding motif is a multifunctional domain required for the ribosome-dependent Sec incorporation activity of Sec insertion sequence binding protein 2. Mol. Cell. Biol. 2007, 27, 6350–6360. [Google Scholar] [CrossRef] [Green Version]
- Donovan, J.; Caban, K.; Ranaweera, R.; Gonzalez-Flores, J.N.; Copeland, P.R. A novel protein domain induces high affinity selenocysteine insertion sequence binding and elongation factor recruitment. J. Biol. Chem. 2008, 283, 35129–35139. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, A.; Schmitt, D.; Chapple, C.; Babaylova, E.; Karpova, G.; Guigo, R.; Krol, A.; Allmang, C. A short motif in Drosophila SECIS Binding Protein 2 provides differential binding affinity to SECIS RNA hairpins. Nucleic acids res. 2009, 37, 2126–2141. [Google Scholar] [CrossRef]
- Papp, L.V.; Lu, J.; Holmgren, A.; Khanna, K.K. From selenium to selenoproteins: Synthesis, identity, and their role in human health. Antioxid. Redox Signal 2007, 9, 775–806. [Google Scholar] [CrossRef]
- Schoenmakers, E.; Chatterjee, K. Human Disorders Affecting the Selenocysteine Incorporation Pathway Cause Systemic Selenoprotein Deficiency. Antioxid Redox Signal. 2020, 33, 481–497. [Google Scholar] [CrossRef]
- Dumitrescu, A.M.; Liao, X.H.; Abdullah, M.S.; Lado-Abeal, J.; Majed, F.A.; Moeller, L.C.; Boran, G.; Schomburg, L.; Weiss, R.E.; Refetoff, S. Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat. Genet. 2005, 37, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Di Cosmo, C.; McLellan, N.; Liao, X.H.; Khanna, K.K.; Weiss, R.E.; Papp, L.; Refetoff, S. Clinical and molecular characterization of a novel selenocysteine insertion sequence-binding protein 2 (SBP2) gene mutation (R128X). J. Clin. Endocrinol. Metab. 2009, 94, 4003–4009. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, M.F.; Barra, G.B.; Naves, L.A.; Ribeiro Velasco, L.F.; Godoy Garcia Castro, P.; de Castro, L.C.; Amato, A.A.; Miniard, A.; Driscoll, D.; Schomburg, L.; et al. Selenoprotein-related disease in a young girl caused by nonsense mutations in the SBP2 gene. J. Clin. Endocrinol. Metab. 2010, 95, 4066–4071. [Google Scholar] [CrossRef] [Green Version]
- Schoenmakers, E.; Agostini, M.; Mitchell, C.; Schoenmakers, N.; Papp, L.; Rajanayagam, O.; Padidela, R.; Ceron-Gutierrez, L.; Doffinger, R.; Prevosto, C.; et al. Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J. Clin. Invest. 2010, 120, 4220–4235. [Google Scholar] [CrossRef] [Green Version]
- Hamajima, T.; Mushimoto, Y.; Kobayashi, H.; Saito, Y.; Onigata, K. Novel compound heterozygous mutations in the SBP2 gene: Characteristic clinical manifestations and the implications of GH and triiodothyronine in longitudinal bone growth and maturation. Eur. J. Endocrinol. 2012, 166, 757–764. [Google Scholar] [CrossRef] [Green Version]
- Çatli, G.; Fujisawa, H.; Kirbiyik, Ö.; Mimoto, M.S.; Gençpinar, P.; Özdemir, T.R.; Dündar, B.N.; Dumitrescu, A.M. A Novel Homozygous Selenocysteine Insertion Sequence Binding Protein 2 (SECISBP2, SBP2) Gene Mutation in a Turkish Boy. Thyroid 2018, 28, 1221–1223. [Google Scholar] [CrossRef]
- Korwutthikulrangsri, M.; Raimondi, C.; Dumitrescu, A.M. Novel Compound Heterozygous SBP2 Gene Mutations in a Boy with Developmental Delay and Failure to Thrive; 13th IWRTH: Doorn, The Netherlands, 2018; p. 22, Abstract Book. [Google Scholar]
- Fu, J.; Korwutthikulrangsri, M.; Gönç, E.N.; Sillers, L.; Liao, X.H.; Alikaşifoğlu, A.; Kandemir, N.; Menucci, M.B.; Burman, K.D.; Weiss, R.E.; et al. Clinical and Molecular Analysis in 2 Families With Novel Compound Heterozygous SBP2 (SECISBP2) Mutations. J. Clin. Endocrinol. Metab. 2020, 105, e6–e11. [Google Scholar] [CrossRef]
- Bubenik, J.L.; Driscoll, D.M. Altered RNA binding activity underlies abnormal thyroid hormone metabolism linked to a mutation in selenocysteine insertion sequence-binding protein 2. J. Biol. Chem. 2007, 282, 34653–34662. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Bohleber, S.; Schmidt, H.; Seeher, S.; Howard, M.T.; Braun, D.; Arndt, S.; Reuter, U.; Wende, H.; Birchmeier, C.; et al. Ribosome profiling of selenoproteins in vivo reveals consequences of pathogenic Secisbp2 missense mutations. J. Biol. Chem. 2019, 294, 14185–14200. [Google Scholar] [CrossRef] [Green Version]
- Ng, L.; Goodyear, R.J.; Woods, C.A.; Schneider, M.J.; Diamond, E.; Richardson, G.P.; Kelley, M.W.; Germain, D.L.; Galton, V.A.; Forrest, D. Hearing loss and retarded cochlear development in mice lacking type 2 iodothyronine deiodinase. Proc. Natl. Acad. Sci. USA 2004, 101, 3474–3479. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, A.; Martinez, M.E.; Fiering, S.; Galton, V.A.; St Germain, D. Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J. Clin. Invest. 2006, 116, 476–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downey, C.M.; Horton, C.R.; Carlson, B.A.; Parsons, T.E.; Hatfield, D.L.; Hallgrímsson, B.; Jirik, F.R. Osteo-chondroprogenitor-specific deletion of the selenocysteine tRNA gene, Trsp, leads to chondronecrosis and abnormal skeletal development: A putative model for Kashin-Beck disease. PLoS Genet. 2009, 5, e1000616. [Google Scholar] [CrossRef] [Green Version]
- Silwal, A.; Sarkozy, A.; Scoto, M.; Ridout, D.; Schmidt, A.; Laverty, A.; Henriques, M.; D’Argenzio, L.; Main, M.; Mein, R.; et al. Selenoprotein N-related myopathy: A retrospective natural history study to guide clinical trials. Ann. Clin. Transl. neurol. 2020, 7, 2288–2296. [Google Scholar] [CrossRef] [PubMed]
- McFadden, S.L.; Ohlemiller, K.K.; Ding, D.; Shero, M.; Salvi, R.J. The Influence of Superoxide Dismutase and Glutathione Peroxidase Deficiencies on Noise-Induced Hearing Loss in Mice. Noise health 2001, 3, 49–64. [Google Scholar]
- Riva, C.; Donadieu, E.; Magnan, J.; Lavieille, J.P. Age-related hearing loss in CD/1 mice is associated to ROS formation and HIF target proteins up-regulation in the cochlea. Exp. Geront. 2007, 42, 327–336. [Google Scholar] [CrossRef]
- Ursini, F.; Heim, S.; Kiess, M.; Maiorino, M.; Roveri, A.; Wissing, J.; Flohé, L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999, 285, 1393–1396. [Google Scholar] [CrossRef] [Green Version]
- Foresta, C.; Flohé, L.; Garolla, A.; Roveri, A.; Ursini, F.; Maiorino, M. Male fertility is linked to the selenoprotein phospholipid hydroperoxide glutathione peroxidase. Biol. reprod. 2002, 67, 967–971. [Google Scholar] [CrossRef] [Green Version]
- Kryukov, G.V.; Castellano, S.; Novoselov, S.V.; Lobanov, A.V.; Zehtab, O.; Guigó, R.; Gladyshev, V.N. Characterization of mammalian selenoproteomes. Science 2003, 300, 1439–1443. [Google Scholar] [CrossRef] [Green Version]
- Su, D.; Novoselov, S.V.; Sun, Q.A.; Moustafa, M.E.; Zhou, Y.; Oko, R.; Hatfield, D.L.; Gladyshev, V.N. Mammalian selenoprotein thioredoxin-glutathione reductase. Roles in disulfide bond formation and sperm maturation. J. Biol. Chem. 2005, 280, 26491–26498. [Google Scholar] [CrossRef] [Green Version]
- Schneider, M.; Förster, H.; Boersma, A.; Seiler, A.; Wehnes, H.; Sinowatz, F.; Neumüller, C.; Deutsch, M.J.; Walch, A.; Hrabé de Angelis, M.; et al. Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB J. 2009, 23, 3233–3242. [Google Scholar] [CrossRef] [Green Version]
- Schweikert, K.; Gafner, F.; Dell’Acqua, G. A bioactive complex to protect proteins from UV-induced oxidation in human epidermis. Int. J. Cosm. Sci. 2010, 32, 29–34. [Google Scholar] [CrossRef]
- Sengupta, A.; Lichti, U.F.; Carlson, B.A.; Ryscavage, A.O.; Gladyshev, V.N.; Yuspa, S.H.; Hatfield, D.L. Selenoproteins are essential for proper keratinocyte function and skin development. PLoS ONE 2010, 5, e12249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, S.; Hoffmann, F.W.; Kumar, M.; Huang, Z.; Roe, K.; Nguyen-Wu, E.; Hashimoto, A.S.; Hoffmann, P.R. Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses. J. Immunol. 2011, 186, 2127–2137. [Google Scholar] [CrossRef] [Green Version]
- Saito, Y.; Shichiri, M.; Hamajima, T.; Ishida, N.; Mita, Y.; Nakao, S.; Hagihara, Y.; Yoshida, Y.; Takahashi, K.; Niki, E.; et al. Enhancement of lipid peroxidation and its amelioration by vitamin E in a subject with mutations in the SBP2 gene. Lipid Res. 2015, 56, 2172–2182. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.; Carlson, B.A.; Paulson, R.F.; Prabhu, K.S. The intricate role of selenium and selenoproteins in erythropoiesis. Free Radic. Biol. Med. 2018, 127, 165–171. [Google Scholar] [CrossRef]
- Schomburg, L.; Dumitrescu, A.M.; Liao, X.H.; Bin-Abbas, B.; Hoeflich, J.; Köhrle, J.; Refetoff, S. Selenium supplementation fails to correct the selenoprotein synthesis defect in subjects with SBP2 gene mutations. Thyroid 2009, 19, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Shetty, S.P.; Copeland, P.R. Selenocysteine incorporation: A trump card in the game of mRNA decay. Biochimie 2015, 114, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Carlson, B.A.; Yoo, M.H.; Tsuji, P.A.; Gladyshev, V.N.; Hatfield, D.L. Mouse models targeting selenocysteine tRNA expression for elucidating the role of selenoproteins in health and development. Molecules 2009, 14, 3509–3527. [Google Scholar] [CrossRef] [Green Version]
- Schoenmakers, E.; Carlson, B.; Agostini, M.; Moran, C.; Rajanayagam, O.; Bochukova, E.; Tobe, R.; Peat, R.; Gevers, E.; Muntoni, F.; et al. Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis. J. Clin. Invest. 2016, 126, 992–996. [Google Scholar] [CrossRef] [Green Version]
- Geslot, A.; Savagner, F.; Caron, P. Inherited selenocysteine transfer RNA mutation: Clinical and hormonal evaluation of 2 patients. Eur. Thyroid, J. 2021, 10, 542–547. [Google Scholar] [CrossRef]
- Hatfield, D.; Lee, B.J.; Hampton, L.; Diamond, A.M. Selenium induces changes in the selenocysteine tRNA[Ser]Sec population in mammalian cells. Nucleic acids res. 1991, 19, 939–943. [Google Scholar] [CrossRef] [Green Version]
- Diamond, A.M.; Choi, I.S.; Crain, P.F.; Hashizume, T.; Pomerantz, S.C.; Cruz, R.; Steer, C.J.; Hill, K.E.; Burk, R.F.; McCloskey, J.A.; et al. Dietary selenium affects methylation of the wobble nucleoside in the anticodon of selenocysteine tRNA([Ser]Sec). J. Biol. Chem. 1993, 268, 14215–14223. [Google Scholar] [CrossRef]
- Kernebeck, T.; Lohse, A.W.; Grötzinger, J. A bioinformatical approach suggests the function of the autoimmune hepatitis target antigen soluble liver antigen/liver pancreas. Hepatology 2001, 34, 230–233. [Google Scholar] [CrossRef]
- Small-Howard, A.; Morozova, N.; Stoytcheva, Z.; Forry, E.P.; Mansell, J.B.; Harney, J.W.; Carlson, B.A.; Xu, X.M.; Hatfield, D.L.; Berry, M.J. Supramolecular complexes mediate selenocysteine incorporation in vivo. Mol. Cell. Biol. 2006, 26, 2337–2346. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.M.; Mix, H.; Carlson, B.A.; Grabowski, P.J.; Gladyshev, V.N.; Berry, M.J.; Hatfield, D.L. Evidence for direct roles of two additional factors, SECp43 and soluble liver antigen, in the selenoprotein synthesis machinery. J. Biol. Chem. 2005, 280, 41568–41575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araiso, Y.; Palioura, S.; Ishitani, R.; Sherrer, R.L.; O’Donoghue, P.; Yuan, J.; Oshikane, H.; Domae, N.; Defranco, J.; Söll, D.; et al. Structural insights into RNA-dependent eukaryal and archaeal selenocysteine formation. Nucleic Acids Res. 2008, 36, 1187–1199. [Google Scholar] [CrossRef] [Green Version]
- Ganichkin, O.M.; Xu, X.M.; Carlson, B.A.; Mix, H.; Hatfield, D.L.; Gladyshev, V.N.; Wahl, M.C. Structure and catalytic mechanism of eukaryotic selenocysteine synthase. J. Biol. Chem. 2008, 283, 5849–5865. [Google Scholar] [CrossRef] [Green Version]
- Palioura, S.; Sherrer, R.L.; Steitz, T.A.; Söll, D.; Simonovic, M. The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation. Science 2009, 325, 321–325. [Google Scholar] [CrossRef] [Green Version]
- Puppala, A.K.; French, R.L.; Matthies, D.; Baxa, U.; Subramaniam, S.; Simonović, M. Structural basis for early-onset neurological disorders caused by mutations in human selenocysteine synthase. Sci. Rep. 2016, 6, 32563. [Google Scholar] [CrossRef] [Green Version]
- Agamy, O.; Ben Zeev, B.; Lev, D.; Marcus, B.; Fine, D.; Su, D.; Narkis, G.; Ofir, R.; Hoffmann, C.; Leshinsky-Silver, E.; et al. Mutations disrupting selenocysteine formation cause progressive cerebello-cerebral atrophy. Am. J. Hum. Genet. 2010, 87, 538–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makrythanasis, P.; Nelis, M.; Santoni, F.A.; Guipponi, M.; Vannier, A.; Béna, F.; Gimelli, S.; Stathaki, E.; Temtamy, S.; Mégarbané, A.; et al. Diagnostic exome sequencing to elucidate the genetic basis of likely recessive disorders in consanguineous families. Hum. Mutat. 2014, 35, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Anttonen, A.K.; Hilander, T.; Linnankivi, T.; Isohanni, P.; French, R.L.; Liu, Y.; Simonović, M.; Söll, D.; Somer, M.; Muth-Pawlak, D.; et al. Selenoprotein biosynthesis defect causes progressive encephalopathy with elevated lactate. Neurology 2015, 85, 306–315. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Petrovski, S.; Xie, P.; Ruzzo, E.K.; Lu, Y.F.; McSweeney, K.M.; Ben-Zeev, B.; Nissenkorn, A.; Anikster, Y.; Oz-Levi, D.; et al. Whole-exome sequencing in undiagnosed genetic diseases: Interpreting 119 trios. Genet. Med. 2015, 17, 774–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alazami, A.M.; Patel, N.; Shamseldin, H.E.; Anazi, S.; Al-Dosari, M.S.; Alzahrani, F.; Hijazi, H.; Alshammari, M.; Aldahmesh, M.A.; Salih, M.A.; et al. Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Rep. 2015, 10, 148–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlidou, E.; Salpietro, V.; Phadke, R.; Hargreaves, I.P.; Batten, L.; McElreavy, K.; Pitt, M.; Mankad, K.; Wilson, C.; Cutrupi, M.C.; et al. Pontocerebellar hypoplasia type 2D and optic nerve atrophy further expand the spectrum associated with selenoprotein biosynthesis deficiency. Eur. J. Paediatr. Neurol. 2016, 20, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Iwama, K.; Sasaki, M.; Hirabayashi, S.; Ohba, C.; Iwabuchi, E.; Miyatake, S.; Nakashima, M.; Miyake, N.; Ito, S.; Saitsu, H.; et al. Milder progressive cerebellar atrophy caused by biallelic SEPSECS mutations. J. Hum. Genet. 2016, 61, 527–531. [Google Scholar] [CrossRef]
- Olson, H.E.; Kelly, M.; LaCoursiere, C.M.; Pinsky, R.; Tambunan, D.; Shain, C.; Ramgopal, S.; Takeoka, M.; Libenson, M.H.; Julich, K.; et al. Genetics and genotype-phenotype correlations in early onset epileptic encephalopathy with burst suppression. Ann. Neurol. 2017, 81, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, T.; Vermeij, J.D.; van Koningsbruggen, S.; Lakeman, P.; Baas, F.; Poll-The, B.T. A SEPSECS mutation in a 23-year-old woman with microcephaly and progressive cerebellar ataxia. J. Inherit. Metab. Dis 2018, 41, 897–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrudi-Moreno, M.; Fernández-Gómez, A.; Peña-Segura, J.L. A new mutation in the SEPSECS gene related to pontocerebellar hypoplasia type 2D. Med. Clin. 2021, 156, 94–95. [Google Scholar] [CrossRef] [PubMed]
- Nejabat, M.; Inaloo, S.; Sheshdeh, A.T.; Bahramjahan, S.; Sarvestani, F.M.; Katibeh, P.; Nemati, H.; Tabei, S.; Faghihi, M.A. Genetic Testing in Various Neurodevelopmental Disorders Which Manifest as Cerebral Palsy: A Case Study From Iran. Frontiers in Pediatrics 2021, 9, 734946. [Google Scholar] [CrossRef] [PubMed]
- Ben-Zeev, B.; Hoffman, C.; Lev, D.; Watemberg, N.; Malinger, G.; Brand, N.; Lerman-Sagie, T. Progressive cerebellocerebral atrophy: A new syndrome with microcephaly, mental retardation, and spastic quadriplegia. J. Med. Genet. 2003, 40, e96. [Google Scholar] [CrossRef] [Green Version]
- Fradejas-Villar, N.; Zhao, W.; Reuter, U.; Doengi, M.; Ingold, I.; Bohleber, S.; Conrad, M.; Schweizer, U. Missense mutation in selenocysteine synthase causes cardio-respiratory failure and perinatal death in mice which can be compensated by selenium-independent GPX4. Redox Biol. 2021, 48, 102188. [Google Scholar] [CrossRef]
Selenoprotein | Function | Expression Subcellular Localization |
---|---|---|
GPX1 glutathione peroxidase 1 | Oxidoreductase | most tissues cytoplasmic |
GPX2 glutathione peroxidase 2 | Oxidoreductase | limited number of tissues Nucleus and cytoplasmic |
GPX3 glutathione peroxidase 3 | Oxidoreductase | most tissues secreted |
GPX4 glutathione peroxidase 4 | Oxidoreductase | most tissues Nucleus and mitochondria |
GPX6 glutathione peroxidase 6 | Oxidoreductase | testis, epididymis, olfactory system predicted secreted |
TXNRD1 thioredoxin reductase 1 | Oxidoreductase | Ubiquitous Nucleus and cytoplasmic |
TXNRD2 Thioredoxin reductase 2 | Oxidoreductase | Ubiquitous cytoplasmic and mitochondria |
TXNRD3 Thioredoxin reductase 3 | Oxidoreductase | most tissues, high in testis Intracellular |
DIO1 Iodothyronine deiodinase 1 | Thyroid hormone metabolism | kidney, liver, thyroid gland Intracellular membrane-associated |
DIO2 Iodothyronine deiodinase 2 | Thyroid hormone metabolism | central nervous system, pituitary Intracellular membrane-associated |
DIO3 Iodothyronine deiodinase 3 | Thyroid hormone metabolism | several tissues Intracellular membrane-associated |
MSRB1 methionine sulfoxide reductase B1 | Met sulfoxide reduction | Ubiquitous Nucleus and cytoplasmic |
SELENOF Selenoprotein F | Protein folding control | Ubiquitous endoplasmic reticulum |
SELENOH Selenoprotein H | Unknown oxidoreductase | Ubiquitous Nucleus |
SELENOI Selenoprotein I | Phospholipid biosynthesis | Ubiquitous transmembrane |
SELENOK Selenoprotein K | Protein folding control | Ubiquitous ER, plasma membrane |
SELENOM Selenoprotein M | Unknown | Ubiquitous Nuclear and perinuclear |
SELENON Selenoprotein N | Redox-calcium homeostasis | Ubiquitous endoplasmic reticulum |
SELENOO Selenoprotein O | Protein AMPylation activity | Ubiquitous mitochondria |
SELENOP Selenoprotein P | Transport/oxidoreductase | most tissues secreted, cytoplasmic |
SELENOS Selenoprotein S | Protein folding control | Ubiquitous endoplasmic reticulum |
SELENOT Selenoprotein T | Unknown oxidoreductase | Ubiquitous endoplasmic reticulum |
SELENOV Selenoprotein V | Unknown | thyroid, parathyroid, testis, brain Intracellular |
SELENOW Selenoprotein W | Oxidoreductase | Ubiquitous Intracellular |
SEPHS2 Selenophosphate synthetase 2 | Selenophosphate synthesis | Ubiquitous, high in liver and kidney Intracellular |
Age in Years (Gender) | Mutation | Protein Change | Alleles Affected | Ethnicity | Reference |
---|---|---|---|---|---|
26 (M 1); 19 (M); 19 (F 2) | c.1619 G > A | R540Q | homozygous | Saudi Arabian | [16] |
25 (M) | c.1312 A > T c.IVS8ds + 29 G > A | K438 * fs431 * | compound heterozygous | Irish | [16] |
19 (M) | c.382 C > T | R128 * | homozygous | Ghanaian | [17] |
18 (F) | c.358 C > T c.2308 C > T | R120 * R770 * | compound heterozygous | Brazilian | [18] |
44 (M) | c.668delT c.IVS7 -155, T > A | F223fs255 * fs295 * + fs302 * | compound heterozygous | British | [19] |
13 (M) | c. 2017 T > C 1–5 intronic SNP’s | C691R fs65 * + fs76 * | compound heterozygous | British | [19] |
15 (M) | c.1529_1541dup CCAGCGCCCCACT c.235 C > T | M515fs563 * Q79 * | compound heterozygous | Japanese | [20] |
10 (M) | c.800_801insA | K267Kfs * 2 | homozygous | Turkish | [21] |
3.5 (M) | c.283delT c.589 C > T | T95Ifs31 * R197 * | compound heterozygous | N/A 3 | [22] |
11 (F) | c.2344 C > T c.2045–2048 delAACA | Q782 * K682fs683 * | compound heterozygous | Turkish | [23] |
5 (F) | c.589 C > T c.2108 G > T or C | R197 * E679D | compound heterozygous | Argentinian | [23] |
Age in Year (Gender) | Mutation | Protein Change | Alleles Affected | Ethnicity | Reference |
---|---|---|---|---|---|
6 (F 1); 7.5 (2) | c.1001 A > G | Y334C | homozygous | Jewish/Iraq | [56] |
4 (F); 2.5 (M) | c.715 G > A c.1001 A > G | A239T Y334C | compound heterozygous | Iraqi/ Moroccan | [56] |
7 (F); 4 (F); 2 (F) | c.1466 A > T | D489V | homozygous | Jordan | [57] |
0 (M); 0 (F); 0 (F); 0 (F) | c.974 C > G c.1287 C > A | T325S Y429X | compound heterozygous | Finnish | [58] |
14 (F) | c.1 A > G c.388 + 3 A > G | M1V G130Vfs * 5 | compound heterozygous | N/A 3 | [59] |
N/A | c.1027–1120del | E343Lfs * 2 | Homozygous | N/A 3 | [60] |
9 (M) | c.1001 A > C | Y334H | homozygous | Arabian | [61] |
10 (F) | c.77delG c.356 A > G | R26Pfs * 42 N119S | compound heterozygous | Japanese | [62] |
21 (F) | c.356 A > G c.467 G > A | N119S R156Q | compound heterozygous | Japanese | [62] |
1 (M) | c.176 C > T | A59V | Homozygous | N/A 3 | [63] |
23 (F) | c.1321 G > A | G441R | Homozygous | N/A 3 | [64] |
4 (F) | c.114 + 3 A > G | N/A 3 | Homozygous | Moroccan | [65] |
N/A 1 | c.877 G > A | A293T | Homozygous | N/A 3 | [66] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schoenmakers, E.; Chatterjee, K. Human Genetic Disorders Resulting in Systemic Selenoprotein Deficiency. Int. J. Mol. Sci. 2021, 22, 12927. https://doi.org/10.3390/ijms222312927
Schoenmakers E, Chatterjee K. Human Genetic Disorders Resulting in Systemic Selenoprotein Deficiency. International Journal of Molecular Sciences. 2021; 22(23):12927. https://doi.org/10.3390/ijms222312927
Chicago/Turabian StyleSchoenmakers, Erik, and Krishna Chatterjee. 2021. "Human Genetic Disorders Resulting in Systemic Selenoprotein Deficiency" International Journal of Molecular Sciences 22, no. 23: 12927. https://doi.org/10.3390/ijms222312927
APA StyleSchoenmakers, E., & Chatterjee, K. (2021). Human Genetic Disorders Resulting in Systemic Selenoprotein Deficiency. International Journal of Molecular Sciences, 22(23), 12927. https://doi.org/10.3390/ijms222312927