The Adaptation and Tolerance of Major Cereals and Legumes to Important Abiotic Stresses
Abstract
:1. Introduction
2. Abiotic Stresses and Their Impacts on Grain Crops
2.1. Drought
2.2. High Temperatures
2.3. Salinity
2.4. Waterlogging
3. Combined/Multiple Stresses
4. Mechanisms Associated with Stress Tolerance
4.1. Adaptations to Drought Stress
4.1.1. Escape Mechanisms
4.1.2. Dehydration Avoidance
4.1.3. Osmoregulation
4.1.4. Antioxidant System
4.1.5. Phytohormones
4.2. Adaptations to High Temperature Stress
4.2.1. Transpirational Cooling
4.2.2. Heat Shock Proteins
4.2.3. The Role of Protectants
4.2.4. The Role of ROS and Antioxidants
4.2.5. The Biological Clock
4.3. Adaptations to Salinity Stress
4.3.1. Ion Transport and Homeostasis
4.3.2. Compatible Solutes
4.4. Adaptations to Excess Submergence and Waterlogging
5. Explored Mechanisms of Abiotic Stress Tolerance for Crop Improvement
5.1. Early Flowering
5.2. Root System Architecture
5.3. The Role of Chloroplasts in Plant Abiotic Stress Responses
5.4. Deficit and Excess Water Stress Tolerance
6. Unexplored Mechanisms and Genes Modulating Abiotic Stress Tolerance
6.1. ABA Receptors
6.2. Engineering Orthogonal Receptors
6.3. Novel Transcription Factors
7. The Metabolic Control of Resilience to Abiotic Stress
8. Engineering Plants for Biomass Production under Abiotic Stress Conditions
9. Future Perspectives and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bailey-Serres, J.; Parker, J.E.; Ainsworth, E.A.; Oldroyd, G.E.D.; Schroeder, J.I. Genetic strategies for improving crop yields. Nature 2019, 575, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Mickelbart, M.V.; Hasegawa, P.M.; Bailey-Serres, J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat. Rev. Genet. 2015, 16, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Sita, K.; Sehgal, A.; HanumanthaRao, B.; Nair, R.M.; Prasad, P.V.V.; Kumar, S.; Gaur, P.M.; Farooq, M.; Siddique, K.H.M.; Varshney, R.K.; et al. Food legumes and rising temperatures: Effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Front. Plant Sci. 2017, 8, 1658. [Google Scholar] [CrossRef] [Green Version]
- Priya, M.; Siddique, K.H.M.; Dhankher, O.P.; Prasad, P.V.V.; Humnath Rao, B.; Nair, R.M.; Nayyar, H. Molecular breeding approaches involving physiological and reproductive traits for heat tolerance in food crops. Indian J. Plant Physiol. 2018, 23, 697–720. [Google Scholar] [CrossRef]
- Kumar, J.; Sen Gupta, D.; Djalovic, I.; Kumar, S.; Siddique, K.H.M. Root-omics for drought tolerance in cool-season grain legumes. Physiol. Plant. 2020, 172, 629. [Google Scholar] [CrossRef] [PubMed]
- Rani, A.; Devi, P.; Jha, U.C.; Sharma, K.D.; Siddique, K.H.M.; Nayyar, H. Developing climate-resilient chickpea involving physiological and molecular approaches with a focus on temperature and drought stresses. In Front. Plant Sci. 2020, 10, 1759. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Kumar, M.; Choudhary, D.; Aher, L.; Rane, J.; Singh, N.P. Virus induced gene silencing approach: A potential functional genomics tool for rapid validation of function of genes associated with abiotic stress tolerance. In Biotechnologies of Crop Improvement, Volume 2: Transgenic Approaches; Gosal, S.S., Wani, S.H., Eds.; Springer: Gewerbestrasse, Switzerland, 2018; Volume 2, pp. 25–39. [Google Scholar]
- Singh, A.K.; Kumar, M.; Choudhary, D.; Aher, L.; Rane, J.; Singh, N.P. RNAi approach: A powerful technique for gene function studies and enhancing abiotic stress tolerance in crop plants. In Biotechnologies of Crop Improvement, Volume 2: Transgenic Approaches; Gosal, S.S., Wani, S.H., Eds.; Springer: Gewerbestrasse, Switzerland, 2018; Volume 2, pp. 113–127. [Google Scholar]
- Mousavi-Derazmahalleh, M.; Bayer, P.E.; Hane, J.K.; Valliyodan, B.; Nguyen, H.T.; Nelson, M.N.; Erskine, W.; Varshney, R.K.; Papa, R.; Edwards, D. Adapting legume crops to climate change using genomic approaches. Plant Cell Environ. 2019, 42, 6–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meena, K.K.; Sorty, A.M.; Bitla, U.M.; Choudhary, K.; Gupta, P.; Pareek, A.; Singh, D.P.; Prabha, R.; Sahu, P.K.; Gupta, V.K.; et al. Abiotic stress responses and microbe-mediated mitigation in plants: The omics strategies. Front. Plant Sci. 2017, 8, 172. [Google Scholar] [CrossRef] [PubMed]
- Govindasamy, V.; George, P.; Kumar, M.; Aher, L.; Raina, S.K.; Rane, J.; Annapurna, K.; Minhas, P.S. Multi-trait PGP rhizobacterial endophytes alleviate drought stress in a senescent genotype of sorghum [Sorghum bicolor (L.) Moench]. 3 Biotech 2020, 10, 13. [Google Scholar] [CrossRef]
- Minhas, P.S.; Rane, J.; Kumar, R. Abiotic Stress Management for Resilient Agriculture; Springer: Singapore, 2017; ISBN 978-981-10-5743-4. [Google Scholar]
- Lamers, J.; Meer, T.; van der Testerink, C. How plants sense and respond to stressful environments. Plant Physiol. 2020, 182, 1624–1635. [Google Scholar] [CrossRef] [Green Version]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front Plant Sci 2017, 8, 1147. [Google Scholar] [CrossRef] [Green Version]
- Nayyar, H.; Sehgal, A.; Sharma, K.S.; Siddique, K.H.M.; Kumar, R.; Bhogireddy, S.; Varshney, R.K.; HanumanthaRao, B.; Nair, R.M.; Prasad, P.V.V. Drought or/and heat-stress effects on seed filling in food crops: Impacts on functional biochemistry, seed yield and nutritional quality. Front. Plant Sci. 2018, 9, 1705. [Google Scholar] [CrossRef] [Green Version]
- Arif, Y.; Singh, P.; Siddiqui, H.; Bajguz, A.; Hayat, S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol. Biochem. 2020, 156, 64–77. [Google Scholar] [CrossRef]
- Satpute, G.K.; Ratnaparkhe, M.B.; Chandra, S.; Kamble, V.G.; Kavishwar, R.; Singh, A.K.; Gupta, S.; Devdas, R.; Arya, M.; Singh, M.; et al. Breeding and Molecular Approaches for Evolving Drought-Tolerant Soybeans. In Plant Stress Biology: Strategies and Trends; Giri, B., Sharma, M.P., Eds.; Springer: Singapore, 2020; pp. 83–130. [Google Scholar] [CrossRef]
- Rane, J.; Singh, A.K.; George, P.; Govindasamy, V.; Cukkemane, A.; Raina, S.K.; Chavan, M.P.; Aher, L.; Sunoj, V.J.; Singh, N.P. Effect of cow urine-based bioformulations on growth and physiological responses in mungbean under soil moisture stress conditions. Proc. Natl. Acad. Sci. India 2019, 18, 1–11. [Google Scholar] [CrossRef]
- Rane, J.; Raina, S.K.; Govindasamy, V.; Bindumadhava, H.; Hanjagi, P.; Giri, R.; Jangid, K.K.; Kumar, M.; Nair, R.M. Use of phenomics for differentiation of mungbean (Vigna radiata L. Wilczek) genotypes varying in growth rates per unit of water. Front Plant Sci. 2021, 12, 692534. [Google Scholar] [CrossRef]
- Singh, A.K.; George, P.; Aher, L.; Kumar, M.; Rane, J. Genomics, molecular breeding, and phenomics approaches for improvement of abiotic stress tolerance in wheat. In Improving Cereal Productivity through Climate Smart Practices; Sareen, S., Sharma, P., Singh, C., Jasrotia, P., Singh, G.P., Sarial, A.K., Eds.; Woodhead Publishing Series in Materials: Cambridge, UK, 2021; pp. 99–122. [Google Scholar]
- Scholes, R.J. The Future of Semi-Arid Regions: A Weak Fabric Unravels. Climate 2020, 8, 43. [Google Scholar] [CrossRef] [Green Version]
- Grašič, M.; Golob, A.; Vogel-Mikuš, K.; Gaberščik, A. Severe Water Deficiency during the Mid-Vegetative and Reproductive Phase Has Little Effect on Proso Millet Performance. Water 2019, 11, 2155. [Google Scholar] [CrossRef] [Green Version]
- Prasad, P.V.V.; Pisipati, S.R.; Mutava, R.N.; Tuinstra, M.R. Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Sci. 2008, 48, 1911–1917. [Google Scholar] [CrossRef] [Green Version]
- Estrada-Campuzano, G.; Miralles, D.J.; Slafer, G.A. Genotypic variability and response to water stress of pre- and post-anthesis phases in triticale. Eur. J. Agron. 2008, 28, 171–177. [Google Scholar] [CrossRef]
- Plaut, Z.; Butow, B.; Blumenthal, C.; Wrigley, C. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crop Res. 2004, 86, 185–198. [Google Scholar] [CrossRef]
- Nadeem, M.; Li, J.; Yahya, M.; Sher, A.; Ma, C.; Wang, X.; Qiu, L. Research Progress and Perspective on Drought Stress in Legumes: A Review. Int. J. Mol. Sci. 2019, 20, 2541. [Google Scholar] [CrossRef] [Green Version]
- Araus, J.L.; Slafer, G.A.; Reynolda, M.P.; Royo, C. Plant breeding and drought in C3 cereals: What should we breed for? Ann. Bot. 2002, 89, 925–940. [Google Scholar] [CrossRef] [PubMed]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Global synthesis of drought effects on maize and wheat production. PLoS ONE 2016, 11, e0156362. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review. Agric. Water Manag. 2017, 179, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Anwaar, H.A.; Perveen, R.; Mansha, M.Z.; Abid, M.; Sarwar, Z.M.; Aatif, H.M.; ud din Umar, U.; Sajid, M.; Aslam, H.M.U.; Alam, M.M.; et al. Assessment of grain yield indices in response to drought stress in wheat (Triticum aestivum L.). Saudi J. Biol. Sci. 2020, 27, 1818–1823. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, S.; Cheng, M.; Jiang, H.; Zhang, X.; Peng, C.; Lu, X.; Zhang, M.; Jin, J. Effect of drought on agronomic traits of rice and wheat: A meta-analysis. Int. J. Environ. Res. Public Health 2018, 15, 839. [Google Scholar] [CrossRef] [Green Version]
- Carrijo, D.R.; Lundy, M.E.; Linquist, B.A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crop. Res. 2017, 203, 173–180. [Google Scholar] [CrossRef]
- Yang, X.; Wang, B.; Chen, L.; Li, P.; Cao, C. The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Sci. Rep. 2019, 9, 3742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swamy, B.P.M.; Shamsudin, N.A.A.; Rahman, S.N.A.; Mauleon, R.; Ratnam, W.; StaCruz, M.T.; Kumar, A. Association mapping of yield and yield-related traits under reproductive stage drought stress in rice (Oryza sativa L.). Rice 2017, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Sah, R.P.; Chakraborty, M.; Prasad, K.; Pandit, M.; Tudu, V.K.; Chakravarty, V.K.; Narayan, S.C.; Rana, M.; Moharana, D. Impact of water deficit stress in maize: Phenology and yield components. Sci Rep. 2020, 10, 2944. [Google Scholar] [CrossRef]
- Hussain, H.A.; Men, S.; Hussain, S.; Chen, Y.; Ali, S.; Zhang, S.; Zhang, K.; Li, Y.; Xu, Q.; Liao, C.; et al. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci Rep. 2019, 9, 3890. [Google Scholar] [CrossRef] [Green Version]
- Mi, N.; Cai, F.; Zhang, Y.; Ji, R.; Zhang, S.; Wang, Y. Differential responses of maize yield to drought at vegetative and reproductive stages. Plant Soil Environ. 2018, 64, 260–267. [Google Scholar] [CrossRef] [Green Version]
- Samarah, N.H. Effects of drought stress on growth and yield of barley. Agron. Sustain. Develop. 2005, 25, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Alghabari, F.; Ihsan, M. Effects of drought stress on growth, grain filling duration, yield and quality attributes of barley (Hordeum vulgare L.). Bangladesh J. Bot. 2018, 47, 421–428. [Google Scholar] [CrossRef]
- Debieu, M.; Sine, B.; Passot, S.; Grondin, A.; Akata, E.; Gangashetty, P.; Vadez, V.; Gantet, P.; Foncéka, D.; Cournac, L.; et al. Response to Early Drought Stress and Identification of QTLs Controlling Biomass Production under Drought in Pearl Millet. PLoS ONE 2018, 13, e0201635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halilou, O.; Assefa, Y.; Falalou, H.; Abdou, H.; Archirou, B.F.; Karami, S.M.A.; Jagadish, S.V.K. Agronomic performance of pearl millet genotypes under variable phosphorus, water, and environmental regimes. Agrosyst. Geosci. Environ. 2020, 3, e20131. [Google Scholar] [CrossRef]
- Mafakheri, A.; Siosemardeh, A.; Bahramnejad, B.; Struik, P.C.; Sohrabi, Y. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust. J. Crop Sci. 2010, 4, 580–585. [Google Scholar]
- Pang, J.; Turner, N.C.; Du, Y.L.; Colmer, T.D.; Siddique, K.H.M. Pattern of water use and seed yield under terminal drought in chickpea genotypes. Front. Plant Sci. 2017, 8, 1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jan, M.; Haq, T.; Sattar, H.; Butt, M.; Khaliq, A.; Arif, M.; Rauf, A. Evaluation and screening of promising drought tolerant chickpea (Cicer arietinum L.) genotypes based on physiological and biochemical attributes under drought conditions. Pak. J. Agricult. Res. 2020, 33, 662–672. [Google Scholar] [CrossRef]
- Smith, M.R.; Veneklaas, E.; Polania, J.; Rao, I.M.; Beebe, S.E.; Merchant, A. Field drought conditions impact yield but not nutritional quality of the seed in common bean (Phaseolus vulgaris L.). PLoS ONE 2019, 14, e0217099. [Google Scholar] [CrossRef] [Green Version]
- Vanaja, M.; Maheswari, M.; Sathish, P.; Vagheera, P.; Jyothi Lakshmi, N.; Vijay Kumar, G.; Yadav, S.K.; Razzaq, A.; Singh, J.; Sarkar, B. Genotypic variability in physiological, biomass and yield response to drought stress in pigeonpea. Physiol. Mol. Biol. Plants 2015, 21, 541–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basal, O.; Szabo, A. Physiology, yield and quality of soybean as affected by drought stress. Asian J. Agric. Biol. 2020, 8, 247. [Google Scholar] [CrossRef]
- Wright, J.; Hicks, D.; Naeve, S. Predicting the Last Irrigation for Corn and Soybeans in Central Minnesota. Available online: https://blog-crop-news.extension.umn.edu/2018/08/predicting-last-irrigation-for-corn-and.html (accessed on 23 November 2021).
- Zare, M.; Ghahremaninejad, M.; Bazrafshan, F. Influence of drought stress on some traits in five mung bean (Vigna radiata (L.) R. Wilczek) genotypes. Int. J. Agron. Plant Prod. 2012, 3, 234–240. [Google Scholar]
- Wang, B.; Liu, C.; Zhang, D.; He, C.; Zhang, J.; Li, Z. Effects of maize organ-specific drought stress response on yields from transcriptome analysis. BMC Plant Biol. 2019, 19, 335. [Google Scholar] [CrossRef] [Green Version]
- Çakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crop. Res. 2004, 89, 1–16. [Google Scholar] [CrossRef]
- Mutava, R.N.; Prasad, P.V.V.; Tuinstra, M.R.; Kofoid, K.D.; Yu, J. Characterization of sorghum genotypes for traits related to drought tolerance. Field Crops Res. 2011, 123, 10–18. [Google Scholar] [CrossRef]
- Mukami, A.; Ngetich, A.; Mweu, C.; Oduor, R.O.; Muthangya, M.; Mbinda, W.M. Differential characterization of physiological and biochemical responses during drought stress in finger millet varieties. Physiol. Mol. Biol. Plants 2019, 25, 837–846. [Google Scholar] [CrossRef]
- Gunes, A.; Inal, A.; Adak, M.S.; Bagci, E.G.; Cicek, N.; Eraslan, F. Effect of drought stress implemented at pre- or post-anthesis stage on some physiological parameters as screening criteria in chickpea cultivars. Russ. J. Plant Physiol. 2008, 55, 59–67. [Google Scholar] [CrossRef]
- Gurumurthy, S.; Sarkar, B.; Vanaja, M.; Lakshmi, J.; Yadav, S.K.; Maheswari, M. Morpho-physiological and biochemical changes in black gram (Vigna mungo L. Hepper) genotypes under drought stress at flowering stage. Acta Physiol. Plant. 2019, 41, 1–14. [Google Scholar] [CrossRef]
- Demirtaş, Ç.; Yazgan, S.; Candogan, B.N.; Sincik, M.; Büyükcangaz, H.; Göksoy, A.T. Quality and yield response of soybean (Glycine max L. Merrill) to drought stress in sub-humid environment. Afr. J. Biotechnol. 2010, 9, 6873–6881. [Google Scholar] [CrossRef]
- Porter, J.R.; Semenov, M.A. Crop responses to climatic variation. Phil. Trans. Royal Soc. London. Ser. B Biol. Sci. 2005, 360, 2021–2035. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.V.V.; Bheemanahalli, R.; Jagadish, S.V.K. Field crops and the fear of heat stress-Opportunities, challenges and future directions. Field Crop Res. 2017, 200, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather. Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Djanaguiraman, M.; Narayanan, S.; Erdayani, E.; Prasad, P.V.V. Effects of high temperature stress during anthesis and grain filling periods on photosynthesis, lipids and grain yield in wheat. BMC Plant Biol. 2020, 20, 1–12. [Google Scholar] [CrossRef]
- Mäkinen, H.; Kaseva, J.; Trnka, M.; Balek, J.; Kersebaum, K.C.; Nendel, C.; Gobin, A.; Olesen, J.E.; Bindi, M.; Ferrise, R.; et al. Sensitivity of European Wheat to Extreme Weather. Field Crop. Res. 2018, 222, 209–217. [Google Scholar] [CrossRef]
- Impa, S.M.; Raju, B.; Hein, N.T.; Sandhu, J.; Prasad, P.V.V.; Walia, H.; Jagadish, S.V.K. High Night Temperature Effects on Wheat and Rice: Current Status and Way Forward. Plant Cell Environ. 2021, 44, 2049–2065. [Google Scholar] [CrossRef] [PubMed]
- Semenov, M.A.; Martre, P.; Jamieson, P.D. Quantifying effects of simple wheat traits on yield in water-limited environments using a modelling approach. Agric. For. Meteorol. 2009, 149, 1095–1104. [Google Scholar] [CrossRef]
- Spiertz, J.H.J.; Hamer, R.J.; Xu, H.; Primo-Martin, C.; Don, C.; van der Putten, P.E.L. Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality traits. Eur. J. Agron. 2006, 25, 89–95. [Google Scholar] [CrossRef]
- Blum, A.; Kuvela, N.; Nguyen, H.T. Wheat cellular thermotolerance is related to yield under heat stress. Euphytica 2001, 117, 1762–1768. [Google Scholar] [CrossRef]
- Salvucci, M.E.; Crafts-Brandner, S.J. Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiol. 2004, 134, 1460–1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, P.V.V.; Boote, K.J.; Allen, L.H., Jr.; Sheehy, J.E.; Thomas, J.M.G. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crop Res. 2006, 95, 398–411. [Google Scholar] [CrossRef]
- Jagadish, S.V.K.; Raveendran, M.; Oane, R.; Wheeler, T.R.; Heuer, S.; Bennett, J.; Craufurd, P.Q. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J. Exp. Bot. 2010, 61, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Mamrutha, H.M.; Rinki, K.; Venkatesh, K.; Gopalareddy, K.; Khan, H.; Mishra, C.N.; Kumar, S.; Kumar, Y.; Singh, G.; Singh, G.P. Impact of high night temperature stress on different growth stages of wheat. Plant Physiol. Rep. 2020, 25, 707–715. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Djanaguiraman, M. Response of floret fertility and individual grain weight of wheat to high temperature stress: Sensitive stages and thresholds for temperature and duration. Funct. Plant Biol. 2014, 41, 1261–1269. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Nguyen, C.T.; van Oosterom, E.J.; Chapman, S.C.; Jordan, D.R.; Hammer, G.L. Sorghum genotypes differ in high temperature responses for seed set. Field Crop. Res. 2015, 171, 32–40. [Google Scholar] [CrossRef]
- Opole, R.A.; Prasad, P.V.V.; Djanaguiraman, M.; Vimala, K.; Kirkham, M.B.; Upadhyaya, H.D. Thresholds, sensitive stages and genetic variability of finger millet to high temperature stress. J. Agron. Crop Sci. 2018, 204, 477–492. [Google Scholar] [CrossRef]
- Pathak, H.; Kumar, M.; Molla, K.A.; Chakraborty, K. Abiotic Stresses in Rice Production: Impacts and Management. Oryza 2021, 58, 103–125. [Google Scholar] [CrossRef]
- Talukder, S.K.; Babar, A.M.; Vijayalakshmi, K.; Poland, J.; Prasad, P.V.V.; Bowden, R.; Fritz, A.K. Mapping QTLs for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC Genet. 2014, 15, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradhan, G.P.; Prasad, P.V.V. Evaluation of wheat chromosome translocation lines for high temperature stress tolerance at grain filling stage. PLoS ONE 2015, 10, e0116620. [Google Scholar] [CrossRef] [Green Version]
- Djanaguiraman, M.; Perumal, R.; Jagadish, S.V.K.; Ciampitti, I.A.; Welti, R.; Prasad, P.V.V. Sensitivity of sorghum pollen and pistil to high temperature stress. Plant Cell Environ. 2018, 41, 1065–1082. [Google Scholar] [CrossRef] [PubMed]
- Sunoj, V.S.J.; Somayananda, I.M.; Chiluwal, A.; Perumal, R.; Prasad, P.V.V.; Jagadish, S.V.K. Resilience of pollen and post-flowering response in diverse sorghum genotypes exposed to heat stress under field conditions. Crop Sci. 2017, 57, 1658–1669. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Perumal, R.; Ciampitti, I.A.; Gupta, S.K.; Prasad, P.V.V. Quantifying pearl millet response to high temperature stress: Thresholds, sensitive stages, genetic variability and relative sensitivity of pollen and pistil. Plant Cell Environ. 2018, 41, 993–1007. [Google Scholar] [CrossRef] [Green Version]
- Devasirvatham, V.; Gaur, P.M.; Mallikarjuna, N.; Raju, T.N.; Trethowan, R.M.; Tan, D.K.Y. Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. Field Crop Res. 2013, 142, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Awasthi, R.; Gaur, P.; Turner, N.V.; Vadez, V.; Siddique, K.H.M.; Nayyar, H. Effects of individual and combined heat and drought stress during seed filling on the oxidative metabolism and yield of chickpea (Cicer arietinum) genotypes differing in heat and drought tolerance. Crop Pasture Sci. 2017, 68, 823–841. [Google Scholar] [CrossRef]
- Anitha, Y.; Vanaja, M.; Kumar, G.V. Identification of attributes contributing to high temperature tolerance in blackgram (Vigna mungo L. Hepper) genotypes. Int. J. Sci. Res. 2015, 5, 1021–1025. [Google Scholar]
- Kaur, R.; Bains, T.S.; Rao, H.B.; Nayyar, H. Responses of mungbean (Vigna radiata L.) genotypes to heat stress: Effects on reproductive biology, leaf function and yield traits. Sci. Horticul. 2015, 197, 527–541. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Boote, K.J.; Allen, L.H., Jr.; Thomas, J.M.G. Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Glob. Chang. Biol. 2002, 8, 710–721. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Schapaugh, W.T.; Fritschi, F.B.; Nguyen, H.T.; Prasad, P.V.V. Reproductive success of soybean (Glycine max L. Merril) cultivars and exotic lines under high daytime temperature. Plant Cell Environ. 2019, 42, 321–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, P.V.V.; Craufurd, P.Q.; Summerfield, R.J. Fruit number in relation to pollen production and viability in groundnut exposed to short episodes of heat stress. Ann. Bot. 1999, 84, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Prasad, P.V.V.; Craufurd, P.Q.; Summerfield, R.J.; Wheeler, T.R. Effects of short episodes of heat stress on flower production and fruit-set of groundnut (Arachis hypogaea L.). J. Exp. Bot 2020, 51, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Prasad, P.V.V.; Craufurd, P.Q.; Kakani, V.G.; Wheeler, T.R.; Boote, K.J. Influence of high temperature during pre- and post-anthesis stages of floral development on fruit-set and pollen germination in peanut. Aust. J. Plant Physiol. 2001, 28, 233–240. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Boote, K.J.; Allen, L.H., Jr.; Thomas, J.M.G. Super-optimal temperatures are detrimental to peanut (Arachis hypogaea L.) reproductive processes and yield at both ambient and elevated carbon dioxide. Glob. Chang. Biol. 2003, 9, 1775–1787. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, K.; Sita, K.; Sehgal, A.; Bhardwak, A.; Gaur, P.; Kumar, S.; Singh, S.; Siddique, K.H.; Prasad, P.V.V.; Nayyar, H. Differential heat sensitivity of two cool-season legumes, chickpea and lentil, at reproductive stage, is associated with response in pollen function, photosynthetic ability and oxidative damage. J. Agron. Crop Sci. 2020, 206, 734–758. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sita, K.; Sehgal, A.; Bhandari, K.; Kumar, S.; Prasad, P.V.V.; Jha, U.; Kumar, J.; Siddique, K.H.M.; Nayyar, H. Heat priming of lentil (Lens culinaris Medik.) seeds and foliar treatment with γ-aminobutyric acid (GABA), confers protection to reproductive function and yield under high-temperature stress environments. Int. J. Mol. Sci. 2021, 22, 5825. [Google Scholar] [CrossRef]
- Akman, Z. Comparison of high temperature tolerance in maize, rice and sorghum seeds, by plant growth regulators. J. Anim. Vet. Adv. 2009, 8, 358–361. [Google Scholar]
- Narayanan, S.; Prasad, P.V.V.; Welti, R. Wheat leaf lipids during heat stress: II. Lipid experiencing coordinated metabolism are detected by analysis of lipid co-occurrence. Plant Cell Environ. 2016, 39, 608–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayanan, S.; Tamura, P.; Roth, M.; Prasad, P.V.V.; Welti, R. Wheat leaf lipids during heat stress: I. high day and night temperatures result in major lipid alternations. Plant Cell Environ. 2016, 39, 787–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djanaguiraman, M.; Boyel, D.; Welti, R.; Jagadish, S.V.K.; Prasad, P.V.V. Decreased photosynthetic rate under high temperature in wheat is due to lipid saturation, oxidation, acylation, and damage to cell organelles. BMC Plant Biol. 2018, 18, 55. [Google Scholar] [CrossRef] [Green Version]
- Sun, A.; Somayananda, I.; Sunoj, V.S.J.; Singh, K.; Prasad, P.V.V.; Gill, K.; Jagadish, S.V.K. Heat stress during flowering affects time of day of flowering, seed-set and grain quality in spring wheat (Triticum aestivum L.). Crop Sci. 2018, 58, 380–392. [Google Scholar] [CrossRef]
- Suwa, R.; Hakata, H.; Hara, H.; El-Shemy, H.A.; Adu-Gyamfi, J.J.; Nguyen, N.T.; Kanai, S.; Lightfoot, D.A.; Mohapatra, P.K.; Fujita, K. High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes. Plant Physiol. Biochem. 2010, 48, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.V.V.; Djanaguiraman, M. High night temperature decreases leaf photosynthesis and pollen function in grain sorghum. Funct. Plant Biol. 2011, 38, 993–1003. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Djanaguiraman, M.; Perumal, R.; Ciampitti, I.A. Impact of high temperature stress on floret fertility and individual grain weight of grain sorghum: Sensitive stages and thresholds for temperature and duration. Front. Plant Sci. 2015, 6, 820. [Google Scholar] [CrossRef] [PubMed]
- Djanaguiraman, M.; Prasad, P.V.V.; Murugan, M.; Perumal, R.; Reddy, U.K. Physiological differences among sorghum (Sorghum bicolor L. Moench) genotypes under high temperature stress. Environ. Exp. Bot. 2014, 100, 43–54. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Nair, R.; Giraldo, J.P.; Prasad, P.V.V. Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield. ACS Omega 2018, 3, 14406–14416. [Google Scholar] [CrossRef] [PubMed]
- Djanaguiraman, M.; Belliraj, N.; Bossmann, S.; Prasad, P.V.V. High temperature stress alleviation by selenium nanoparticles treatment in grain sorghum. ACS Omega 2018, 3, 2479–2491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devasirvatham, V.; Gaur, P.M.; Mallikarjuna, N.; Tokachichu, R.N.; Trethowan, R.M.; Tan, D.K.Y. Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Funct. Plant Biol. 2012, 39, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- Soltani, A.; Weraduwage, S.M.; Sharkey, T.D.; Lowry, D.B. Elevated temperatures cause loss of seed set in common bean (Phaseolus vulgaris L.) potentially through the disruption of source-sink relationships. BMC Genom. 2019, 20, 1–18. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Prasad, P.V.V.; Al-Khatib, K. Ethylene perception inhibitor 1-MCP decreases oxidative damage of leaves through enhanced antioxidant defense mechanisms in soybean plants grown under high temperature stress. Exp. Environ. Bot. 2011, 70, 51–57. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Prasad, P.V.V.; Schapaugh, W.T. High day and night temperature alters leaf assimilation, reproductive success and phosphatidic acid of pollen grain in soybean (Glycine max L. Merr.). Crop Sci. 2013, 53, 1594–1604. [Google Scholar] [CrossRef]
- Fahad, S.; Hussain, S.; Saud, S.; Hassan, S.; Ihsan, Z.; Shah, A.N.; Wu, C.; Yousaf, M.; Nasim, W.; Alharby, H.; et al. Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature. Front. Plant Sci. 2016, 7, 1250. [Google Scholar] [CrossRef] [Green Version]
- Posch, B.C.; Kariyawasam, B.C.; Bramley, H.; Coast, O.; Richards, R.A.; Reynolds, M.P.; Trethowan, R.; Atkin, O.K. Exploring high temperature responses of photosynthesis and respiration to improve heat tolerance in wheat. J. Exp. Bot. 2019, 70, 5051–5069. [Google Scholar] [CrossRef] [PubMed]
- Rotundo, J.L.; Tang, T.; Messina, C.D. Response of maize photosynthesis to high temperature: Implications for modeling the impact of global warming. Plant Physiol. Biochem. 2019, 141, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Arias, C.C.; Ligarreto-Moreno, G.A.; Restrepo-Díaz, H. Evaluation of heat stress period duration and the interaction of daytime temperature and cultivar on common bean. Environ. Exp. Bot. 2018, 155, 600–608. [Google Scholar] [CrossRef]
- Zhou, R.; Yu, X.; Huang, S.; Song, X.; Rosenqvist, E.; Ottosen, C.O. Genotype-dependent responses of chickpea to high temperature and moderately increased light. Plant Physiol. Biochem. 2020, 154, 353–359. [Google Scholar] [CrossRef]
- Guoju, X.; Fengju, Z.; Juying, H.; Chengke, L.; Jing, W.; Fei, M.; Yubi, Y.; Runyuan, W.; Zhengji, Q. Response of bean cultures’ water use efficiency against climate warming in semiarid regions of China. Agric. Water Manag. 2016, 173, 84–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bita, C.E.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagadish, S.V.; Craufurd, P.Q.; Wheeler, T.R. High temperature stress and spikelet fertility in rice (Oryza sativa L.). J. Exp. Bot. 2007, 58, 1627–1635. [Google Scholar] [CrossRef] [Green Version]
- Bheemanahalli, R.; Sunoj, V.S.; Saripalli, G.; Prasad, P.V.V.; Balyan, H.S.; Gupta, P.K.; Grant, V.; Gill, K.S.; Jagadish, S.V.K. Quantifying the impact of heat stress on pollen germination, seed-set and grain filling in spring wheat. Crop Sci. 2019, 59, 684–696. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Akbar, A.; Parveen, A.; Rasheed, R.; Hussain, I.; Iqbal, M. Phenological application of selenium differentially improves growth, oxidative defense and ion homeostasis in maize under salinity stress. Plant Physiol. Biochem. 2018, 123, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Zaki, R.N.; Radwan, T.E.E. Improving wheat grain yield and its quality under salinity conditions at a newly reclaimed soil by using different organic sources as soil or foliar applications. J. Appl. Sci. Res. 2019, 7, 42–55. [Google Scholar]
- Marcos, M.; Sharifi, H.; Grattan, S.R.; Linquist, B.A. Spatio-temporal salinity dynamics and yield response of rice in water-seeded rice fields. Agric. Water Manag. 2018, 195, 37–46. [Google Scholar] [CrossRef]
- Oyiga, B.C.; Sharma, R.C.; Shen, J.; Baum, M.; Ogbonnaya, F.C.; Léon, J.; Ballvora, A. Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach. J. Agron. Crop Sci. 2016, 202, 472–485. [Google Scholar] [CrossRef]
- Xu, S.; Hu, B.; He, Z.; Ma, F.; Feng, J.; Shen, W.; Yang, J. Enhancement of salinity tolerance during rice seed germination by presoaking with hemoglobin. Int. J. Mol. Sci. 2011, 12, 2488–2501. [Google Scholar] [CrossRef]
- Akbarimoghaddam, H.; Galavi, M.; Ghanbari, A.; Panjehkeh, N. Salinity effects on seed germi- nation and seedling growth of bread wheat cultivars. Trakia J. Sci. 2011, 9, 43–50. [Google Scholar]
- Khodarahmpour, Z. Evaluation of drought stress effects on germination and early growth of inbred lines of MO17 and B. Afr. J. Microbiol. Res. 2012, 6, 3749–3754. [Google Scholar] [CrossRef]
- Yang, F.; Chen, H.; Liu, C.; Li, L.; Liu, L.; Han, X.; Wan, Z.; Sha, A. Transcriptome profile analysis of two Vicia faba cultivars with contrasting salinity tolerance during seed germination. Sci. Rep. 2020, 10, 1. [Google Scholar] [CrossRef]
- Lavrenko, S.O.; Lavrenko, N.M.; Lykhovyd, P.V. Effect of degree of salinity on seed germination and initial growth of chickpea (Cicer arietinum). Biosyst. Divers. 2019, 27, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.; Shi, S.; Chen, W.; Xie, T.; Du, C.; Sun, J.; Shi, Z.; Gao, R.; Jiang, Z.; Xiao, W. Effects of exogenous γ-Aminobutyric acid on the regulation of respiration and protein expression in germinating seeds of mungbean (Vigna radiata) under salt conditions. Electron. J. Biotechnol. 2020, 47, 1–9. [Google Scholar] [CrossRef]
- Breria, C.M.; Hsieh, C.-H.; Yen, T.-B.; Yen, J.-Y.; Noble, T.J.; Schafleitner, R. A SNP-based genome-wide association study to mine genetic loci associated to salinity tolerance in mungbean (Vigna radiata L.). Genes 2020, 11, 759. [Google Scholar] [CrossRef]
- James, R.A.; Blake, C.; Byrt, C.S.; Munns, R. Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J. Exp. Bot. 2011, 62, 2939–2947. [Google Scholar] [CrossRef] [Green Version]
- Grattan, S.R.; Grieve, C.M. Salinity-mineral nutrient relations in horticultural crops. Sci. Hortic. 1998, 78, 127–157. [Google Scholar] [CrossRef]
- Fahad, S.; Bano, A. Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak. J. Bot. 2012, 44, 1433–1438. [Google Scholar]
- Flagella, Z.; Trono, D.; Pompa, M.; Di Fonzo, N.; Pastore, D. Seawater stress applied at germination affects mitochondrial function in durum wheat (Triticum durum) early seedlings. Funct. Plant Biol. 2006, 33, 357–366. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.; Bai, Z.; Huang, J.; Cao, X.; Zhu, L.; Zhu, C.; Khaskheli, M.A.; Zhong, C.; Jin, Q.; Zhang, J. 1-methylcyclopropene modulates physiological, biochemical, and antioxidant responses of rice to different salt stress levels. Front. Plant Sci. 2019, 10, 124. [Google Scholar] [CrossRef] [Green Version]
- de la Reguera, E.; Veatch, J.; Gedan, K.; Tully, K.L. The effects of saltwater intrusion on germination success of standard and alternative crops. Environ. Exp. Bot. 2020, 180, 104254. [Google Scholar] [CrossRef]
- Sadji-Ait Kaci, H.; Chaker-Haddadj, A.; Aid, F. Enhancing of symbiotic efficiency and salinity tolerance of chickpea by phosphorus supply. Acta Agric. Scand. Sect. B Soil Plant Sci. 2018, 68, 534–540. [Google Scholar] [CrossRef]
- Krishnamurthy, S.L.; Sharma, P.C.; Sharma, S.K.; Batra, V.; Kumar, V.; Rao, L.V.S. Effect of salinity and use of stress indices of morphological and physiological traits at the seedling stage in rice. Indian J. Exp. Biol. 2016, 54, 843–850. [Google Scholar]
- Munns, R.; Rawson, H. Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley. Funct. Plant Biol. 1999, 26, 459–464. [Google Scholar] [CrossRef]
- Forieri, I.; Hildebrandt, U.; Rostas, M. Salinity stress effects on direct and indirect defence metabolites in maize. Environ. Exp Bot. 2015, 122, 68. [Google Scholar] [CrossRef]
- Mukami, A.; Ngetich, A.; Syombua, E.D.; Oduor, R.O. Varietal differences in physiological and biochemical responses to salinity stress in six finger millet plants. Physiol. Mol. Biol. Plants 2020, 26, 1569. [Google Scholar] [CrossRef]
- Singla, R.; Garg, N. Influence of salinity on growth and yield attributes in chickpea cultivars. Turkish. J. Agri. For. 2005, 29, 231–235. [Google Scholar]
- Tayyab; Ahmed, R.; Azeem, M.; Ahmed, N. Seed germination and seedling growth of pigeon pea (Cajanus cajan (L.) Millspaugh) at different salinity regims. Int. J. Biol. Biotech. 2015, 12, 155–160. [Google Scholar]
- Win, K.T.; Oo, A.Z. Salt-stress-induced changes in protein profiles in two blackgram (Vigna mungo L.) varieties differing salinity tolerance. Adv. Plants Agric. Res. 2017, 7, 206–210. [Google Scholar] [CrossRef] [Green Version]
- Sehrawat, N.; Yadav, M.; Bhat, K.V.; Sairam, R.K.; Jaiwal, P. K Effect of salinity stress on mungbean [Vigna radiata (L.) Wilczek] during consecutive summer and spring seasons. J. Agric. Sci. 2015, 60, 23–32. [Google Scholar] [CrossRef]
- Semida, W.M.; Rady, M.M. Presoaking application of propolis and maize grain extracts alleviates salinity stress in common bean (Phaseolus vulgaris L.). Sci. Hortic. 2014, 168, 210–217. [Google Scholar] [CrossRef]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef]
- Herzog, M.; Striker, G.G.; Colmer, T.D.; Pedersen, O. Mechanisms of waterlogging tolerance in wheat—A review of root and shoot physiology. Plant Cell Environ. 2016, 39, 1068–1086. [Google Scholar] [CrossRef]
- Fukao, T.; Barrera-Figueroa, B.E.; Juntawong, P.; Peña-Castro, J.M. Submergence and Waterlogging Stress in Plants: A Review Highlighting Research Opportunities and Understudied Aspects. Front. Plant Sci. 2019, 10, 340. [Google Scholar] [CrossRef]
- Mustroph, A. Improving Flooding Tolerance of Crop Plants. Agronomy 2018, 8, 160. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Jiang, D.; Liu, F.; Dai, T.; Jing, Q.; Cao, W. Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Sci. 2009, 176, 575–582. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Mittler, R.; Balfagón, D.; Arbona, V.; Gómez-Cadenas, A. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 2018, 162, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006, 11, 15–19. [Google Scholar] [CrossRef]
- Giraud, E.; Ho, L.H.M.; Clifton, R.; Carroll, A.; Estavillo, G.; Tan, Y.F.; Howell, K.A.; Ivanova, A.; Pogson, B.J.; Millar, A.H.; et al. The absence of alternative oxidase1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol. 2008, 147, 595–610. [Google Scholar] [CrossRef] [Green Version]
- Haghjou, M.M.; Shariati, M.; Smirnoff, N. The effect of acute high light and low temperature stresses on the ascorbate-glutathione cycle and superoxide dismutase activity in two Dunaliella salina strains. Physiol. Plant. 2009, 135, 272–280. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Pisipati, S.R.; Momčilović, I.; Ristic, Z. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J. Agron. Crop Sci. 2011, 197, 430–441. [Google Scholar] [CrossRef]
- Pradhan, G.P.; Prasad, P.V.V.; Fritz, A.K.; Kirkham, M.B.; Gill, B.S. Effects of drought and high temperature stress on synthetic hexaploid wheat. Funct. Plant Biol. 2012, 39, 190–198. [Google Scholar] [CrossRef]
- Pérez-López, U.; Miranda-Apodaca, J.; Muñoz-Rueda, A.; Mena-Petite, A. Lettuce production and antioxidant capacity are differentially modified by salt stress and light intensity under ambient and elevated CO. J. Plant Physiol. 2013, 170, 1517–1525. [Google Scholar] [CrossRef]
- Iyer, N.J.; Tang, Y.; Mahalingam, R. Physiological, biochemical and molecular responses to a combination of drought and ozone in Medicago truncatula. Plant Cell Environ. 2013, 36, 706–720. [Google Scholar] [CrossRef]
- Mahrookashani, A.; Siebert, S.; Hüging, H.; Ewert, F. Independent and combined effects of high temperature and drought stress around anthesis on wheat. J. Agron. Crop Sci. 2017, 203, 453–463. [Google Scholar] [CrossRef]
- Rane, J.; Pannu, R.K.; Sohu, V.S.; Saini, R.S.; Mishra, S.; Shoran¸, J.; Crossa, K.; Vargas, M.; Joshi, A.K. Performance of yield and stability of advanced wheat genotypes under heat stress environments of the Indo-Gangetic Plains. Crop Sci. 2007, 47, 1561–1573. [Google Scholar] [CrossRef]
- Chen, J.; Xu, Y.; Fei, K.; Wang, R.; He, J.; Fu, L.; Shao, S.; Li, K.; Zhu, K.; Zhang, W.; et al. Physiological mechanism underlying the effect of high temperature during anthesis on spikelet-opening of photo-thermo-sensitive genic male sterile rice lines. Sci Rep. 2020, 10, 2210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, P.V.V.; Boote, K.J.; Allen, L.H., Jr.; Thomas, J.M.G. Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain sorghum (Sorghum bicolor L.) are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric. Forest Meteorol. 2006, 139, 237–251. [Google Scholar] [CrossRef]
- Bhandari, K.; Siddique, K.H.; Turner, N.C.; Kaur, J.; Singh, S.; Agrawal, S.K.; Nayyar, H. Heat stress at reproductive stage disrupts leaf carbohydrate metabolism, impairs reproductive function, and severely reduces seed yield in lentil. J. Crop Improv. 2016, 30, 118–151. [Google Scholar] [CrossRef]
- Genc, Y.; Taylor, J.; Lyons, G.; Li, Y.; Cheong, J.; Appelbee, M.; Oldach, K.; Sutton, T. Bread wheat with high salinity and sodicity tolerance. Front. Plant Sci. 2019, 10, 280. [Google Scholar] [CrossRef] [Green Version]
- Ponnambalam, P.; Manzoor, Q.; Ragab, R.; Awadis, A.; Abdul, M.G.; Khalaf, A. Tolerance of faba bean, chickpea and lentil to salinity: Accessions’ salinity response functions. Irrig. Drain. 2016, 65, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Dramalis, C.; Katsantonis, D.; Koutroubas, S.D. Rice growth, assimilate translocation, and grain quality in response to salinity under Mediterranean conditions. AIMS Agric. Food 2021, 6, 255–272. [Google Scholar] [CrossRef]
- Thitisaksakul, M.; Tananuwong, K.; Shoemaker, C.F.; Chun, A.; Tanadul, O.U.M.; Labavitch, J.M.; Beckles, D.M. Effects of timing and severity of salinity stress on rice (Oryza sativa L.) yield, grain composition, and starch functionality. J. Agric. Food Chem. 2015, 63, 2296–2304. [Google Scholar] [CrossRef] [Green Version]
- Ploschuk, R.A.; Miralles, D.J.; Colmer, T.D.; Ploschuk, E.L.; Striker, G.G. Waterlogging of winter crops at early and late stages: Impacts on leaf physiology, growth and yield. Front. Plant Sci. 2018, 9, 1863. [Google Scholar] [CrossRef] [Green Version]
- Arduini, I.; Baldanzi, M.; Pampana, S. Reduced growth and nitrogen uptake during waterlogging at tillering permanently affect yield components in late sown oats. Front. Plant Sci. 2019, 10, 1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farkas, Z.; Varga-Laszlo, E.; Anda, A.; Veisz, O.; Varga, B. Effects of waterlogging, drought and their combination on yield and water-use efficiency of five Hungarian winter wheat varieties. Water 2020, 12, 1318. [Google Scholar] [CrossRef]
- Tian, L.; Li, J.; Bi, W.; Zuo, S.; Li, L.; Li, W.; Sun, L. Effects of waterlogging stress at different growth stages on the photosynthetic characteristics and grain yield of spring maize (Zea mays L.) under field conditions. Agric. Water Manag. 2019, 218, 250–258. [Google Scholar] [CrossRef]
- Sedaghatmehr, M.; Thirumalaikumar, V.P.; Kamranfar, I.; Marmagne, A.; Masclaux-Daubresse, C.; Balazadeh, S. A regulatory role of autophagy for resetting the memory of heat stress in plants. Plant Cell Environ. 2019, 42, 1054–1064. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Fichman, Y.; Devireddy, A.R.; Sengupta, S.; Azad, R.K.; Mittler, R. Systemic signaling during abiotic stress combination in plants. Proc. Nat. Acad. Sci. USA 2020, 117, 13810–13820. [Google Scholar] [CrossRef] [PubMed]
- Richards, R.A. Physiological traits used in the breeding of new cultivars for water-scarce environments. Agric. Water Manag. 2006, 80, 197–211. [Google Scholar] [CrossRef]
- Levitt, J. Response of plants to environmental stresses: Chilling, freezing, and high temperature stresses. Physiol. Ecol. Ser. Monogr. Texts Treatises 1980, 1, 23–64. [Google Scholar]
- Levitt, J. Responses of Plants to Environmental Stresses (Physiological Ecology): Chilling, Freezing, and High Temperature Stresses; Academic Press: Cambridge, MA, USA, 1980; ISBN 124455018. [Google Scholar]
- Terletskaya, N.V.; Lee, T.E.; Altayeva, N.A.; Kudrina, N.O.; Blavachinskaya, I.V.; Erezhetova, U. Some mechanisms modulating the root growth of various wheat species under ssmotic-stress conditions. Plants 2020, 9, 1545. [Google Scholar] [CrossRef]
- Roonprapant, P.; Arunyanark, A.; Chutteang, C. Morphological and Physiological Responses to Water Deficit Stress Conditions of Robusta Coffee (Coffea Canephora) Genotypes in Thailand. Agric. Nat. Resour. 2021, 55, 473–484. [Google Scholar] [CrossRef]
- Ouyang, W.; Yin, X.; Yang, J.; Struik, P.C. Comparisons with wheat reveal root anatomical and histochemical constraints of rice under water-deficit stress. Plant Soil 2020, 452, 547–568. [Google Scholar] [CrossRef]
- Gomes, F.P.; Oliva, M.A.; Mielke, M.S.; de Almeida, A.A.F.; Leite, H.G.; Aquino, L.A. Photosynthetic limitations in leaves of young Brazilian Green Dwarf coconut (Cocos nucifera L. ‘nana’) palm underwell-watered conditions or recovering from drought stress. Environ. Exp. Bot. 2008, 62, 195–204. [Google Scholar] [CrossRef]
- Muktadir, M.A.; Adhikari, K.N.; Merchant, A.; Belachew, K.Y.; Vandenberg, A.; Stoddard, F.L.; Khazaei, H. Physiological and biochemical basis of faba bean breeding for drought adaptation—A review. Agronomy 2020, 10, 1345. [Google Scholar] [CrossRef]
- Iqbal, A.; Fahad, S.; Iqbal, M.; Alamzeb, M.; Ahmad, A.; Anwar, S.; Khan, A.A.; Arif, M.; Saeed, M.; Song, M. Special Adaptive Features of Plant Species in Response to Drought. In Salt and Drought Stress Tolerance in Plants; Signaling and Communication in Plants; Hasanuzzaman, M., Tanveer, M., Eds.; Springer: Cham, Switzerland, 2020; pp. 77–118. [Google Scholar] [CrossRef]
- Comas, L.H.; Becker, S.R.; Cruz, V.M.V.; Byrne, P.F.; Dierig, D.A. Root traits contributing to plant productivity under drought. Front Plant Sci. 2013, 4, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polania, J.; Rao, I.M.; Cajiao, C.; Grajales, M.; Rivera, M.; Velasquez, F.; Raatz, B.; Beebe, S.E. Shoot and root traits contribute to drought resistance in recombinant inbred lines of MD 23–24 × SEA 5 of common bean. Front. Plant Sci. 2017, 8, 296. [Google Scholar] [CrossRef] [PubMed]
- Orosa-Puente, B.; Leftley, N.; von Wangenheim, D.; Banda, J.; Srivastava, A.K.; Hill, K.; Truskina, J.; Bhosale, R.; Morris, E.; Srivastava, M.; et al. Root branching toward water involves posttranslational modification of transcription factor ARF. Science 2018, 362, 1407–1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fromm, H. Root plasticity in the pursuit of water. Plants 2019, 8, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelraheem, A.; Esmaeili, N.; O’Connell, M.; Zhang, J. Progress and perspective on drought and salt stress tolerance in cotton. Ind. Crop Prod. 2019, 130, 118–129. [Google Scholar] [CrossRef]
- Zhang, X.; Mi, Y.; Mao, H.; Liu, S.; Chen, L.; Qin, F. Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize. Plant Biotechnol. J. 2020, 18, 1271–1283. [Google Scholar] [CrossRef] [Green Version]
- Uga, Y.; Sugimoto, K.; Ogawa, S.; Rane, J.; Ishitani, M.; Hara, H.; Kitomi, Y.; Inukai, Y.; Ono, K.; Kanno, N.; et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 2013, 45, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Xiaofen, Y.; Chang, J.; Yang, G.X. Overview of the Wheat Genetic Transformation and Breeding Status in China. Methods Mol. Biol. 2017, 1679, 37. [Google Scholar] [CrossRef]
- Sattar, A.; Sher, A.; Ijaz, M.; Ul-Allah, S.; Rizwan, M.S.; Hussain, M.; Jabran, K.; Cheema, M.A. Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat. PLoS ONE 2020, 15, e0232974. [Google Scholar] [CrossRef] [PubMed]
- Golldack, D.; Li, C.; Mohan, H.; Probst, N. Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Front Plant Sci. 2014, 5, 151. [Google Scholar] [CrossRef] [Green Version]
- Gangola, M.P.; Ramadoss, B.R. Sugars play a critical role in abiotic stress tolerance in plants. In Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress in Plants; Elsevier: Amsterdam, The Netherlands, 2018; p. 17. ISBN 9780128130667. [Google Scholar]
- Sami, F.; Yusuf, M.; Faizan, M.; Faraz, A.; Hayat, S. Role of sugars under abiotic stress. Plant Physiol. Biochem. 2016, 109, 54–61. [Google Scholar] [CrossRef]
- Signorelli, S. The Fermentation Analogy: A Point of View for Understanding the Intriguing Role of Proline Accumulation in Stressed Plants. Front. Plant Sci. 2016, 7, 1339. [Google Scholar] [CrossRef] [Green Version]
- Signorelli, S.; Tarkowski, Ł.P.; Van den Ende, W.; Bassham, D.C. Linking autophagy to abiotic and biotic stress responses. Trends Plant Sci. 2019, 24, 413–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiaochuang, C.; Chu, Z.; Lianfeng, Z.; Junhua, Z.; Hussain, S.; Lianghuan, W.; Qianyu, J. Glycine increases cold tolerance in rice via the regulation of N uptake, physiological characteristics, and photosynthesis. Plant Physiol. Biochem. 2017, 112, 251–260. [Google Scholar] [CrossRef]
- Choudhury, F.K.; Rivero, R.M.; Blumwald, E.; Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017, 90, 856–867. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Ullah, F.; Zhou, D.X.; Yi, M.; Zhao, Y. Mechanisms of ROS regulation of plant development and stress responses. Front. Plant Sci. 2019, 10, 800. [Google Scholar] [CrossRef]
- Nadarajah, K.K. Ros homeostasis in abiotic stress tolerance in plants. Int. J. Mol. Sci. 2020, 21, 5208. [Google Scholar] [CrossRef]
- Corpas, F.J.; del Río, L.A.; Palma, J.M. Plant peroxisomes at the crossroad of NO and H2O2 metabolism. J. Integr. Plant Biol. 2019, 61, 803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezayian, M.; Ebrahimzadeh, H.; Niknam, V. Nitric oxide stimulates antioxidant system and osmotic adjustment in soybean under drought stress. J. Soil Sci. Plant Nutr. 2020, 20, 1122–1132. [Google Scholar] [CrossRef]
- Biswas, M.S.; Fukaki, H.; Mori, I.C.; Nakahara, K.; Mano, J. Reactive oxygen species and reactive carbonyl species constitute a feed-forward loop in auxin signaling for lateral root formation. Plant J. 2019, 100, 536–548. [Google Scholar] [CrossRef]
- Parvin, K.; Nahar, K.; Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Mohsin, S.M.; Fujita, M. Exogenous vanillic acid enhances salt tolerance of tomato: Insight into plant antioxidant defense and glyoxalase systems. Plant Physiol. Biochem. 2020. [Google Scholar] [CrossRef]
- Chung, Y.S.; Kim, K.-S.; Hamayun, M.; Kim, Y. Silicon confers soybean resistance to salinity stress through regulation of reactive oxygen and reactive nitrogen species. Front. Plant Sci. 2020, 10, 1725. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Prasad, P.V.V.; Seppanen, M. Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol. Biochem. 2010, 48, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Bousba, R.; Rached-Kanouni, M.; Benghersallah, N.; Djekoune, A.; Ykhlef, N. Role of exogenous application of abscisic acid ABA in drought tolerance and evaluation of antioxidant activity in durum wheat genotypes. Acta Sci. Nat. 2020, 7, 44–60. [Google Scholar] [CrossRef]
- Haq, S.U.; Kumari, D.; Dhingra, P.; Kothari, S.L.; Kachhwaha, S. Variant biochemical responses: Intrinsic and adaptive system for ecologically different rice varieties. J. Crop Sci. Biotechnol. 2020, 24, 279–292. [Google Scholar] [CrossRef]
- Yin, N.; Zhang, Z.; Wang, L.; Qian, K. Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ash-reconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation. Envi. Sci. Pollut. Res. 2016, 23, 17840. [Google Scholar] [CrossRef]
- Broad, R.C.; Bonneau, J.P.; Hellens, R.P.; Johnson, A.A.T. Manipulation of ascorbate biosynthetic, recycling, and regulatory pathways for improved abiotic stress tolerance in plants. Internat. J. Mol. Sci. 2020, 21, 1790. [Google Scholar] [CrossRef] [Green Version]
- Dumanović, J.; Nepovimova, E.; Natić, M.; Kuča, K.; Jaćević, V. The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview. Front. Plant Sci. 2021, 11, 2106. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Alhaithloul, H.A.S.; Parvin, K.; Bhuyan, M.H.M.B.; Tanveer, M.; Mohsin, S.M.; Nahar, K.; Soliman, M.H.; Al Mahmud, J.; Fujita, M. Polyamine action under metal/metalloid stress: Regulation of biosynthesis, metabolism, and molecular interactions. Int. J. Mol. Sci. 2019, 20, 3215. [Google Scholar] [CrossRef] [Green Version]
- Almeselmani, M.; Deshmukh, P.S.; Sairam, R.K.; Kushwaha, S.R.; Singh, T.P. Protective role of antioxidant enzymes under high temperature stress. Plant Sci. 2006, 171, 382–388. [Google Scholar] [CrossRef]
- Ullah, N.; Ababaei, B.; Chenu, K. Increasing Heat Tolerance in Wheat to Counteract Recent and Projected Increases in Heat Stress. Proceedings 2020, 36, 132. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Singh, A.; Singh, B. Characterization of in vitro antioxidant activity, bioactive components, and nutrient digestibility in pigeon pea (Cajanus cajan) as influenced by germination time and temperature. J. Food Biochem 2019, 43. [Google Scholar] [CrossRef]
- Singh, D.P.; Singh, V.; Gupta, V.K.; Shukla, R.; Prabha, R.; Sarma, B.K.; Patel, J.S. Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Sci. Rep. 2020, 10, 4818. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Y.; Wei, X.; Zhao, X.; Wang, B.; Sui, N. Transcription Profiles of Genes Related to Hormonal Regulations Under Salt Stress in Sweet Sorghum. Plant Mol. Biol. Report. 2017, 35, 586–599. [Google Scholar] [CrossRef]
- Liu, Q.; Liang, Z.; Feng, D.; Jiang, S.; Wang, Y.; Du, Z.; Hu, G.; Zhang, P.; Ma, Y.; Lohmann, J.U.; et al. Transcriptional landscape of rice roots at the single-cell resolution. Mol. Plant. 2021, 14, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Thameur, A.; Ferchichi, A.; López-Carbonell, M. Quantification of free and conjugated abscisic acid in five genotypes of barley (Hordeum vulgare L.) under water stress conditions. South Afr. J. Bot. 2011, 77, 222–228. [Google Scholar] [CrossRef] [Green Version]
- Hamayun, M.; Khan, S.A.; Shinwari, Z.K.; Khan, A.L.; Ahmad, N.; Lee, I.J. Effect of Polyethylene Glycol Induced Drought Stress on Physio-Hormonal Attributes of Soybean. Pak. J. Bot. 2010, 42, 977–986. [Google Scholar]
- Guóth, A.; Tari, I.; Gallé, Á.; Csiszár, J.; Pécsváradi, A.; Cseuz, L.; Erdei, L. Comparison of the drought stress responses of tolerant and sensitive wheat cultivars during grain filling: Changes in flag leaf photosynthetic activity, ABA levels, and grain yield. J. Plant Growth Regul. 2009, 28, 167–176. [Google Scholar] [CrossRef]
- Yu, J.; Cang, J.; Lu, Q.; Fan, B.; Xu, Q.; Li, W.; Wang, X. ABA enhanced cold tolerance of wheat ‘dn1′ via increasing ROS scavenging system. Plant Signal Behav. 2020, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Bheemanahalli, R.; Sathishraj, R.; Manoharan, M.; Sumanth, H.N.; Muthurajan, R.; Ishimaru, T.; Jagadish SVK. Is early morning flowering an effective trait to minimize heat stress damage during flowering in rice? Field Crop Res. 2017, 203, 238–242. [Google Scholar] [CrossRef]
- Bheemanahalli, R.; Impa, S.M.; Krassovskaya, I.; Vennapusa, A.R.; Gill, K.S.; Obata, T.; Jagadish, S.V.K. Enhanced N-metabolites, ABA and IAA -conjugate in anthers instigate heat sensitivity in spring wheat. Physiol. Plant. 2020, 169, 501–514. [Google Scholar] [CrossRef]
- Elhakem, A.H. Salicylic acid ameliorates salinity tolerance in maize by regulation of phytohormones and osmolytes. Plant Soil Environ. 2020, 66, 533–541. [Google Scholar] [CrossRef]
- Gharsallah, C.; Fakhfakh, H.; Grubb, D.; Gorsane, F. Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants 2016, 8, plw055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guajardo, E.; Correa, J.A.; Contreras-Porcia, L. Role of abscisic acid (ABA) in activating antioxidant tolerance responses to desiccation stress in intertidal seaweed species. Planta 2016, 243, 767–781. [Google Scholar] [CrossRef] [PubMed]
- Rhaman, M.S.; Imran, S.; Rauf, F.; Khatun, M.; Baskin, C.C.; Murata, Y.; Hasanuzzaman, M. Seed priming with phytohormones: An effective approach for the mitigation of abiotic stress. Plants 2020, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Wang, L.; Yang, Y.; Wang, P.; Guo, T.; Kang, G. Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis. Front. Plant Sci. 2015, 6, 458. [Google Scholar] [CrossRef]
- Awan, S.A.; Khan, I.; Rizwan, M.; Zhang, X.; Brestic, M.; Khan, A.; El-Sheikh, M.A.; Alyemeni, M.N.; Ali, S.; Huang, L. Exogenous abscisic acid and jasmonic acid restrain polyethylene glycol-induced drought by improving the growth and antioxidative enzyme activities in pearl millet. Physiol. Plant. 2020, 13247. [Google Scholar] [CrossRef]
- Fujita, Y.; Fujita, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J. Plant Res. 2011, 124, 509–525. [Google Scholar] [CrossRef] [PubMed]
- Sharma, E.; Sharma, R.; Borah, P.; Jain, M.; Khurana, J.P. Emerging Roles of Auxin in Abiotic Stress Responses. In Elucidation of Abiotic Stress Signaling in Plants; Pandey, G., Ed.; Springer: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Al-Tabbal, J.A.; Kafawin, O.M.; Ayad, J.Y. Influence of water stress and plant growth regulators on yield and development of two durum wheat (Triticum turgidum L. var. durum) cultivars. Jordan J. Agric. Sci. 2006, 2, 28–37. [Google Scholar]
- Guo, J.; Xu, W.; Yu, X.; Shen, H.; Li, H.; Cheng, D.; Song, J. Cuticular wax accumulation is associated with drought tolerance in wheat near-isogenic lines. Front. Plant Sci. 2016, 7, 1809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hipol, R.M.; Dalisay, T.U.; Ardales, E.Y.; Lourdes, M.; Cedo, O.; Cuevas, V.C. Endophytic yeasts possibly alleviate heavy metal stress in their host Phragmitesaustralis cav. (Trin.) ex Steud. through the production of plant growth promoting hormones. Bullten. Environ. Pharmacol. Life Sci. 2015, 4, 82–86. [Google Scholar]
- Peleg, Z.; Blumwald, E. Hormone balance and abiotic stress tolerance in crop plants. Curr. Opin. Plant Biol. 2011, 14, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Werner, T.; Nehnevajova, E.; Köllmer, I.; Novák, O.; Stmad, M.; Krämer, U.; Schmülling, T. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 2010, 22, 3905–3920. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Song, L.; Gong, X.; Xu, J.; Li, M. Functions of jasmonic acid in plant regulation and response to abiotic stress. Int. J. Mol. Sci. 2020, 21, 1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, M.P.; Balota, M.; Delgado, M.I.B.; Amani, I.; Fischer, R.A. Physiological and Morphological Traits Associated with Spring Wheat Yield Under Hot, Irrigated Conditions. Funct. Plant Biol. 1994, 21, 717–730. [Google Scholar] [CrossRef]
- Sadok, W.; Lopez, J.R.; Smith, K.P. Transpiration Increases under High-Temperature Stress: Potential Mechanisms, Trade-Offs and Prospects for Crop Resilience in a Warming World. Plant Cell Environ. 2021, 44, 2102–2116. [Google Scholar] [CrossRef]
- Cossani, C.M.; Reynolds, M.P. Physiological Traits for Improving Heat Tolerance in Wheat. Plant Physiol. 2012, 160, 1710–1718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, R.S.; Reynolds, M.P. Common Genetic Basis for Canopy Temperature Depression under Heat and Drought Stress Associated with Optimized Root Distribution in Bread Wheat. Theor. Appl. Genet. 2015, 128, 575–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M.; Raina, S.K.; Govindasamy, V.; Singh, A.K.; Choudhary, R.L.; Rane, J.; Minhas, P.S. Assimilates mobilization, stable canopy temperature and expression of Expansin stabilizes grain weight in wheat cultivar LOK-1 under different soil moisture conditions. Bot. Stud. 2017, 58, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M.; Govindasamy, V.; Rane, J.; Singh, A.K.; Choudhary, R.L.; Raina, S.K.; George, P.; Aher, L.; Singh, N.P. Canopy temperature depression (CTD) and canopy greenness associated with variation in seed yield of soybean genotypes grown in semi-arid environment. South Afr. J. Bot. 2017, 113, 230–238. [Google Scholar] [CrossRef]
- Christopher, M.; Chenu, K.; Jennings, R.; Fletcher, S.; Butler, D.; Borrell, A.; Christopher, J. QTL for Stay-Green Traits in Wheat in Well-Watered and Water-Limited Environments. Field Crop. Res 2018, 217, 32–44. [Google Scholar] [CrossRef]
- Dreccer, M.F.; Fainges, J.; Whish, J.; Ogbonnaya, F.C.; Sadras, V.O. Comparison of sensitive stages of wheat, barley, canola, chickpea and field pea to temperature and water stress across Australia. Agric. For. Meteorol. 2018, 248, 275–294. [Google Scholar] [CrossRef]
- Hunt, J.R.; Hayman, P.T.; Richards, R.A.; Passioura, J.B. Opportunities to reduce heat damage in rain-fed wheat crops based on plant breeding and agronomic management. Field Crop. Res. 2018, 224, 126–138. [Google Scholar] [CrossRef]
- Crawford, A.J.; McLachlan, D.H.; Hetherington, A.M.; Franklin, K.A. High temperature exposure increases plant cooling capacity. High temperature exposure increases plant cooling capacity. Curr. Biol. 2012, R396–R397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, Z.; Shahwar, D. Role of Heat Shock Proteins (HSPs) and Heat Stress Tolerance in Crop Plants. In Sustainable Agriculture in the Era of Climate Change; Roychowdhury, R., Choudhury, S., Hasanuzzaman, M., Srivastava, S., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Lee, U.; Rioflorido, I.; Hong, S.; Larkindale, J.; Waters, E.R.; Vierling, E. The Arabidopsis ClpB/Hsp100 family of proteins: Chaperones for stress and chloroplast development. Plant J. 2007, 49, 115–127. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Hu, G.; Han, B. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci. 2009, 176, 583–590. [Google Scholar] [CrossRef]
- Huang, B.; Xu, C. Identification and Characterization of Proteins Associated with Plant Tolerance to Heat Stress. J. Integr. Plant Biol. 2008, 50, 1230–1237. [Google Scholar] [CrossRef] [PubMed]
- Simões-Araújo, J.L.; Rumjanek, N.G.; Margis-Pinheiro, M. Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. Braz. J. Plant Physiol. 2003, 15, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Danekar, P.; Tyagi, A.; Mahto, A.; Krishna, K.G.; Singh, A.; Raje, R.S.; Gaikwad, K.; Singh, N.K. Genome wide characterization of hsp 100 family genes from pigeonpea. Indian J. Genet. Plant Breed. 2014, 74, 325–334. [Google Scholar] [CrossRef]
- Cui, Y.; Lu, S.; Li, Z.; Cheng, J.; Hu, P.; Zhu, T.; Wang, X.; Jin, M.; Wang, X.; Li, L.; et al. Cyclic nucleotide-gated ion channels 14 and 16 promote tolerance to heat and chilling in rice. Plant Physiol. 2020, 183, 1794–1808. [Google Scholar] [CrossRef]
- Mahfouze, H.A.; Ramadan, W.A.; Mahfouze, S.A. Gene expression and single nucleotide polymorphisms (SNP) marker of heat shock protein (HSP) gene in wheat (Triticum aestivum L.). Plant Arch. 2019, 19, 2225–2232. [Google Scholar]
- Rodríguez-Vera, A.P.; Acosta-Gallegos, J.A.; Ruiz-Nieto, J.E.; Montero-Tavera, V. Selection by genetic expression profiles of desi and kabuli chickpea (Cicer arietinum L.) genotypes tolerant to high temperature stress. Legume Res. 2020, 246, 826–831. [Google Scholar] [CrossRef]
- Rasheed, R.; Wahid, A.; Farooq, M.; Hussain, I.; Basra, S.M.A. Role of proline and glycinebetaine pretreatments in improving heat tolerance of sprouting sugarcane (Saccharum sp.) buds. Plant Growth Regul. 2011, 65, 35–45. [Google Scholar] [CrossRef]
- Foyer, C.H. Redox homeostasis: Opening up ascorbate transport. Nat. Plants 2015, 1, 14012. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Mohanty, S.; Dash, D.; Muduli, K.C. Enhancement of growth and seed yield of rice (Oryza sativa l.) through foliar spray of osmoprotectants under high temperature stress. Ind. J. Tradit. Knowl. 2020, 19, 92–100. [Google Scholar]
- Kumar, S.; Singh, R.; Nayyar, H. α-Tocopherol Application Modulates the Response of Wheat (Triticum aestivum L.) Seedlings to Elevated Temperatures by Mitigation of Stress Injury and Enhancement of Antioxidants. J. Plant Growth Regul. 2013, 32, 307–314. [Google Scholar] [CrossRef]
- Tiwari, Y.K.; Yadav, S.K. Effect of high-temperature stress on ascorbate–glutathione cycle in maize. Agric. Res. 2020, 9, 179–187. [Google Scholar] [CrossRef]
- Venkatesh, J.; Park, S.W. Role of L-ascorbate in alleviating abiotic stresses in crop plants. Bot. Stud. 2014, 55, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Fraga, H.; van Ieperen, W.; Santos, J.A. Assessing the impacts of recent-past climatic constraints on potential wheat yield and adaptation options under Mediterranean climate in southern Portugal. Agric. Syst. 2020, 182, 102844. [Google Scholar] [CrossRef]
- Wang, H.Q.; Liu, P.; Zhang, J.W.; Zhao, B.; Ren, B.Z. Endogenous hormones inhibit differentiation of young ears in maize (Zea mays L.) under heat stress. Front. Plant Sci. 2020, 11, 533046. [Google Scholar] [CrossRef] [PubMed]
- Harsha, A.; Sharma, Y.K.; Joshi, U.; Rampuria, S.; Singh, G.; Kumar, S.; Sharm, R. Effect of shortterm heat stress on total sugars, proline and some antioxidant enzymes in moth bean (Vigna aconitifolia). Ann. Agric. Sci. 2016, 61, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Mody, T.; Bonnot, T.; Nagel, D.H. Interaction between the circadian clock and regulators of heat stress responses in plants. Genes 2020, 11, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Liu, L.; Xu, Q.; Wei, H.; Wang, X.; Sun, W.; Zhuge, Q. Characteristics and functions of PePIF3, a gene related to circadian rhythm in “Nanlin 895” poplar. Plant Mol. Biol. Report. 2020, 38, 586–600. [Google Scholar] [CrossRef]
- Roy, S.J.; Negrao, S.; Tester, M. Salt resistant crop plants. Curr. Opin. Biotechnol. 2014, 26, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Hernández, J.A. Salinity tolerance in plants: Trends and perspectives. Int. J. Mol. Sci. 2019, 20, 2408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Wu, D.Z.; Zhang, G.P. Advances in studies on ion transporters involved in salt tolerance and breeding crop cultivars with high salt tolerance. J. Zhejiang Univ. Sci. B. 2020, 21, 426–441. [Google Scholar] [CrossRef]
- Theerawitaya, C.; Tisarum, R.; Samphumphuang, T.; Takabe, T.; Cha-um, S. Expression levels of the Na+/K+ transporter OsHKT2;1 and vacuolar Na+/H+ exchanger OsNHX1, Na enrichment, maintaining the photosynthetic abilities and growth performances of indica rice seedlings under salt stress. Physiol. Mol. Biol. Plants 2020, 26, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liang, X.; Wang, L.; Cao, Y.; Song, W.; Shi, J.; Lai, J.; Jiang, C. A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nat. Plants 2019, 5, 1297–1308. [Google Scholar] [CrossRef]
- Ami, K.; Planchais, S.; Cabassa, C.; Guivarc’h, A.; Very, A.A.; Khelifi, M.; Djebbar, R.; Abrous-Belbachir, O.; Carol, P. Different proline responses of two Algerian durum wheat cultivars to in vitro salt stress. Acta Physiol. Plant. 2020, 42, 21. [Google Scholar] [CrossRef]
- Chaudhary, R.; Kumar, M.; Sengar, R.S.; Kumar, P.; Singh, S.K.; Kumar, Y. Effect of salinity stress on photosynthesis and expression of salt tolerant genes in Chickpea (Cicer arietinum L.). Internat. J. Chem. Stud. 2017, 5, 229–237. [Google Scholar]
- Wu, H.; Shabala, L.; Azzarello, E.; Huang, Y.; Pandolfi, C.; Su, N.; Wu, Q.; Cai, S.; Bazihizina, N.; Wang, L.; et al. Na + extrusion from the cytosol and tissue-specific Na + sequestration in roots confer differential salt stress tolerance between durum and bread wheat. J. Exp. Bot. 2018, 69, 3987–4001. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Mahajan, M.M.; Singh, N.K.; Kumar, D.; Kumar, K. Physiological and molecular response under salinity stress in bread wheat (Triticum aestivum L.). J. Plant Biochem. Biotechnol. 2020, 29, 125–133. [Google Scholar] [CrossRef]
- Dietz, K.J.; Tavakoli, N.; Kluge, C.; Mimura, T.; Sharma, S.S.; Harris, G.C.; Chardonnens, A.N.; Golldack, D. Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J. Exp. Bot. 2001, 52, 1969–1980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Cai, J.; Jiang, D.; Liu, F.; Dai, T.; Cao, W. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. J. Plant Physiol. 2011, 168, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Adem, G.D.; Roy, S.J.; Huang, Y.; Chen, Z.-H.; Wang, F.; Zhou, M.; Bowman, J.P.; Holford, P.; Shabala, S. Expressing Arabidopsis thaliana V-ATPase subunit C in barley (Hordeum vulgare) improves plant performance under saline condition by enabling better osmotic adjustment. Funct. Plant Biol. 2017, 44, 1147. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Shaw, B.P. Biochemical and molecular characterisations of salt tolerance components in rice varieties tolerant and sensitive to NaCl: The relevance of Na+ exclusion in salt tolerance in the species. Functl. Plant Biol. 2020, 48, 72–87. [Google Scholar] [CrossRef] [PubMed]
- Carden, D.; Walker, D.; Flowers, T.J.; Miller, A.J. Single cell measurements of the contributions of cytosoloc NA and K to salt tolerance. Plant Physiol. 2003, 131, 676–683. [Google Scholar] [CrossRef] [Green Version]
- Rahnama, H.; Vakilian, H.; Fahimi, H.; Ghareyazie, B. Enhanced salt stress tolerance in transgenic potato plants (Solanum tuberosum L.) expressing a bacterial mtlD gene. Acta Physiol. Plant. 2011, 33, 1521–1532. [Google Scholar] [CrossRef]
- Jiang, Y.; Davis, A.R.; Vujanovic, V.; Bueckert, R.A. Reproductive development response to high daytime temperature in field pea. J. Agron. Crop Sci. 2019, 205, 324–333. [Google Scholar] [CrossRef]
- Kumar, V.; Wani, S.H.; Suprasanna, P.; Tran, L.S.P. Salinity Responses and Tolerance in Plants, Volume 1: Targeting Sensory, Transport and Signaling Mechanisms; Springer: Berlin, Germany, 2018. [Google Scholar]
- Per, T.S.; Khan, N.A.; Reddy, P.S.; Masood, A.; Hasanuzzaman, M.; Khan, M.I.R.; Anjum, N.A. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiol. Biochem. 2017, 115, 126–140. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Env. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Munns, R.; Passioura, J.B.; Colmer, T.D.; Byrt, C.S. Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol. 2020, 225, 1091–1096. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Cui, Q.; Feng, K.; Xu, D.; Li, C.; Zheng, Q. Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiol. Plant 2016, 38, 82. [Google Scholar] [CrossRef]
- Ren, J.; Ye, J.; Yin, L.; Li, G.; Deng, X.; Wang, S. Exogenous melatonini salt tolerance by mitigating osmotic, ion, and oxidative stresses in maize seedlings. Agronomy 2020, 10, 663. [Google Scholar] [CrossRef]
- Jackson, M.B.; Ram, P.C. Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann. Bot. 2003, 91, 227–241. [Google Scholar] [CrossRef] [Green Version]
- Sairam, R.K.; Kumutha, D.; Ezhilmathi, K.; Dwshmukh, P.S. Physiology and biochemistry of waterlogging tolerance in plants. Biol. Plant 2008, 52, 401. [Google Scholar] [CrossRef]
- Kirk, G.J.D.; Greenway, H.; Atwell, B.J.; Ismail, A.M.; Colmer, T.D. Adaptation of rice to flooded soils. Progr. Bot. 2014, 75, 215–253. [Google Scholar]
- Kaur, G.; Singh, G.; Motavalli, P.P.; Nelson, K.A.; Orlowski, J.M.; Golden, B.R. Impacts and management strategies for crop production in waterlogged or flooded soils: A review. Agron. J. 2020, 112, 1475–1501. [Google Scholar] [CrossRef] [Green Version]
- Kuroha, T.; Ashikari, M. Molecular mechanisms and future improvement of submergence tolerance in rice. Mol. Breed. 2020, 40, 1–14. [Google Scholar] [CrossRef]
- Hattori, Y.; Nagai, K.; Furukawa, S.; Song, X.-J.; Kawano, R.; Sakakibara, H.; Wu, J.; Matsumoto, T.; Yoshimura, A.; Kitano, H.; et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 2009, 460, 1026–1030. [Google Scholar] [CrossRef]
- Goyal, K.; Kaur, K.; Kaur, G. Foliar treatment of potassium nitrate modulates the fermentative and sucrose metabolizing pathways in contrasting maize genotypes under water logging stress. Physiol. Mol. Biol. Plants 2020, 26, 899–906. [Google Scholar] [CrossRef]
- Boraiah, K.M.; Basavaraj, P.S.; Harisha, C.B.; Kochewad, S.A.; Khapte, P.S.; Bhendarkar, M.P.; Kakade, V.D.; Rane, J.; Kulshreshtha, N.; Pathak, H. Abiotic Stress Tolerant Crop Varieties, Livestock Breeds and Fish Species. No. ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, India. Tech. Bull. 2021, 32, 83. [Google Scholar]
- Luo, L.; Xia, H.; Lu, B.-R. Editorial: Crop Breeding for Drought Resistance. Front. Plant Sci. 2019, 10, 314. [Google Scholar] [CrossRef] [PubMed]
- Shavrukov, Y.; Kurishbayev, A.; Jatayev, S.; Shvidchenko, V.; Zotova, L.; Koekemoer, F.; De Groot, S.; Soole, K.; Langridge, P. Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Front. Plant Sci. 2017, 8, 1950. [Google Scholar] [CrossRef]
- Matyszczak, I.; Tominska, M.; Shakhira, Z.; Christoph, D.; Hansson, M. Analysis of early-flowering genes at barley chromosome 2H expands the repertoire of mutant alleles at the Mat-c locus. Plant Cell Rep. 2020, 39, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Hu, J.; Dong, L.; Zeng, D.; Guo, L.; Zhang, G.; Zhu, L.; Qian, Q. The Tolerance of Salinity in Rice Requires the Presence of a Functional Copy of FLN. Biomolecules 2020, 10, 17. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.H.; Byun, M.Y.; Oh, H.G.; Kim, S.J.; Lee, J.; Park, H.; Lee, H.; Kim, W.T. Type II galactinol synthase 2 from antarctic flowering plant Deschampsia antarctica and rice improves cold and drought tolerance by accumulation of raffinose family oligosaccharides in transgenic rice plants. Plant Cell Physiol. 2020, 61, 88–104. [Google Scholar] [CrossRef]
- Carillo, P. GABA shunt in durum wheat. Front. Plant Sci. 2018, 9, 100. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhou, L.; Fu, Y.; Cheung, M.; Wong, F.; Phang, T.; Sun, Z.; Lam, H. Expression of an apoplast-localized BURP-domain protein from soybean (GmRD22) enhances tolerance towards abiotic stress. Plant Cell Environ. 2012, 35, 1932–1947. [Google Scholar] [CrossRef]
- Gill, S.S.; Tajrishi, M.; Madan, M.; Tuteja, N. A DESD box helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. PB1). Plant Molecular Biol. 2013, 82, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Tuteja, N.; Sahoo, R.K.; Garg, B.; Tuteja, R. OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64). Plant J. 2013, 76, 115–127. [Google Scholar] [CrossRef]
- Begara-Morales, J.C.; Anchez-Calvo, B.S.; Chaki, M.; Valderrama, R.; Mata-Perez, C.; Lopez-Jaramillo, J.; Padilla, M.N.; Carreras, A.; Corpas, F.J.; Barrosa, J.B. Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J. Expt. Bot. 2014, 65, 527–538. [Google Scholar] [CrossRef] [Green Version]
- Bailey-Serres, J.; Fukao, T.; Ronald, P.; Ismail, A.; Heuer, S.; Mackill, D. Submergence tolerant rice: SUB1′s journey from landrace to modern cultivar. Rice 2010, 3, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Xu, X.; Fukao, T.; Canlas, P.; Maghirang-Rodriguez, R.; Heuer, S.; Ismail, A.M.; Bailey-Serres, J.; Ronald, P.C.; Mackill, D.J. Sub1A is an ethylene-responsefactor- like gene that confers submergence tolerance to rice. Nature 2006, 442, 705–708. [Google Scholar] [CrossRef] [Green Version]
- Kretzschmar, T.; Pelayo, M.A.; Trijatmiko, K.R.; Gabunada, L.F.; Alam, R.; Jimenez, R.; Mendioro, M.S.; Slamet-Loedin, I.H.; Sreenivasulu, N.; Bailey-Serres, J.; et al. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nature 2015, 1, 15124. [Google Scholar] [CrossRef]
- Kuroha, T.; Nagai, K.; Gamuyao, R.; Wang, D.R.; Furuta, T.; Nakamori, M.; Kitaoka, T.; Adachi, K.; Minami, A.; Mori, Y.; et al. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science 2018, 361, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Kurokawa, Y.; Nagai, K.; Huan, P.D.; Shimazaki, K.; Mori, Y.; Toda, Y.; Kuroha, T.; Hayashi, N.; Aiga, S.; Itoh, J.; et al. Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF1) and contribute to flood tolerance. New Phytol. 2018, 218, 1558–1569. [Google Scholar]
- Pedersen, O.; Rich, S.M.; Colmer, T.D. Surviving floods: Leaf gas films improve O(2) and CO(2) exchange, root aeration, and growth of completely submerged rice. Plant J. 2009, 58, 147–156. [Google Scholar] [CrossRef]
- Ella, E.S.; Kawano, N.; Ito, O. Importance of active oxygen-scavenging system in the recovery of rice seedlings after submergence. Plant Sci. 2003, 165, 85–93. [Google Scholar] [CrossRef]
- Dordas, C.; Rivoal, J.; Hill, R.D. Plant hemoglobins, nitric oxide and hypoxic stress. Ann Bot. 2003, 91, 173–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colmer, T.D.; Armstrong, W.; Greenway, H.; Ismail, A.M.; Kirk, G.J.D.; Atwell, B.J. Physiological mechanisms in flooding tolerance of rice: Transient complete submergence and prolonged standing water. Prog. Bot. 2014, 75, 55–307. [Google Scholar]
- Yamauchi, T.; Colmer, T.D.; Pedersen, O.; Nakazono, M. Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress. Plant Physiol. 2018, 176, 1118–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Wang, M.; Zhou, L.; Quan, T.; Xia, G. Heterologous expression of the wheat aquaporin gene TaTIP2;2 compromises the abiotic stress tolerance of Arabidopsis thaliana. PLoS ONE 2013, 8, e79618. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Zhao, N.; Xu, C.; Liu, B.; Shi, D. Regulation of ion homeostasis in rice subjected to salt and alkali stresses. Aust. J. Crop. Sci. 2012, 6, 724–731. [Google Scholar]
- Gupta, B.; Huang, B. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. Int. J. Genom. 2014. [Google Scholar] [CrossRef]
- Darko, E.; Gierczik, K.; Hudak, O.; Forgo, P.; Pal, M.; Turkosi, E.; Kovács, V.; Dulai, S.; Majláth, I.; Molnár, I.; et al. Differing metabolic responses to salt stress in wheat-barley addition lines containing different 7H chromosomal fragments. PLoS ONE 2017, 12, e0174170. [Google Scholar] [CrossRef] [Green Version]
- Laha, S.; Kumar, D.; Sengupta, D.N.; Gangopadhyay, G. In silico characterization of SAMdC from Pokkali rice and its overexpression in transgenic tobacco. Vegetos 2019, 32, 158–166. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Wang, Y.; Liu, Q.; Zhang, Q.; Wei, Q.; Zhang, W. Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 2006, 224, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Vishal, B.; Krishnamurthy, P.; Rengasamy, R.; Prakash, P.K. OsTPS8 controls yield-related traits and confers salt stress tolerance in rice by enhancing suberin deposition. New Phytol. 2018, 221, 1369–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boussora, F.; Allam, M.; Guasmi, F.; Ferchichi, A.; Rutten, T.; Hansson, M.; Youssef, H.M.; Borner, A. Spike developmental stages and ABA role in spikelet primordia abortion contribute to the final yield in barley (Hordeum vulgare L.). Bot Stud. 2019, 60, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zong, N.; Wang, H.; Li, Z.; Ma, L.; Xie, L.; Pang, J.; Fan, Y.; Zhao, J. Maize NCP1 negatively regulates drought and ABA responses through interacting with and inhibiting the activity of transcription factor ABP. Plant Mol Biol. 2020, 102, 339–357. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, M.; Zhang, M.; Jiang, W.; Liang, E.; Zhang, D.; Zhang, C.; Xiao, N.; Chen, J. Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty. Plant Mol Biol. 2018, 97, 311–323. [Google Scholar] [CrossRef]
- Nadarajah, K.; Abdul Hamid, N.W.; Abdul Rahman, N.S.N. SA-Mediated Regulation and Control of Abiotic Stress Tolerance in Rice. Int. J. Mol. Sci. 2021, 22, 5591. [Google Scholar] [CrossRef]
- Sharma, M.; Gupta, S.K.; Majumder, B.; Maurya, V.K.; Deeba, F.; Alam, A.; Pandey, V. Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress. J. Proteomics. 2017, 163, 28–51. [Google Scholar] [CrossRef]
- Sirhindi, G.; Kumar, S.; Kumar, M.; Kaur, H.; Sharma, P.; Kaur, G. Phytohormonal signaling under abiotic stress in legumes. In Abiotic Stress and Legumes; Singh, V.P., Singh, S., Tripathi, D.K., Prasad, S.M., Bhardwaj, R., Chauhan, D.K., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 175–187. ISBN 9780128153550. [Google Scholar]
- Raina, S.K.; Singh, P.Y.; Singh, A.K.; Raskar, N.; Rane, J.; Minhas, P.S. Exogenous gibberellic acid does not induce early flowering in Mungbean [(Vigna radiata (L.) Wilczek.]. Legume Res. 2018, 130, 1770–1775. [Google Scholar] [CrossRef]
- Khanna-Chopra, R.; Singh, K. Drought resistance in crops: Physiological and genetic basis of traits for crop productivity. In Stress Responses in Plants: Mechanisms of Toxicity and Tolerance; Tripathi, B.N., Müller, M., Eds.; Springer: New York, NY, USA, 2015; pp. 267–292. [Google Scholar]
- Zikhali, M.; Griffiths, S. The effect of earliness per se (Eps) genes on glowering time in bread wheat. In Advances in Wheat Genetics: From Genome to Field; Ogihara, Y., Takumi, S., Handa, H., Eds.; Springer: Tokyo, Japan, 2015. [Google Scholar] [CrossRef] [Green Version]
- Hill, C.B.; Li, C. Genetic architecture of flowering phenology in cereals and opportunities for crop improvement. Front. Plant Sci. 2016, 7, 1906. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.; Harrison, M.; Meinke, H.; Fan, Y.; Johnson, P.; Zhou, M. A regulator of early flowering in barley (Hordeum vulgare L.). PLoS ONE 2018, 13, e200722. [Google Scholar] [CrossRef]
- Turner, N.C.; Wright, G.C.; Siddique, K.H.M. Adaptation of grain legumes (pulses) to water-limited environments. Adv. Agron. 2001, 71, 193–271. [Google Scholar] [CrossRef]
- Serraj, R.; Bidinger, F.R.; Chauhan, Y.S.; Seetharama, N.; Nigam, S.N.; Saxena, N.P. Management of drought in ICRISAT cereal and legume mandate crops. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; Kijne, J.W., Barker, R., Molden, D., Eds.; CABI Publishing: Wallingford, UK, 2003; pp. 127–144. [Google Scholar]
- Van Oosterom, E.J.; Mahalakshmi, V.; Bidinger, F.R.; Rao, K.P. Effect of water availability and temperature on the genotype-by-environment interaction of pearl millet in semi-arid tropical environments. Euphytica 1996, 89, 175–183. [Google Scholar] [CrossRef]
- Zonneveld, V.M.; Rakha, M.; Tan, S.Y.; Chou, Y.Y.; Chang, C.H.; Yen, J.Y.; Schafleitner, R.; Nair, R.; Naito, K.; Solberg, S.Ø. Mapping patterns of abiotic and biotic stress resilience uncovers conservation gaps and breeding potential of Vigna wild relatives. Sci. Rep. 2020, 10, 2111. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.P.; Strock, C.F.; Schneider, H.M.; Sidhu, J.S.; Ajmera, I.; Galindo-Castañeda, T.; Klein, S.P.; Hanlon, M.T. Root anatomy and soil resource capture. Plant Soil. 2021, 466, 21–63. [Google Scholar] [CrossRef]
- Leach, K.A.; Hejlek, L.G.; Hearne, L.B.; Nguyen, H.T.; Sharp, R.E.; Davis, G.L. Primary root elongation rate and abscisic acid levels of maize in response to water stress. Crop Sci. 2011, 51, 157–172. [Google Scholar] [CrossRef]
- Danakumara, T.; Kumari, J.; Singh, A.K.; Sinha, S.K.; Pradhan, A.K.; Sharma, S.; Jha, S.K.; Kumar, S.; Jha, G.K.; Yadav, M.C.; et al. Genetic dissection of seedling root system architectural traits in diverse panel of hexaploid wheat through multi-locus genome-wide association mapping for improving drought tolerance. Int. J. Mol. Sci. 2021, 22, 7188. [Google Scholar] [CrossRef]
- Purushothaman, R.; Mainassara, Z.A.; Nalini, M.; Rajaram, P.; Krishnamurthy, L.; Cholenahalli, L.G. Root anatomical traits and their possible contribution to drought tolerance in grain legumes. Plant Prod. Sci. 2013, 16, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Phule, A.S.; Barbadikar, K.M.; Madhav, M.S.; Subrahmanyam, D.; Senguttuvel, P.; Babu, M.B.B.P.; Kumar, P.A. Studies on root anatomy, morphology and physiology of rice grown under aerobic and anaerobic conditions. Physiol. Mol. Biol. Plants 2019, 25, 197–205. [Google Scholar] [CrossRef]
- Polania, J.; Poschenrieder, C.; Rao, I.; Beebe, S. Root traits and their potential links to plant ideotypes to improve drought resistance in common bean. Theor. Exp. Plant Physiol. 2017, 29, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Rane, J.; Sharma, D.; Ekatpure, S.; Aher, L.; Kumar, M.; Prasad, S.V.; Nankar, A.N.; Singh, N.P. Relative tolerance of photosystem II in spike, leaf, and stem of bread and durum wheat under desiccation. Photosynthetica 2019, 57, 1100–8346. [Google Scholar] [CrossRef] [Green Version]
- Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Sun, A.Z.; Guo, F.Q. Chloroplast retrograde regulation of heat stress responses in plants. Front. Plant Sci. 2016, 7, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, Y.H.; Hong, W.J.; Jung, K.H. A systematic view exploring the role of chloroplasts in plant abiotic stress responses. Bio. Med. Res. Intern. 2019, 2019, 6534745. [Google Scholar] [CrossRef] [PubMed]
- Khurana, N.; Chauhan, H.; Khurana, H. Characterization of a chloroplast localized wheat membrane protein (TaRCI) and its role in heat, drought and salinity stress tolerance in Arabidopsis thaliana. Plant Gene 2015, 4, 45. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, A.; Rehman, O.U.; Muzammil, S.; Léon, J.; Naz, A.A.; Rasool, F.; Ali, G.M.; Zafar, Y.; Khan, M.R. Evolution of Deeper Rooting 1-like homoeologs in wheat entails the C-terminus mutations as well as gain and loss of auxin response elements. PLoS ONE 2019, 14, e0214145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitomi, Y.; Hanzawa, E.; Kuya, N.; Inoue, H.; Hara, N.; Kawai, S.; Uga, Y. Root angle modifications by the DRO1 homolog improve rice yields in saline paddy fields. Proc. Nat. Acad. Sci. USA 2020, 11, 20242–20250. [Google Scholar] [CrossRef]
- Ismail, A.M.; Singh, U.S.; Singh, S.; Dar, M.; Mackill, D.J. The contribution of submergence-tolerant (Sub1) rice varieties to food security in flood-prone areas. Field Crops Res. 2013, 152, 83–93. [Google Scholar] [CrossRef]
- Sarkar, R.K.; Das, K.K.; Panda, D.; Reddy, J.N.; Patnaik, S.S.C.; Patra, B.C.; Singh, D.P. Submergence Tolerance in Rice: Biophysical Constraints, Physiological Basis and Identification of Donors; Central Rice Research Institute: Cuttuck, India, 2014; p. 36. [Google Scholar]
- Pucciariello, C.; Perata, P. Quiescence in rice submergence tolerance: An evolutionary hypothesis. Trends Plant Sci. 2013, 18, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Niroula, R.K.; Pucciariello, C.; Ho, V.T.; Novi, G.; Fukao, T.; Perata, P. SUB1A-dependent and -independent mechanisms are involved in the flooding tolerance of wild rice species. Plant J. 2012, 72, 282–293. [Google Scholar] [CrossRef] [Green Version]
- Okishio, T.; Sasayama, D.; Hirano, T.; Akimoto, M.; Itoh, K.; Azuma, T. Ethylene is not involved in adaptive responses to flooding in the Amazonian wild rice species Oryza grandiglumis. J. Plant Physiol. 2015, 174, 49–54. [Google Scholar] [CrossRef]
- Pan, Z.; Liu, M.; Zhao, H.; Tan, Z.; Liang, K.; Sun, Q.; Qiu, F. ZmSRL5 is involved in drought tolerance by maintaining cuticular wax structure in maize. J. Integ. Plant Biol. 2020, 62, 1895–1909. [Google Scholar] [CrossRef]
- Khazaei, H.; Santanen, A.; Street, K.; Stoddard, F.L. Genotypic variation in leaf epicuticular wax quantity in a large faba bean (Vicia faba L.) germplasm collection. Plant Genet. Res. Charact. Utiliz. 2019, 17, 298–300. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Feakins, S.J.; Sun, H.; Feng, X.; Zhang, X.; Liu, X. Dynamic changes in leaf wax n-alkanes and δ13C during leaf development in winter wheat under varied irrigation experiments. Org. Geochem. 2020, 146. [Google Scholar] [CrossRef]
- Estravis-Barcala, M.; Mattera, M.G.; Soliani, C.; Bellora, N.; Opgenoorth, L.; Heer, K.; Arana, M.V. Molecular basis of responses to abiotic stress in trees. J. Exp. Bot. 2020, 71, 3765–3779. [Google Scholar] [CrossRef] [PubMed]
- Millar, A.J.; Urquiza, U.; Freeman, P.L.; Hume, A.; Plotkin, G.D.; Sorokina, O.; Zardilis, A.; Zielinski, T. Practical steps to digital organism models, from laboratory model species to “crops in silico”. J. Exp. Bot. 2019, 70, 2403–2418. [Google Scholar] [CrossRef] [Green Version]
- Haak, D.C.; Fukao, T.; Grene, R.; Hua, Z.; Ivanov, R.; Perrella, G.; Li, S. Multi-level regulation of abiotic stress responses in plants. Front. Plant Sci. 2017, 8, 1564. [Google Scholar] [CrossRef] [PubMed]
- Kimotho, R.N.; Baillo, E.H.; Zhang, Z. Transcription factors involved in abiotic stress responses in maize (Zea mays L) and their roles in enhanced productivity in the post-genomic era. Peer J. 2019, 7, e7211. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S. Plant receptor-like kinase signaling through heterotrimeric G-proteins. J. Exp. Bot. 2020, 71, 1742–1751. [Google Scholar] [CrossRef]
- Tekel, S.J.; Smith, C.L.; Lopez, B.; Mani, A.; Connot, C.; Livingstone, X.; Haynes, K.A. Engineered orthogonal quorum sensing systems for synthetic gene regulation in Escherichia coli. Front. Bioeng. Biotechnol. 2019, 7, 80. [Google Scholar] [CrossRef]
- Gonzalez, D.H. Plant Transcription Factors: Evolutionary, Structural and Functional Aspects. Plant Transcription Factors: Evolutionary, Structural and Functional Aspects; Elsevier: London, UK, 2015. [Google Scholar]
- Hoang, X.L.T.; Nhi, D.N.H.; Thu, N.B.A.; Thao, N.P.; Tran, L.-S.P. Transcription factors and their roles in signal transduction in plants under abiotic stresses. Curr. Genom. 2017, 18, 483–497. [Google Scholar] [CrossRef]
- Oszvald, M.; Primavesi, L.F.; Griffiths, C.A.; Cohn, J.; Basu, S.S.; Nuccio, M.L.; Paul, M.J. Trehalose 6-phosphate regulates photosynthesis and assimilate partitioning in reproductive tissue. Plant Physiol. 2018, 176, 2623–2638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharan, A.; Soni, P.; Nongpiur, R.C.; Singla-Pareek, S.L.; Pareek, A. Mapping the ‘two-component system’ network in rice. Sci. Rep. 2017, 7, 9287. [Google Scholar] [CrossRef] [PubMed]
- Lakra, N.; Kaur, C.; Anwar, K.; Singla-Pareek, S.L.; Pareek, A. Proteomics of contrasting rice genotypes: Identification of potential tar-gets for raising crops for saline environment. Plant Cell Environ. 2018, 41, 947–969. [Google Scholar] [CrossRef] [PubMed]
- Gigli-Bisceglia, N.; Engelsdorf, T.; Hamann, T. Plant cell wall integrity maintenance in model plants and crop species-relevant cell wall components and underlying guiding principles. Cell Mol. Life Sci. 2020, 77, 2049–2077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Crop | Stress Description | Yield Losses (%) | Reference |
---|---|---|---|
Wheat | ~40% water deficit | 20–25 | [28,29] |
No irrigation at reproductive and grain filling stages | 30-32 | [30] | |
The different deficit moisture level | 25 | [31] | |
Rice | Soils dried beyond −20 kPa | 23 | [32] |
Withholding water at flowering (−30 ± 5 kPa) | 23–24 | [33] | |
Moderate to severe stress at flowering | 51–60 | [34] | |
Drought, water stress (~40% water deficit) | >50 | [29] | |
The different deficit moisture level | 25 | [31] | |
Maize | -40 and -80 kPa during flowering and grain filling, respectively | 34–66 | [35] |
50% FC at tasselling stage | 20 | [36] | |
Progressive drought at vegetative stages | 19–26 | [37] | |
Progressive drought at reproductive stages | 42–47 | ||
Different irrigation regimes | 34–66 | [35] | |
Drought with approximately 40% water reduction | 39.3 | [28] | |
Barley | Water stress (20% and 60% FC) during grain filling | 50–60 | [38] |
Drought stress at the start of anthesis (Field capacities 30%) | 42 | [39] | |
Pearl millet | Early drought stress from 3 weeks after germination for four weeks | >50 | [40] |
Millets | Rainfed conditions associated with terminal drought | 53 | [41] |
Chickpea | Withholding water at reproductive stage | 30–40 | [42] |
Withholding water at early podding | 80–90 | [43] | |
Under rainfed conditions with lifesaving irrigation | 27 | [44] | |
Beans | Withholding water after 25 days | 80 | [45] |
Pigeon pea | Drought at flower initiation, soil moisture reduced from field capacity of 16% to 5.6% | 11–40 | [46] |
Soybean | Rainfed in comparison to fully irrigated | 33 | [47] |
4 days of moisture stress during seed filling stage (R4–R6) | 39–45 | [48] | |
Black gram | Irrigated to FC when the weight of each pot reached 50% of FC | 23 | [49] |
Mung bean | Withholding the irrigation at blooming stage to maturity stage and seed filling stage | 51–85 | [49] |
Crop | Stress Description | Trait/Organ Affected/Impact | Reference |
---|---|---|---|
Rice | Soils dried beyond–20 kPa | Yield loss~22.6 | [32] |
Wheat | Drought, water stress (~40% water deficit) | Yield loss~25 | [29] |
Maize | 5 days of drought stress at the V9 stage and 5 days after pollination stage by maintaining 14.0–15.0% SWC | Reduced kernel size, reduced expression of photosynthesis genes, and reduced yield | [50] |
Short-duration water deficits during the rapid vegetative growth period | 28–32% loss of final dry matter weight | [51] | |
Sorghum | Season-long drought stress | Decreased harvest index, seed numbers, and seed size | [52] |
Millets | Irrigation with mannitol (200, 400, and 600 mM) for 21 days at an interval of three days | Decreased germination, RWC; chlorophyll content increased root growth, proline, and MDA content | [53] |
Chickpea | Drought, water stress for 3 weeks (40% of FC) at vegetative and flowering | Decrease in relative chlorophyll content, RWC; accumulation of H2O2 | [54] |
Pigeon pea | 20 days at flowering and pod setting | Flower drop and decreased flower to pod conversion | [46] |
Black gram | 40% of field capacity | Reduced plant growth, branches, pod numbers, shoot and root dry weight, rate of photosynthesis and transpiration, stomatal conductance | [55] |
Soybean | Withholding irrigation at critical stages | Reduced shoot biomass and seed yield, fewer seed pods, and seeds | [56] |
Bean | Withholding irrigation after 25 days in field conditions | Reduced leaf area index, harvest index, pod partitioning index | [45] |
Crop | Temperature | Growth Stage | Effect | Reference |
---|---|---|---|---|
Rice | 40 °C | Emergence | Delay and decrease in the emergence | [92] |
Wheat | 45 °C | Reduced chlorophyll, photosynthesis, protein synthesis | [71,93,94,95,96] | |
30/25 °C, day/night >32/22 °C, day/night | Green leaf area and productive tillers/plant reduced Decreased photosynthesis, membrane damage, floret fertility, seed numbers, seed size | |||
Maize | 35/27 °C in day/night 14 days before reproductive to silking stage | Decreased cob weight, low sugar content | [97] | |
Sorghum | 40/30 °C, day/night; 38/28 °C | Lipid peroxidation of chloroplast and thylakoid membranes; decreased floret fertility, grain weight | [23,77,78,98,99,100,101,102] | |
Pearl millet | >36/22 °C day/night | Emergence to maturity Booting to maturity | Decreased days to flowering, seed yield, and seed size; decreased pollen germination, numbers of seeds per panicle, and seed yield per panicle | [79] |
Finger millet | >36/22 °C day/night | 10 d after emergence through maturity | Decreased plant height, tillers, seeds per fingers, and grain yield | [73] |
Chickpea | Gradual 29/16 C to 40/25 °C | Flowering | Lower pollen production, % pollen germination, pod set, and seed numbers | [103] |
Black gram | 40 °C | Flowering and pod setting | Reduced yield | [82] |
Green gram | 40 °C 60 days | Reproductive | Reduced yield | [83] |
Common bean | 32/25 °C | V4 until physiological maturity | Increased photosynthesis, conductance, and leaf area | [104] |
>28/18 °C | Emergence to maturity | Decreased seed-set, seed number per plant, seed number per pod, seed yield, and total dry weight per plant | [84] | |
Soybean | 38/28°C (day/night), 14 days | Lower photosynthesis, stomatal conductance (gs), damaged membranes (chloroplast, thylakoids, mitochondria), and increased leaf senescence | [85,105,106] | |
Peanut | >32/22 °C | Flowering | Decreased fruit-set, pollen production, pollen viability, and pod numbers per plant | [86,87,88] |
>32/22 °C | Emergence through maturity | Decreased pollen viability, seed-set, seed number pod, seed size, and harvest index | [89] |
Crop | Salinity Level | Effect | Reference |
---|---|---|---|
Rice | EC 10 dS/m | Decreased root and shoot length | [135] |
Wheat | 100 to 175 mM NaCl | Reduction in spikelets per spike, delayed spike emergence and reduced fertility | [136] |
Maize | 1, 50, 100 mM NaCl | Stunted growth, reduced chlorophyll fluorescence, and enhanced levels of reactive oxygen species and 1,4-benzoxazin-3-one aglycones (aBX) | [137] |
Millet | 100, 200, and 300 mM NaCl | Depression in germination percentage, shoot and root growth rate, leaf relative water content, chlorophyll content, leaf K+ concentration | [138] |
Chickpea | 0, 4, 6, and 8 dS m−1 | Reduced dry matter accumulation in root and shoot | [139] |
Pigeon pea | 0.5 to 4.3 dS m−1 | Height, biomass, SSL, and RGR linearly decreased | [140] |
Black gram | 150 and 225 mM of NaCl | Reduction of leaf, shoot, and root biomass | [141] |
Green gram | 50 mM and 75 mM NaCl | Reduction in plant height, total chlorophyll, carotenoid contents, plant length, leaf area, rate of photosynthesis, yield characteristics | [142] |
Common bean | 100 mM NaCl | More lipid peroxidation, electrolyte leakage, abscisic acid (ABA); lower seed germination percentage, seedling growth, cell membrane stability index, and relative water content | [143] |
Stress | Growth Stage | Crop | Details of Abiotic Stress | Decrease in Yield (%) | Reference |
---|---|---|---|---|---|
High temperature | After heading | Wheat | >31 °C | 16–25 | [157] |
Delayed sowing in the field Minimum temp. 15–21 °C Maximum temp.−31–36 °C | 22 | [158] | |||
Heading | Rice | Diurnal temp 24–32 °C (control) 26–39 °C (high temp.) | 21–55 | [159] | |
Tasseling stage | Maize | 28/20 °C (control) 38/30 °C (high temp.) for 15 days | 7–17 | [36] | |
Emergence to maturity | Sorghum | 32/22 °C to 36/26 °C 32/22 °C to 40/30 °C | 10 99 | [160] | |
Booting to start of seed filling | Pearl millet | 28/18 °C to 36/26 °C 28/18 °C to 40/30 °C | 50 98 | [79] | |
Emergence to Maturity | Finger Millet | 32/22 °C to 36/22 °C 32/22 °C to 38/28 °C | 75 84 | [73] | |
Emergency to Maturity | Chickpea | <32 °C/20 °C (control, normal sown) >32 °C/20 °C (high temp, late sown) | 19−56 | [81] | |
Reproductive stage | Lentil | 38/23 °C | 85–88 | [161] | |
Reproductive stage | Mung bean | >40/25 °C | 35–40 | [83] | |
Emergence to Maturity | Kidney Bean | >28/18 °C to 40/30 °C | 6.5% per 1 °C | [84] | |
Flowering | Peanut | 36−44/26−34 °C | 14−90 | [89] | |
Salinity | Vegetative | Mung bean | 50 mM and 75 mM NaCl | 41−75 | [142] |
Throughout crop duration | Wheat | 0−200 mM NaCl | 25−70 | [162] | |
Throughout crop duration | Faba bean | 0.7, 3.0, and 5.0 dS m−1 | 27−47 | [163] | |
Throughout crop duration | Chickpea | 0.7, 3.0, and 5.0 dS m | 40−56 | [163] | |
Rice | 3.8 to 6.4 dS m−1 | ~50 | [164] | ||
Seedling and reproductive | Rice | 4 dS/m2 | 28.8 | [165] | |
Waterlogging | Vegetative or reproductive | Wheat | Early or late waterlogging for 14 days | 14−29 | [166] |
Vegetative or reproductive | Barley | Early or late waterlogging for 14 days | 15−21 | [166] | |
Vegetative | Oats | 0−35 days | 79−83 | [167] | |
Vegetative/heading | Wheat | Flooding | 30.4−39.4 | [168] | |
Vegetative or reproductive | Field pea | Early or late waterlogging for 14 days | 94 | [166] | |
Seedling (V3), jointing (V6), and tasseling (VT) stages | Maize | Waterlogging (3, 6, and 9 days) and subsurface waterlogging (5, 10, and 15 days) | 61.5−80.5 | [169] |
Mechanism/Traits | Genes/Proteins/Enzymes and Other Molecules Involved | Target Crop | Abiotic Stress | Reference |
---|---|---|---|---|
Early flowering | Vernalization (Vrn), photoperiod (Ppd), and earliness per se (Eps) genes; VRN1 and Ppd-D1 | Wheat | Drought | [298] |
Mutant BW507 line (mutant allele Mat-c) | Barley | Drought | [299] | |
Osmoprotection and osmotic adjustment | Sugars (glucose, fructose, fructans, and trehalose) | Rice | Salinity | [300] |
Raffinose family oligosaccharides (RFO) | Rice | Cold and Drought | [301] | |
γ-aminobutyric acid (GABA) | Wheat | Salinity | [302] | |
Lignin production (cell wall integrity) | GmRD22 (regulates cell wall peroxidases and hence strengthens cell wall integrity under stress conditions) | Soybean and rice | Salt and osmotic stresses | [303] |
Scavenging of ROS: Antioxidant Regulation | ||||
Enzymatic antioxidants: Catalase and pyrroline-carboxylate synthetase (P5CS), and sustained activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) | Chickpea | Salinity | [292] | |
Non-enzymatic antioxidant compounds: Helicase proteins (e.g., DESD-box helicase and OsSUV3 dual helicase), Ascorbate, Glutathione | Rice Pea | Salinity | [304,305,306] | |
Flash flood tolerance | SUB1A-1 encoding AP2/ERF (ethylene response factors), family transcription factor | Rice | Flood | [307,308] |
Anaerobic germination | OsTPP7 encoding Trehalose-6-phosphate Phosphatase | Rice | Flood | [309] |
Internode elongation under submergence | SK1 (SNORKEL1), SK2 encoding, AP2/ERF family transcription factor | Rice | Flood | [294] |
Internode elongation under submergence | SD1 (OsGA20ox2) encoding, Gibberellin 20-oxidase | Rice | Flood | [310] |
Leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF1); formation of gas films necessary for gas exchange and underwater photosynthesis | Leaf Gas Film 1 (LGF1) | Rice | Flood | [311] |
Traits: Dormancy/quiescence during submergence; reduced elongation growth and carbohydrate consumption during submergence | SUB1 | Rice | Flood | [308] |
Underwater photosynthesis: Leaf gas films to facilitate gas exchange; supply of carbohydrates to roots for survival, regeneration, and growth | LGF1/OsHSD1 | Rice | Flood | [311,312] |
Chlorophyll retention under submergence: Blocking ethylene responsiveness; scavenging reactive oxygen species (ROS) to protect chlorophyll and other cellular membranes | SUB1 | Rice | Flood | [313] |
Chlorophyll retention under submergence: Scavenging reactive oxygen species (ROS) to protect chlorophyll and other cellular membranes | Several scavengers induced during submergence | Rice | Flood | [313,314] |
A barrier to radial oxygen loss (ROL): Minimize oxygen losses in the basal portion of the roots and maximize its delivery to the root apex; minimize uptake of toxins generated in anoxic soils | Rice | Flood | [315,316] | |
Ion Homeostasis: The excess salt is either transported to the vacuole or sequestered in older tissues which eventually are sacrificed, thereby protecting the plant from salinity stress | SOS1, SOS2, and SOS3 proteins involved in Salt Overly Sensitive (SOS) signaling pathway; SOS1-regulating Na+ efflux at the cellular level. It also facilitates long-distance transport of Na+ from root to shoot. SOS2 encodes a serine/threonine kinase, and is activated by salt stress elicited Ca+ signals. SOS3 is a myristoylated Ca+ binding protein | Wheat | Salinity | [317] |
HKT (histidine kinase transporter) located on the plasma membrane and intracellular/tonoplast-localized NHX- encoding K+ transporters | Rice | Salinity | [318,319] | |
Polyamines (PA)*: Protect cells from stress-induced damages, membrane integrity, regulation of gene expression for the synthesis of osmotically active solutes, reduction in ROS production, and controlling the accumulation of Na+ and Cl− ions in different organs. * PA is a small, low molecular weight, ubiquitous, polycationic aliphatic molecule that is widely distributed throughout the plant kingdom. | Diamine putrescine (PUT), triamine spermidine (SPD), and tetra-amine spermine (SPM) | Wheat, barley rice | Salinity | [320,321] |
Nitric Oxide: Triggers expression of many redox-regulated genes, preventing lipid oxidation, scavenging superoxide radicals, and formation of peroxynitrite that can be neutralized by other cellular processes; activation of antioxidant enzymes | Sodium nitroprusside (SNP), a NO donor | Maize | Salinity | [322] |
Hormone Regulation | ABA: The accumulation of ABA can mitigate the inhibitory effect of salinity on photosynthesis, growth, and translocation of assimilates; ABA is involved in the expression of several salt and water deficit-responsive genes including HVP1 and HVP10 genes, TIP 1 and GLP 1 genes, NCP1 and ZmPIF3 proteins | Rice Wheat Barley Maize | Salinity and drought | [205,323,324,325,326] |
Compounds that have hormonal properties such as salicylic acid (SA), jasmonates, and brassinosteroids (BR) | Rice Wheat Legumes | Salinity and drought | [327,328,329] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rane, J.; Singh, A.K.; Kumar, M.; Boraiah, K.M.; Meena, K.K.; Pradhan, A.; Prasad, P.V.V. The Adaptation and Tolerance of Major Cereals and Legumes to Important Abiotic Stresses. Int. J. Mol. Sci. 2021, 22, 12970. https://doi.org/10.3390/ijms222312970
Rane J, Singh AK, Kumar M, Boraiah KM, Meena KK, Pradhan A, Prasad PVV. The Adaptation and Tolerance of Major Cereals and Legumes to Important Abiotic Stresses. International Journal of Molecular Sciences. 2021; 22(23):12970. https://doi.org/10.3390/ijms222312970
Chicago/Turabian StyleRane, Jagadish, Ajay Kumar Singh, Mahesh Kumar, Karnar M. Boraiah, Kamlesh K. Meena, Aliza Pradhan, and P. V. Vara Prasad. 2021. "The Adaptation and Tolerance of Major Cereals and Legumes to Important Abiotic Stresses" International Journal of Molecular Sciences 22, no. 23: 12970. https://doi.org/10.3390/ijms222312970
APA StyleRane, J., Singh, A. K., Kumar, M., Boraiah, K. M., Meena, K. K., Pradhan, A., & Prasad, P. V. V. (2021). The Adaptation and Tolerance of Major Cereals and Legumes to Important Abiotic Stresses. International Journal of Molecular Sciences, 22(23), 12970. https://doi.org/10.3390/ijms222312970