Sex Bias in Differentiated Thyroid Cancer
Abstract
:1. Epidemiological Aspects
1.1. An Increase in Incidence of Thyroid Cancers
1.2. Is There a Diagnosis Bias for Microcarcinomas?
1.3. Genetic Forms of Thyroid Cancer
1.4. Factors Associated with Reproductive Life
2. What Are the Possible Explanations for the Female Predominance?
2.1. The Female Trend to Thyroid Overgrowth
2.2. Relation with Reproductive Life
2.3. Is the Thyroid Stimulation by Thyrotropin (TSH) Different in Women and Men?
2.4. Is the Thyroid, Highly Mutagenic Cellular Milieu, Impacted by the Sex Hormones?
2.5. Estrogen Receptors Are Present in the Thyroid
2.6. What Role Do the Estrogens Play in the Appearance, Growth, Evolution of Thyroid Cancers?
2.7. The Stem Cells or Cancer Stem-Like Cells Hypothesis
2.8. Interactions between Steroid Hormones and Oncogenic Pathways
2.9. Impact of Estrogens on the Thyrocyte Response to Stress
2.10. The Cancerous Thyrocyte Environment
3. Why a Worse Prognosis in Men?
4. Is the Response to Treatment also Gender Biased?
5. In Conclusion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tunbridge, W.M.G.; Evered, D.C.; Hall, R.; Appleton, D.; Brewis, M.; Clark, F.; Evans, J.G.; Young, E.; Bird, T.; Smith, P.A. THE SPECTRUM OF THYROID DISEASE IN A COMMUNITY: THE WHICKHAM SURVEY. Clin. Endocrinol. 1977, 7, 481–493. [Google Scholar] [CrossRef]
- Vanderpump, M.P.J.; Tunbrldge, W.M.G.; French, J.M.; Appleton, D.; Bates, D.; Clark, F.; Evans, J.G.; Hasan, D.M.; Rodgers, H.; Tunbridge, F.; et al. The incidence of thyroid disorders in the community: A twenty-year follow-up of the Whickham Survey. Clin. Endocrinol. 1995, 43, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Eugène, D.; Djemli, A.; Van Vliet, G. Sexual Dimorphism of Thyroid Function in Newborns with Congenital Hypothyroidism. J. Clin. Endocrinol. Metab. 2005, 90, 2696–2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, S.; Midorikawa, S.; Matsuzuka, T.; Fukushima, T.; Ito, Y.; Shimura, H.; Takahashi, H.; Ohira, T.; Ohtsuru, A.; Abe, M.; et al. Prevalence and Characterization of Thyroid Hemiagenesis in Japan: The Fukushima Health Management Survey. Thyroid 2017, 27, 1011–1016. [Google Scholar] [CrossRef] [Green Version]
- Dean, D.S.; Gharib, H. Epidemiology of thyroid nodules. Best Pract. Res. Clin. Endocrinol. Metab. 2008, 22, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Billi, A.C.; Kahlenberg, J.M.; Gudjonsson, J.E. Sex bias in autoimmunity. Curr. Opin. Rheumatol. 2019, 31, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Youness, A.; Miquel, C.-H.; Guéry, J.-C. Escape from X Chromosome Inactivation and the Female Predominance in Autoimmune Diseases. Int. J. Mol. Sci. 2021, 22, 1114. [Google Scholar] [CrossRef]
- Ahn, H.S.; Kim, H.J.; Kim, K.H.; Lee, Y.S.; Han, S.J.; Kim, Y.; Ko, M.J.; Brito, J.P. Thyroid Cancer Screening in South Korea Increases Detection of Papillary Cancers with No Impact on Other Subtypes or Thyroid Cancer Mortality. Thyroid 2016, 26, 1535–1540. [Google Scholar] [CrossRef]
- Colonna, M.; Borson-Chazot, F.; Delafosse, P.; Schvartz, C.; Guizard, A.-V. Progression of incidence and estimate of net survival from papillary thyroid cancers diagnosed between 2008 and 2016 in France. Ann. d’Endocrinol. 2020, 81, 530–538. [Google Scholar] [CrossRef]
- Leenhardt, L.; Grosclaude, P.; Chérié-Challine, L. Increased Incidence of Thyroid Carcinoma in France: A True Epidemic or Thyroid Nodule Management Effects? Report from the French Thyroid Cancer Committee. Thyroid 2004, 14, 1056–1060. [Google Scholar] [CrossRef]
- Sassolas, G.; Hafdi-Nejjari, Z.; Remontet, L.; Bossard, N.; Belot, A.; Berger-Dutrieux, N.; Decaussin-Petrucci, M.; Bournaud, C.; Peix, J.L.; Orgiazzi, J.; et al. Thyroid cancer: Is the incidence rise abating? Eur. J. Endocrinol. 2009, 160, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colonna, M.; Guizard, A.; Schvartz, C.; Velten, M.; Raverdy, N.; Molinie, F.; Delafosse, P.; Franc, B.; Grosclaude, P. A time trend analysis of papillary and follicular cancers as a function of tumour size: A study of data from six cancer registries in France (1983–2000). Eur. J. Cancer 2007, 43, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Filho, A.; Lortet-Tieulent, J.; Bray, F.; Cao, B.; Franceschi, S.; Vaccarella, S.; Maso, L.D. Thyroid cancer incidence trends by histology in 25 countries: A population-based study. Lancet Diabetes Endocrinol. 2021, 9, 225–234. [Google Scholar] [CrossRef]
- Morris, L.G.; Tuttle, R.M.; Davies, L. Changing Trends in the Incidence of Thyroid Cancer in the United States. JAMA Otolaryngol. Head Neck Surg. 2016, 142, 709–711. [Google Scholar] [CrossRef] [PubMed]
- Sassolas, G.; Hafdi-Nejjari, Z.; Schott, A.M.; Bournaud, C.; Peix, J.L.; Orgiazzi, J.; Dutrieux-Berger, N.; Borson-Chazot, F. Geographical correlation between incidence of benign disease and that of cancer of the thyroid among the population of the Rhône-Alpes région of France. Eur. J. Endocrinol. 2010, 162, 127–135. [Google Scholar] [CrossRef] [Green Version]
- de Matos, P.S.; Ferreira, A.P.; Ward, L.S. Prevalence of papillary microcarcinoma of the thyroid in Brazilian autopsy and surgical series. Endocr. Pathol. 2006, 17, 165–173. [Google Scholar] [CrossRef]
- Martinez-Tello, F.J.; Martinez-Cabruja, R.; Fernandez-Martin, J.; Lasso-Oria, C.; Ballestin-Carcavilla, C. Occult carcinoma of the thyroid. A systematic autopsy study from Spain of two series performed with two different methods. Cancer 1993, 71, 4022–4029. [Google Scholar] [CrossRef]
- Kovács, G.L.; Gonda, G.; Vadász, G.; Ludmány, A.; Uhrin, K.; Görömbey, Z.; Kovács, L.; Hubina, E.; Bodó, M.; Góth, M.I.; et al. Epidemiology of Thyroid Microcarcinoma Found in Autopsy Series Conducted in Areas of Different Iodine Intake. Thyroid 2005, 15, 152–157. [Google Scholar] [CrossRef]
- Neuhold, N.; Kaiser, H.; Kaserer, K. Latent carcinoma of the thyroid in Austria: A systematic autopsy study. Endocr. Pathol. 2001, 12, 23–32. [Google Scholar] [CrossRef]
- Harach, H.R.; Franssila, K.O.; Wasenius, V.-M. Occult papillary carcinoma of the thyroid. A “normal” finding in finland. A systematic autopsy study. Cancer 1985, 56, 531–538. [Google Scholar] [CrossRef]
- Fink, A.; Tomlinson, G.; Freeman, J.L.; Rosen, I.B.; Asa, S. Occult micropapillary carcinoma associated with benign follicular thyroid disease and unrelated thyroid neoplasms. Mod. Pathol. 1996, 9, 816–820. [Google Scholar] [PubMed]
- Hafdi-Nejjari, Z.; Abbas-Chorfa, F.; Decaussin-Petrucci, M.; Berger, N.; Couray-Targe, S.; Schott, A.-M.; Sturm, N.; Dumollard, J.M.; Roux, J.J.; Beschet, I.; et al. Impact of thyroid surgery volume and pathologic detection on risk of thyroid cancer: A geographical analysis in the Rhône-Alpes region of France. Clin. Endocrinol. 2018, 89, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Mathonnet, M.; Cuerq, A.; Tresallet, C.; Thalabard, J.-C.; Fery-Lemonnier, E.; Russ, G.; Leenhardt, L.; Bigorgne, C.; Tuppin, P.; Millat, B.; et al. What is the care pathway of patients who undergo thyroid surgery in France and its potential pitfalls? A national cohort. BMJ Open 2017, 7, e013589. [Google Scholar] [CrossRef] [Green Version]
- Van den Bruel, A.; Francart, J.; Dubois, C.; Adam, M.; Vlayen, J.; De Schutter, H.; Stordeur, S.; Decallonne, B. Regional variation in thyroid cancer incidence in Belgium is associated with variation in thyroid imaging and thyroid disease management. J. Clin. Endocrinol. Metab. 2013, 98, 4063–4071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, J.H.; Hyun, M.K.; Lee, J.Y.; Shim, J.I.; Kim, T.H.; Choi, H.S.; Ahn, H.Y.; Kim, K.W.; Park, D.J.; Park, Y.J.; et al. Prevalence of thyroid nodules and their associated clinical parameters: A large-scale, multicenter-based health checkup study. Korean J. Intern. Med. 2018, 33, 753–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Grady, T.J.; Gates, M.A.; Boscoe, F.P. Thyroid cancer incidence attributable to overdiagnosis in the United States 1981–2011. Int. J. Cancer 2015, 137, 2664–2673. [Google Scholar] [CrossRef]
- Germano, A.; Schmitt, W.; Almeida, P.; Mateus-Marques, R.; Leite, V. Ultrasound requested by general practitioners or for symptoms unrelated to the thyroid gland may explain higher prevalence of thyroid nodules in females. Clin. Imaging 2018, 50, 289–293. [Google Scholar] [CrossRef]
- Bertakis, K.D.; Azari, R.; Helms, L.J.; Callahan, E.J.; Robbins, J. Gender differences in the utilization of health care services. J. Fam. Pr. 2000, 49, 147. [Google Scholar]
- Vaccarella, S.; Dal Maso, L.; Laversanne, M.; Bray, F.; Plummer, M.; Franceschi, S. The Impact of Diagnostic Changes on the Rise in Thyroid Cancer Incidence: A Population-Based Study in Selected High-Resource Countries. Thyroid 2015, 25, 1127–1136. [Google Scholar] [CrossRef]
- Machens, A.; Dralle, H. Age disparities in referrals to specialist surgical care for papillary thyroid cancer. Eur. J. Surg. Oncol. 2009, 35, 1312–1317. [Google Scholar] [CrossRef] [Green Version]
- Vaccarella, S.; Franceschi, S.; Bray, F.; Wild, C.P.; Plummer, M.; Maso, L.D. Worldwide Thyroid-Cancer Epidemic? The Increasing Impact of Overdiagnosis. N. Engl. J. Med. 2016, 375, 614–617. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.; Ahn, H.S.; Kim, S.J.; Park, S.H.; Seo, M.; Chong, S. Evaluation of Diagnostic Performance of Screening Thyroid Ultrasonography and Imaging Findings of Screening-Detected Thyroid Cancer. Cancer Res. Treat. 2018, 50, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farahati, J.; Bucsky, P.; Parlowsky, T.; Reiners, C. Characteristics of differentiated thyroid carcinoma in children and adolescents with respect to age, gender, and histology. Cancer 1997, 80, 2156–2162. [Google Scholar] [CrossRef] [Green Version]
- Vaccarella, S.; Lortet-Tieulent, J.; Colombet, M.; Davies, L.; Stiller, C.; Schüz, J.; Togawa, K.; Bray, F.; Franceschi, S.; Maso, L.D.; et al. Global patterns and trends in incidence and mortality of thyroid cancer in children and adolescents: A population-based study. Lancet Diabetes Endocrinol. 2021, 9, 144–152. [Google Scholar] [CrossRef]
- Hayashi, Y.; Lagarde, F.; Tsuda, N.; Funamoto, S.; Preston, D.L.; Koyama, K.; Mabuchi, K.; Ron, E.; Kodama, K.; Tokuoka, S. Papillary microcarcinoma of the thyroid among atomic bomb survivors: Tumor characteristics and radiation risk. Cancer 2010, 116, 1646–1655. [Google Scholar] [CrossRef] [Green Version]
- Shirahige, Y.; Ito, M.; Ashizawa, K.; Motomura, T.; Yokoyama, N.; Namba, H.; Fukata, S.; Yokozawa, T.; Ishikawa, N.; Mimura, T.; et al. Childhood Thyroid Cancer: Comparison of Japan and Belarus. Endocr. J. 1998, 45, 203–209. [Google Scholar] [CrossRef]
- Nagataki, S.; Nyström, E. Epidemiology and Primary Prevention of Thyroid Cancer. Thyroid 2002, 12, 889–896. [Google Scholar] [CrossRef]
- Cameselle-Teijeiro, J.M.; Mete, O.; Asa, S.L.; LiVolsi, V. Inherited Follicular Epithelial-Derived Thyroid Carcinomas: From Molecular Biology to Histological Correlates. Endocr. Pathol. 2021, 32, 77–101. [Google Scholar] [CrossRef]
- Ngeow, J.; Mester, J.; Rybicki, L.A.; Ni, Y.; Milas, M.; Eng, C. Incidence and Clinical Characteristics of Thyroid Cancer in Prospective Series of Individuals with Cowden and Cowden-Like Syndrome Characterized by Germline PTEN, SDH, or KLLN Alterations. J. Clin. Endocrinol. Metab. 2011, 96, E2063–E2071. [Google Scholar] [CrossRef]
- Khan, N.E.; Bauer, A.J.; Schultz, K.A.P.; Doros, L.; DeCastro, R.M.; Ling, A.; Lodish, M.B.; Harney, L.A.; Kase, R.G.; Carr, A.G.; et al. Quantification of Thyroid Cancer and Multinodular Goiter Risk in the DICER1 Syndrome: A Family-Based Cohort Study. J. Clin. Endocrinol. Metab. 2017, 102, 1614–1622. [Google Scholar] [CrossRef]
- Mirshahi, U.L.; Kim, J.; Best, A.F.; Chen, Z.E.; Hu, Y.; Haley, J.S.; Golden, A.; Stahl, R.; Manickam, K.; Carr, A.G.; et al. A Genome-First Approach to Characterize DICER1 Pathogenic Variant Prevalence, Penetrance, and Phenotype. JAMA Netw. Open 2021, 4, e210112. [Google Scholar] [CrossRef]
- Hemminki, K.; Eng, C.; Chen, B. Familial Risks for Nonmedullary Thyroid Cancer. J. Clin. Endocrinol. Metab. 2005, 90, 5747–5753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavarelli, M.; Russo, M.; Terranova, R.; Scollo, C.; Spadaro, A.; Sapuppo, G.; Malandrino, P.; Masucci, R.; Squatrito, S.; Pellegriti, G. Familial Non-Medullary Thyroid Cancer Represents an Independent Risk Factor for Increased Cancer Aggressiveness: A Retrospective Analysis of 74 Families. Front. Endocrinol. 2015, 6, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brindel, P.; Doyon, F.; Rachédi, F.; Boissin, J.-L.; Sebbag, J.; Shan, L.; Chungue, V.; Sun, L.Y.K.; Bost-Bezeaud, F.; Petitdidier, P.; et al. Menstrual and Reproductive Factors in the Risk of Differentiated Thyroid Carcinoma in Native Women in French Polynesia: A Population-based Case-Control Study. Am. J. Epidemiol. 2007, 167, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Memon, A.; Darif, M.; Al-Saleh, K.; Suresh, A. Epidemiology of reproductive and hormonal factors in thyroid cancer: Evidence from a case-control study in the Middle East. Int. J. Cancer 2001, 97, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Negri, E.; Ron, E.; Franceschi, S.; Dal Maso, L.; Mark, S.D.; Preston-Martin, S.; McTiernan, A.; Kolonel, L.; Kleinerman, R.; Land, C.; et al. A pooled analysis of case-control studies of thyroid cancer I. Methods. Cancer Causes Control 1999, 10, 131–142. [Google Scholar] [CrossRef]
- Truong, T.; Orsi, L.; Dubourdieu, D.; Rougier, Y.; Hémon, D.; Guénel, P. Role of Goiter and of Menstrual and Reproductive Factors in Thyroid Cancer: A Population-based Case-Control Study in New Caledonia (South Pacific), a Very High Incidence Area. Am. J. Epidemiol. 2005, 161, 1056–1065. [Google Scholar] [CrossRef]
- Negri, E.; Dal Maso, L.; Ron, E.; La Vecchia, C.; Mark, S.D.; Preston-Martin, S.; McTiernan, A.; Kolonel, L.; Yoshimoto, Y.; Jin, F.; et al. A pooled analysis of case-control studies of thyroid cancer II. Menstrual and reproductive factors. Cancer Causes Control 1999, 10, 143–155. [Google Scholar] [CrossRef]
- Peterson, E.; De, P.; Nuttall, R. BMI, Diet and Female Reproductive Factors as Risks for Thyroid Cancer: A Systematic Review. PLoS ONE 2012, 7, e29177. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Rinaldi, S.; Biessy, C.; Tjonneland, A.; Halkjaer, J.; Fournier, A.; Boutron-Ruault, M.-C.; Mesrine, S.; Tikk, K.; Fortner, R.; et al. Reproductive and menstrual factors and risk of differentiated thyroid carcinoma: The EPIC study. Int. J. Cancer 2014, 136, 1218–1227. [Google Scholar] [CrossRef]
- Xhaard, C.; Rubino, C.; Cléro, E.; Maillard, S.; Ren, Y.; Borson-Chazot, F.; Sassolas, G.; Schvartz, C.; Colonna, M.; Lacour, B.; et al. Menstrual and Reproductive Factors in the Risk of Differentiated Thyroid Carcinoma in Young Women in France: A Population-Based Case-Control Study. Am. J. Epidemiol. 2014, 180, 1007–1017. [Google Scholar] [CrossRef]
- Glinoer, D. The regulation of thyroid function in pregnancy: Pathways of endocrine adaptation from physiology to pathology. Endocr. Rev. 1997, 18, 404–433. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, D.; Levy, S.; Tsvetov, G.; Weinstein, R.; Lifshitz, A.; Singer, J.; Shraga-Slutzky, I.; Grozinski-Glasberg, S.; Shimon, I.; Benbassat, C. Impact of Pregnancy on Outcome and Prognosis of Survivors of Papillary Thyroid Cancer. Thyroid 2010, 20, 1179–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moosa, M.; Mazzaferri, E.L. Outcome of differentiated thyroid cancer diagnosed in pregnant women. J. Clin. Endocrinol. Metab. 1997, 82, 2862–2866. [Google Scholar] [CrossRef] [PubMed]
- Vini, L.; Hyer, S.; Pratt, B.; Harmer, C. Management of differentiated thyroid cancer diagnosed during pregnancy. Eur. J. Endocrinol. 1999, 140, 404–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messuti, I.; Corvisieri, S.; Bardesono, F.; Rapa, I.; Giorcelli, J.; Pellerito, R.; Volante, M.; Orlandi, F. Impact of pregnancy on prognosis of differentiated thyroid cancer: Clinical and molecular features. Eur. J. Endocrinol. 2014, 170, 659–666. [Google Scholar] [CrossRef] [Green Version]
- Vannucchi, G.; Perrino, M.; Rossi, S.; Colombo, C.; Vicentini, L.; Dazzi, D.; Beck-Peccoz, P.; Fugazzola, L. Clinical and molecular features of differentiated thyroid cancer diagnosed during pregnancy. Eur. J. Endocrinol. 2010, 162, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Shindo, H.; Amino, N.; Ito, Y.; Kihara, M.; Kobayashi, K.; Miya, A.; Hirokawa, M.; Miyauchi, A. Papillary Thyroid Microcarcinoma Might Progress During Pregnancy. Thyroid 2014, 24, 840–844. [Google Scholar] [CrossRef]
- Ito, Y.; Miyauchi, A.; Kudo, T.; Ota, H.; Yoshioka, K.; Oda, H.; Sasai, H.; Nakayama, A.; Yabuta, T.; Masuoka, H.; et al. Effects of Pregnancy on Papillary Microcarcinomas of the Thyroid Re-Evaluated in the Entire Patient Series at Kuma Hospital. Thyroid 2016, 26, 156–160. [Google Scholar] [CrossRef]
- Mori, M.; Naito, M.; Watanabe, H.; Takeichi, N.; Dohi, K.; Ito, A. Effects of sex difference, gonadectomy, and estrogen on N-methyl-N-nitrosourea induced rat thyroid tumors. Cancer Res. 1990, 50, 7662–7667. [Google Scholar]
- Antico-Arciuch, V.G.; Dima, M.; Liao, X.-H.; Refetoff, S.; Di Cristofano, A. Cross-talk between PI3K and estrogen in the mouse thyroid predisposes to the development of follicular carcinomas with a higher incidence in females. Oncogene 2010, 29, 5678–5686. [Google Scholar] [CrossRef] [Green Version]
- Pringle, D.R.; Yin, Z.; Lee, A.A.; Manchanda, P.K.; Yu, L.; Parlow, A.F.; Jarjoura, D.; La Perle, K.M.D.; Kirschner, L.S. Thyroid-specific ablation of the Carney complex gene, PRKAR1A, results in hyperthyroidism and follicular thyroid cancer. Endocrine-Related Cancer 2012, 19, 435–446. [Google Scholar] [CrossRef] [Green Version]
- Yeager, N.; Klein-Szanto, A.; Kimura, S.; Di Cristofano, A. Pten Loss in the Mouse Thyroid Causes Goiter and Follicular Adenomas: Insights into Thyroid Function and Cowden Disease Pathogenesis. Cancer Res. 2007, 67, 959–966. [Google Scholar] [CrossRef] [Green Version]
- Benvenga, S.; Di Bari, F.; Granese, R.; Borrielli, I.; Giorgianni, G.; Grasso, L.; Le Donne, M.; Vita, R.; Antonelli, A. Circulating thyrotropin is upregulated by estradiol. J. Clin. Transl. Endocrinol. 2018, 11, 11–17. [Google Scholar] [CrossRef]
- Rasmussen, N.G.; Hornnes, P.J.; Hegedüs, L.; Feldt-Rasmussen, U. Serum thyroglobulin during the menstrual cycle, during pregnancy, and post partum. Eur. J. Endocrinol. 1989, 121, 168–173. [Google Scholar] [CrossRef]
- Arafah, B.M. Increased Need for Thyroxine in Women with Hypothyroidism during Estrogen Therapy. N. Engl. J. Med. 2001, 344, 1743–1749. [Google Scholar] [CrossRef]
- Kim, M.; Kim, T.Y.; Kim, S.H.; Lee, Y.; Park, S.-Y.; Kim, H.-D.; Kwon, H.; Choi, Y.M.; Jang, E.K.; Jeon, M.J.; et al. Reference interval for thyrotropin in a ultrasonography screened Korean population. Korean J. Intern. Med. 2015, 30, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Kratzsch, J.; Fiedler, G.M.; Leichtle, A.; Brügel, M.; Buchbinder, S.; Otto, L.; Sabri, O.; Matthes, G.; Thiery, J. New Reference Intervals for Thyrotropin and Thyroid Hormones Based on National Academy of Clinical Biochemistry Criteria and Regular Ultrasonography of the Thyroid. Clin. Chem. 2005, 51, 1480–1486. [Google Scholar] [CrossRef] [PubMed]
- Kratzsch, J.; Schubert, G.; Pulzer, F.; Pfaeffle, R.; Koerner, A.; Dietz, A.; Rauh, M.; Kiess, W.; Thiery, J. Reference intervals for TSH and thyroid hormones are mainly affected by age, body mass index and number of blood leucocytes, but hardly by gender and thyroid autoantibodies during the first decades of life. Clin. Biochem. 2008, 41, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Raverot, V.; Bonjour, M.; Du Payrat, J.A.; Perrin, P.; Roucher-Boulez, F.; Lasolle, H.; Subtil, F.; Borson-Chazot, F. Age- and Sex-Specific TSH Upper-Limit Reference Intervals in the General French Population: There Is a Need to Adjust Our Actual Practices. J. Clin. Med. 2020, 9, 792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLeod, D.S.; Watters, K.F.; Carpenter, A.D.; Ladenson, P.W.; Cooper, D.S.; Ding, E.L. Thyrotropin and Thyroid Cancer Diagnosis: A Systematic Review and Dose-Response Meta-Analysis. J. Clin. Endocrinol. Metab. 2012, 97, 2682–2692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, S.; Kar, S.; Vithayathil, M.; Carter, P.; Mason, A.; Burgess, S.; Larsson, S.C. Causal associations of thyroid function and dysfunction with overall, breast and thyroid cancer: A two-sample Mendelian randomization study. Int. J. Cancer 2020, 147, 1895–1903. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Brumpton, B.; Kabil, O.; Gudmundsson, J.; Thorleifsson, G.; Weinstock, J.; Zawistowski, M.; Nielsen, J.B.; Chaker, L.; Medici, M.; et al. GWAS of thyroid stimulating hormone highlights pleiotropic effects and inverse association with thyroid cancer. Nat. Commun. 2020, 11, 3981. [Google Scholar] [CrossRef] [PubMed]
- Massart, C.; Hoste, C.; Virion, A.; Ruf, J.; Dumont, J.; Van Sande, J. Cell biology of H2O2 generation in the thyroid: Investigation of the control of dual oxidases (DUOX) activity in intact ex vivo thyroid tissue and cell lines. Mol. Cell. Endocrinol. 2011, 343, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Driessens, N.; Costa, M.; De Deken, X.; Detours, V.; Corvilain, B.; Maenhaut, C.; Miot, F.; Van Sande, J.; Many, M.-C.; et al. Roles of Hydrogen Peroxide in Thyroid Physiology and Disease. J. Clin. Endocrinol. Metab. 2007, 92, 3764–3773. [Google Scholar] [CrossRef]
- Carvalho, D.P.; Dupuy, C. Thyroid hormone biosynthesis and release. Mol. Cell. Endocrinol. 2017, 458, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Senou, M.; Costa, M.J.; Massart, C.; Thimmesch, M.; Khalifa, C.; Poncin, S.; Boucquey, M.; Gérard, A.-C.; Audinot, J.-N.; Dessy, C.; et al. Role of caveolin-1 in thyroid phenotype, cell homeostasis, and hormone synthesis: In vivo study of caveolin-1 knockout mice. Am. J. Physiol. Metab. 2009, 297, E438–E451. [Google Scholar] [CrossRef] [Green Version]
- Weyemi, U.; Caillou, B.; Talbot, M.; Ameziane-El-Hassani, R.; Lacroix, L.; Lagent-Chevallier, O.; Al Ghuzlan, A.; Roos, D.; Bidart, J.-M.; Virion, A.; et al. Intracellular expression of reactive oxygen species-generating NADPH oxidase NOX4 in normal and cancer thyroid tissues. Endocrine-Related Cancer 2010, 17, 27–37. [Google Scholar] [CrossRef]
- Ameziane-El-Hassani, R.; Schlumberger, M.; Dupuy, C. NADPH oxidases: New actors in thyroid cancer? Nat. Rev. Endocrinol. 2016, 12, 485–494. [Google Scholar] [CrossRef]
- Driessens, N.; Versteyhe, S.; Ghaddhab, C.; Burniat, A.; De Deken, X.; Van Sande, J.; Dumont, J.-E.; Miot, F.; Corvilain, B. Hydrogen peroxide induces DNA single- and double-strand breaks in thyroid cells and is therefore a potential mutagen for this organ. Endocrine-Related Cancer 2009, 16, 845–856. [Google Scholar] [CrossRef] [Green Version]
- Maier, J.; Van Steeg, H.; Van Oostrom, C.; Karger, S.; Paschke, R.; Krohn, K. Deoxyribonucleic Acid Damage and Spontaneous Mutagenesis in the Thyroid Gland of Rats and Mice. Endocrinology 2006, 147, 3391–3397. [Google Scholar] [CrossRef]
- de Araujo, L.F.B.; Grozovsky, R.; dos Santos, P.M.J.; de Carvalho, J.J.; Vaisman, M.; Carvalho, D.P. Expressions of vascular endothelial growth factor and nitric oxide synthase III in the thyroid gland of ovariectomized rats are upregulated by estrogen and selective estrogen receptor modulators. Thyroid 2010, 20, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Stepniak, J.; Lewinski, A.; Karbownik-Lewinska, M. Sexual Dimorphism of NADPH Oxidase/H(2)O(2) System in Rat Thyroid Cells; Effect of Exogenous 17beta-Estradiol. Int. J. Mol. Sci. 2018, 19, 4063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faria, C.C.; Peixoto, M.S.; Carvalho, D.; Fortunato, R.S. The Emerging Role of Estrogens in Thyroid Redox Homeostasis and Carcinogenesis. Oxidative Med. Cell. Longev. 2019, 2019, 2514312. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, R.S.; Ferreira, A.C.; Hecht, F.; Dupuy, C.; Carvalho, D.P. Sexual dimorphism and thyroid dysfunction: A matter of oxidative stress? J. Endocrinol. 2014, 221, R31–R40. [Google Scholar] [CrossRef] [PubMed]
- Ghaddhab, C.; Kyrilli, A.; Driessens, N.; Eeckhaute, E.V.D.; Hancisse, O.; De Deken, X.; Dumont, J.-E.; Detours, V.; Miot, F.; Corvilain, B. Factors contributing to the resistance of the thyrocyte to hydrogen peroxide. Mol. Cell. Endocrinol. 2018, 481, 62–70. [Google Scholar] [CrossRef]
- Versteyhe, S.; Driessens, N.; Ghaddhab, C.; Tarabichi, M.; Hoste, C.; Dumont, J.-E.; Miot, F.; Corvilain, B.; Detours, V. Comparative Analysis of the Thyrocytes and T Cells: Responses to H2O2 and Radiation Reveals an H2O2-Induced Antioxidant Transcriptional Program in Thyrocytes. J. Clin. Endocrinol. Metab. 2013, 98, E1645–E1654. [Google Scholar] [CrossRef]
- Metere, A.; Frezzotti, F.; Graves, C.E.; Vergine, M.; De Luca, A.; Pietraforte, D.; Giacomelli, L. A possible role for selenoprotein glutathione peroxidase (GPx1) and thioredoxin reductases (TrxR1) in thyroid cancer: Our experience in thyroid surgery. Cancer Cell Int. 2018, 18, 7. [Google Scholar] [CrossRef]
- Yane, K.; Kitahori, Y.; Konishi, N.; Okaichi, K.; Ohnishi, T.; Miyahara, H.; Matsunaga, T.; Lin, J.-C.; Hiasa, Y. Expression of the estrogen receptor in human thyroid neoplasms. Cancer Lett. 1994, 84, 59–66. [Google Scholar] [CrossRef]
- Clark, O.H.; Gerend, P.L.; Davis, M.; Goretzki, P.E.; Hoffman, P.G. Estrogen and thyroid-stimulating hormone (TSH) receptors in neoplastic and nonneoplastic human thyroid tissue. J. Surg. Res. 1985, 38, 89–96. [Google Scholar] [CrossRef]
- Inoue, H.; Oshimo, K.; Miki, H.; Kawano, M.; Komaki, K.; Monden, Y.; Morimoto, T.; Tsuyuguchi, M. Immunohistochemical study of estrogen receptor and estradiol on papillary thyroid carcinoma in young patients. J. Surg. Oncol. 1993, 53, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Inoue, H.; Oshimo, K.; Miki, H.; Kawano, M.; Monden, Y. Immunohistochemical study of estrogen receptors and the responsiveness to estrogen in papillary thyroid carcinoma. Cancer 1993, 72, 1364–1368. [Google Scholar] [CrossRef]
- Huang, Y.; Dong, W.; Li, J.; Zhang, H.; Shan, Z.; Teng, W. Differential expression patterns and clinical significance of estrogen receptorr-alpha and beta in papillary thyroid carcinoma. BMC Cancer 2014, 14, 383. [Google Scholar] [CrossRef] [Green Version]
- Kawabata, W.; Suzuki, T.; Moriya, T.; Fujimori, K.; Naganuma, H.; Inoue, S.; Kinouchi, Y.; Kameyama, K.; Takami, H.; Shimosegawa, T.; et al. Estrogen receptors (alpha and beta) and 17beta-hydroxysteroid dehydrogenase type 1 and 2 in thyroid disorders: Possible in situ estrogen synthesis and actions. Mod. Pathol. 2003, 16, 437–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Vito, M.; De Santis, E.; Perrone, G.A.; Mari, E.; Giordano, M.C.; De Antoni, E.; Coppola, L.; Fadda, G.; Tafani, M.; Carpi, A.; et al. Overexpression of estrogen receptor-alpha in human papillary thyroid carcinomas studied by laser- capture microdissection and molecular biology. Cancer Sci. 2011, 102, 1921–1927. [Google Scholar] [CrossRef] [PubMed]
- Rajoria, S.; Suriano, R.; Shanmugam, A.; Wilson, Y.L.; Schantz, S.P.; Geliebter, J.; Tiwari, R.K. Metastatic Phenotype Is Regulated by Estrogen in Thyroid Cells. Thyroid 2010, 20, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Cameselle-Teijeiro, J.M.; Peteiro-Gonzalez, D.; Caneiro-Gomez, J.; Sanchez-Ares, M.; Abdulkader, I.; Eloy, C.; Melo, M.; Amendoeira, I.; Soares, P.; Sobrinho-Simoes, M. Cribriform-morular variant of thyroid carcinoma: A neoplasm with distinctive phenotype associated with the activation of the WNT/beta-catenin pathway. Mod. Pathol. 2018, 31, 1168–1179. [Google Scholar] [CrossRef]
- Suteau, V.; Seegers, V.; Munier, M.; Ben Boubaker, R.; Reyes, C.; Gentien, D.; Wery, M.; Croué, A.; Illouz, F.; Hamy, A.; et al. G Protein–coupled Receptors in Radioiodine-refractory Thyroid Cancer in the Era of Precision Medicine. J. Clin. Endocrinol. Metab. 2021, 106, 2221–2232. [Google Scholar] [CrossRef]
- Dalla Valle, L.; Ramina, A.; Vianello, S.; Fassina, A.; Belvedere, P.; Colombo, L. Potential for estrogen synthesis and action in human normal and neoplastic thyroid tissues. J. Clin. Endocrinol. Metab. 1998, 83, 3702–3709. [Google Scholar] [CrossRef]
- Tripathi, K.; Mani, C.; Somasagara, R.R.; Clark, D.W.; Ananthapur, V.; Vinaya, K.; Palle, K. Detection and evaluation of estrogen DNA-adducts and their carcinogenic effects in cultured human cells using biotinylated estradiol. Mol. Carcinog. 2016, 56, 1010–1020. [Google Scholar] [CrossRef]
- Zahid, M.; Goldner, W.; Beseler, C.L.; Rogan, E.G.; Cavalieri, E.L. Unbalanced estrogen metabolism in thyroid cancer. Int. J. Cancer 2013, 133, 2642–2649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoelting, T.; Siperstein, A.; Duh, Q.Y.; Clark, O.H. Tamoxifen inhibits growth, migration, and invasion of human follicular and papillary thyroid cancer cells in vitro and in vivo. J. Clin. Endocrinol. Metab. 1995, 80, 308–313. [Google Scholar] [CrossRef]
- Kumar, A.; Klinge, C.M.; Goldstein, R.E. Estradiol-induced proliferation of papillary and follicular thyroid cancer cells is mediated by estrogen receptors alpha and beta. Int. J. Oncol. 2010, 36, 1067–1080. [Google Scholar] [PubMed] [Green Version]
- Vivacqua, A.; Bonofiglio, D.; Albanito, L.; Madeo, A.; Rago, V.; Carpino, A.; Musti, A.M.; Picard, D.; Andò, S.; Maggiolini, M. 17β-Estradiol, Genistein, and 4-Hydroxytamoxifen Induce the Proliferation of Thyroid Cancer Cells through the G Protein-Coupled Receptor GPR30. Mol. Pharmacol. 2006, 70, 1414–1423. [Google Scholar] [CrossRef]
- Manole, D.; Schildknecht, B.; Gosnell, B.; Adams, E.; Derwahl, M. Estrogen Promotes Growth of Human Thyroid Tumor Cells by Different Molecular Mechanisms1. J. Clin. Endocrinol. Metab. 2001, 86, 1072–1077. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.; Chen, G.G.; Vlantis, A.C.; Van Hasselt, C.A. Oestrogen mediates the growth of human thyroid carcinoma cells via an oestrogen receptor–ERK pathway. Cell Prolif. 2007, 40, 921–935. [Google Scholar] [CrossRef]
- Huang, C.; Cai, Z.; Huang, M.; Mao, C.; Zhang, Q.; Lin, Y.; Zhang, X.; Tang, B.; Chen, Y.; Wang, X.; et al. miR-219–5p Modulates Cell Growth of Papillary Thyroid Carcinoma by Targeting Estrogen Receptor α. J. Clin. Endocrinol. Metab. 2015, 100, E204–E213. [Google Scholar] [CrossRef]
- Chen, G.; Vlantis, A.; Zeng, Q.; van Hasselt, C. Regulation of Cell Growth by Estrogen Signaling and Potential Targets in Thyroid Cancer. Curr. Cancer Drug Targets 2008, 8, 367–377. [Google Scholar] [CrossRef]
- Nagayama, Y.; Shimamura, M.; Mitsutake, N. Cancer Stem Cells in the Thyroid. Front. Endocrinol. 2016, 7, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grassi, E.; Ghiandai, V.; Persani, L. Thyroid Cancer Stem-Like Cells: From Microenvironmental Niches to Therapeutic Strategies. J. Clin. Med. 2021, 10, 1455. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Chen, G.; Peng, W.; Renko, K.; Derwahl, M. Oestrogen action on thyroid progenitor cells: Relevant for the pathogenesis of thyroid nodules? J. Endocrinol. 2013, 218, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Tan, Y.; Li, Z.; Li, W.; Yu, L.; Chen, W.; Liu, Y.; Liu, L.; Guo, L.; Huang, W.; et al. Organoid Cultures Derived From Patients With Papillary Thyroid Cancer. J. Clin. Endocrinol. Metab. 2021, 106, 1410–1426. [Google Scholar] [CrossRef] [PubMed]
- Zane, M.; Parello, C.; Pennelli, G.; Townsend, D.M.; Merigliano, S.; Boscaro, M.; Toniato, A.; Baggio, G.; Pelizzo, M.R.; Rubello, D.; et al. Estrogen and thyroid cancer is a stem affair: A preliminary study. Biomed. Pharmacother. 2016, 85, 399–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouzmenko, A.P.; Takeyama, K.; Ito, S.; Furutani, T.; Sawatsubashi, S.; Maki, A.; Suzuki, E.; Kawasaki, Y.; Akiyama, T.; Tabata, T.; et al. Wnt/beta-catenin and estrogen signaling converge in vivo. J. Biol. Chem. 2004, 279, 40255–40258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, J.-Y.; Sagartz, J.; Capen, C.C.; Mazzaferri, E.L.; Jhiang, S.M. Early cellular abnormalities induced by RET/PTC1 oncogene in thyroid-targeted transgenic mice. Oncogene 1999, 18, 3659–3665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jhiang, S.M.; Sagartz, J.; Tong, Q.; Parker-Thornburg, J.; Capen, C.C.; Cho, J.Y.; Xing, S.; Ledent, C. Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology 1996, 137, 375–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charles, R.P.; Iezza, G.; Amendola, E.; Dankort, D.; McMahon, M. Mutationally activated BRAF(V600E) elicits papillary thyroid cancer in the adult mouse. Cancer Res. 2011, 71, 3863–3871. [Google Scholar] [CrossRef] [Green Version]
- Franco, A.T.; Malaguarnera, R.; Refetoff, S.; Liao, X.H.; Lundsmith, E.; Kimura, S.; Pritchard, C.; Marais, R.; Davies, T.F.; Weinstein, L.S.; et al. Thyrotrophin receptor signaling dependence of Braf-induced thyroid tumor initiation in mice. Proc. Natl. Acad. Sci. USA 2011, 108, 1615–1620. [Google Scholar] [CrossRef] [Green Version]
- Knauf, J.A.; Ma, X.; Smith, E.P.; Zhang, L.; Mitsutake, N.; Liao, X.-H.; Refetoff, S.; Nikiforov, Y.E.; Fagin, J.A. Targeted Expression of BRAFV600E in Thyroid Cells of Transgenic Mice Results in Papillary Thyroid Cancers that Undergo Dedifferentiation. Cancer Res. 2005, 65, 4238–4245. [Google Scholar] [CrossRef] [Green Version]
- Shimamura, M.; Shibusawa, N.; Kurashige, T.; Mussazhanova, Z.; Matsuzaki, H.; Nakashima, M.; Yamada, M.; Nagayama, Y. Mouse models of sporadic thyroid cancer derived from BRAFV600E alone or in combination with PTEN haploinsufficiency under physiologic TSH levels. PLoS ONE 2018, 13, e0201365. [Google Scholar] [CrossRef]
- McFadden, D.G.; Vernon, A.; Santiago, P.M.; Martinez-McFaline, R.; Bhutkar, A.; Crowley, D.M.; McMahon, M.; Sadow, P.; Jacks, T. p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer. Proc. Natl. Acad. Sci. USA 2014, 111, E1600–E1609. [Google Scholar] [CrossRef] [Green Version]
- Estrada-Meza, J.; Videlo, J.; Bron, C.; Saint-Béat, C.; Silva, M.; Duboeuf, F.; Peyruchaud, O.; Rajas, F.; Mithieux, G.; Gautier-Stein, A. Tamoxifen Treatment in the Neonatal Period Affects Glucose Homeostasis in Adult Mice in a Sex-Dependent Manner. Endocrinology 2021, 162, bqab098. [Google Scholar] [CrossRef]
- Song, H.-J.; Chen, M.X.; Jiao, M.Q.; Qiu, Z.-L.; Shen, C.-T.; Zhang, G.-Q.; Sun, Z.-K.; Zhang, M.H.; Luo, Q.-Y. HIF-1α-Mediated Telomerase Reverse Transcriptase Activation Inducing Autophagy Through Mammalian Target of Rapamycin Promotes Papillary Thyroid Carcinoma Progression During Hypoxia Stress. Thyroid 2021, 31, 233–246. [Google Scholar] [CrossRef]
- Kurashige, T.; Nakajima, Y.; Shimamura, M.; Matsuyama, M.; Yamada, M.; Nakashima, M.; Nagayama, Y. Basal Autophagy Deficiency Causes Thyroid Follicular Epithelial Cell Death in Mice. Endocrinology 2019, 160, 2085–2092. [Google Scholar] [CrossRef]
- Kurashige, T.; Nakajima, Y.; Shimamura, M.; Yamada, M.; Nagayama, Y. Hormonal Regulation of Autophagy in Thyroid PCCL3 Cells and the Thyroids of Male Mice. J. Endocr. Soc. 2020, 4, bvaa054. [Google Scholar] [CrossRef]
- Fan, D.; Liu, S.Y.W.; Van Hasselt, C.A.; Vlantis, A.; Ng, E.K.-W.; Zhang, H.; Dong, Y.; Ng, S.K.; Chu, R.; Chan, A.B.W.; et al. Estrogen Receptor α Induces Prosurvival Autophagy in Papillary Thyroid Cancer via Stimulating Reactive Oxygen Species and Extracellular Signal Regulated Kinases. J. Clin. Endocrinol. Metab. 2015, 100, E561–E571. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Xie, X.; Chen, Y.; Lin, Y.; Cai, Z.; Ding, L.; Wu, Y.; Peng, Y.; Tang, S.; Xu, H. Chaperone-mediated Autophagy Governs Progression of Papillary Thyroid Carcinoma via PPARgamma-SDF1/CXCR4 Signaling. J. Clin. Endocrinol. Metab. 2020, 105, 3308–3323. [Google Scholar] [CrossRef]
- Lu, Q.; Luo, X.; Mao, C.; Zheng, T.; Liu, B.; Dong, X.; Zhou, Y.; Xu, C.; Mou, X.; Wu, F.; et al. Caveolin-1 regulates autophagy activity in thyroid follicular cells and is involved in Hashimoto’s thyroiditis disease. Endocr. J. 2018, 65, 893–901. [Google Scholar] [CrossRef] [Green Version]
- Werion, A.; Joris, V.; Hepp, M.; Papasokrati, L.; Marique, L.; de Ville de Goyet, C.; Van Regemorter, V.; Mourad, M.; Lengele, B.; Daumerie, C.; et al. Pioglitazone, a PPARgamma Agonist, Upregulates the Expression of Caveolin-1 and Catalase, Essential for Thyroid Cell Homeostasis: A Clue to the Pathogenesis of Hashimoto’s Thyroiditis. Thyroid 2016, 26, 1320–1331. [Google Scholar] [CrossRef]
- Costa, M.J.; Senou, M.; Van Rode, F.; Ruf, J.; Capello, M.; Dequanter, D.; Lothaire, P.; Dessy, C.; Dumont, J.E.; Many, M.C.; et al. Reciprocal negative regulation between thyrotropin/3’,5’-cyclic adenosine monophosphate-mediated proliferation and caveolin-1 expression in human and murine thyrocytes. Mol. Endocrinol. 2007, 21, 921–932. [Google Scholar] [CrossRef] [Green Version]
- Aldred, M.; Ginn-Pease, M.; Morrison, C.D.; Popkie, A.P.; Gimm, O.; Hoang-Vu, C.; Krause, U.; Dralle, H.; Jhiang, S.M.; Plass, C.; et al. Caveolin-1 and caveolin-2,together with three bone morphogenetic protein-related genes, may encode novel tumor suppressors down-regulated in sporadic follicular thyroid carcinogenesis. Cancer Res. 2003, 63, 2864–2871. [Google Scholar]
- Aldred, M.A.; Huang, Y.; Liyanarachchi, S.; Pellegata, N.S.; Gimm, O.; Jhiang, S.; Davuluri, R.V.; de La Chapelle, A.; Eng, C. Papillary and Follicular Thyroid Carcinomas Show Distinctly Different Microarray Expression Profiles and Can Be Distinguished by a Minimum of Five Genes. J. Clin. Oncol. 2004, 22, 3531–3539. [Google Scholar] [CrossRef] [PubMed]
- Romano, A.; Feola, A.; Porcellini, A.; Gigantino, V.; Di Bonito, M.; Di Mauro, A.; Caggiano, R.; Faraonio, R.; Zuchegna, C. Estrogen Induces Selective Transcription of Caveolin1 Variants in Human Breast Cancer through Estrogen Responsive Element-Dependent Mechanisms. Int. J. Mol. Sci. 2020, 21, 5989. [Google Scholar] [CrossRef]
- Wang, R.; He, W.; Li, Z.; Chang, W.; Xin, Y.; Huang, T. Caveolin-1 functions as a key regulator of 17beta-estradiol-mediated autophagy and apoptosis in BT474 breast cancer cells. Int. J. Mol. Med. 2014, 34, 822–827. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Li, Z.; Guo, H.; Shi, W.; Xin, Y.; Chang, W.; Huang, T. Caveolin 1 knockdown inhibits the proliferation, migration and invasion of human breast cancer BT474 cells. Mol. Med. Rep. 2014, 9, 1723–1728. [Google Scholar] [CrossRef] [Green Version]
- Kamat, A.; Rajoria, S.; George, A.; Suriano, R.; Shanmugam, A.; Megwalu, U.; Prakash, P.B.; Tiwari, R.; Schantz, S. Estrogen-Mediated Angiogenesis in Thyroid Tumor Microenvironment Is Mediated Through VEGF Signaling Pathways. Arch. Otolaryngol Head Neck Surg. 2011, 137, 1146–1153. [Google Scholar] [CrossRef] [Green Version]
- Soh, E.Y.; Duh, Q.-Y.; Sobhi, S.A.; Young, D.M.; Epstein, H.D.; Wong, M.G.; Garcia, Y.K.; Min, Y.D.; Grossman, R.F.; Siperstein, A.E.; et al. Vascular Endothelial Growth Factor Expression Is Higher in Differentiated Thyroid Cancer than in Normal or Benign Thyroid 1. J. Clin. Endocrinol. Metab. 1997, 82, 3741–3747. [Google Scholar] [CrossRef]
- Soh, E.Y.; Eigelberger, M.S.; Kim, K.J.; Wong, M.G.; Young, D.M.; Clark, O.H.; Duh, Q.Y. Neutralizing vascular endothelial growth factor activity inhibits thyroid cancer growth in vivo. Surgery 2000, 128, 1059–1065. [Google Scholar] [CrossRef]
- Dong, W.W.; Li, J.; Li, J.; Zhang, P.; Wang, Z.H.; Sun, W.; Zhang, H. Reduced expression of oestrogen receptor-beta is associated with tumour invasion and metastasis in oestrogen receptor-alpha-negative human papillary thyroid carcinoma. Int. J. Exp. Pathol. 2018, 99, 15–21. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, F.; Zhang, J.; Hao, L.; Jiang, J.; Dang, L.; Mei, D.; Fan, S.; Yu, Y.; Jiang, L. Bisphenol A and estrogen induce proliferation of human thyroid tumor cells via an estrogen-receptor-dependent pathway. Arch. Biochem. Biophys. 2017, 633, 29–39. [Google Scholar] [CrossRef]
- Li, L.; Li, H.; Zhang, J.; Gao, X.; Jin, H.; Liu, R.; Zhang, Z.; Zhang, X.; Wang, X.; Qu, P.; et al. Bisphenol A at a human exposed level can promote epithelial-mesenchymal transition in papillary thyroid carcinoma harbouring BRAF V600E mutation. J. Cell. Mol. Med. 2021, 25, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Tafani, M.; De Santis, E.; Coppola, L.; Perrone, G.A.; Carnevale, I.; Russo, A.; Pucci, B.; Carpi, A.; Bizzarri, M.; Russo, M.A. Bridging hypoxia, inflammation and estrogen receptors in thyroid cancer progression. Biomed. Pharmacother. 2014, 68, 1–5. [Google Scholar] [CrossRef]
- Rodriguez-Lara, V.; Pena-Mirabal, E.; Baez-Saldana, R.; Esparza-Silva, A.L.; Garcia-Zepeda, E.; Cerbon Cervantes, M.A.; Diaz, D. Fortoul TI. Estrogen receptor beta and CXCR4/CXCL12 expression: Differences by sex and hormonal status in lung adenocarcinoma. Arch. Med. Res. 2014, 45, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Bendrik, C.; Dabrosin, C. Estradiol Increases IL-8 Secretion of Normal Human Breast Tissue and Breast Cancer In Vivo. J. Immunol. 2008, 182, 371–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benhadjeba, S.; Edjekouane, L.; Sauve, K.; Carmona, E.; Tremblay, A. Feedback control of the CXCR7/CXCL11 chemokine axis by estrogen receptor alpha in ovarian cancer. Mol. Oncol. 2018, 12, 1689–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haim, K.; Weitzenfeld, P.; Meshel, T.; Ben-Baruch, A. Epidermal Growth Factor and Estrogen Act by Independent Pathways to Additively Promote the Release of the Angiogenic Chemokine CXCL8 by Breast Tumor Cells. Neoplasia 2011, 13, 230–243. [Google Scholar] [CrossRef] [Green Version]
- Mo, R.; Chen, J.; Grolleau-Julius, A.; Murphy, H.S.; Richardson, B.C.; Yung, R.L. Estrogen Regulates CCR Gene Expression and Function in T Lymphocytes. J. Immunol. 2005, 174, 6023–6029. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, B.-O. Modulation of the inflammatory response by estrogens with focus on the endothelium and its interactions with leukocytes. Inflamm. Res. 2007, 56, 269–273. [Google Scholar] [CrossRef]
- Recalde, G.; Moreno-Sosa, T.; Yúdica, F.; Quintero, C.A.; Sánchez, M.B.; Jahn, G.A.; Kalergis, A.; Mackern-Oberti, J.P. Contribution of sex steroids and prolactin to the modulation of T and B cells during autoimmunity. Autoimmun. Rev. 2018, 17, 504–512. [Google Scholar] [CrossRef]
- Dang, S.; Peng, Y.; Ye, L.; Wang, Y.; Qian, Z.; Chen, Y.; Wang, X.; Lin, Y.; Zhang, X.; Sun, X.; et al. Stimulation of TLR4 by LMW-HA Induces Metastasis in Human Papillary Thyroid Carcinoma through CXCR7. Clin. Dev. Immunol. 2013, 2013, 712561. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, D.-X.; Teng, X.-Y.; Xu, W.-X.; Meng, X.-P.; Wang, B.-S. Expression of Stromal Cell-Derived Factor 1 and CXCR7 in Papillary Thyroid Carcinoma. Endocr. Pathol. 2012, 23, 247–253. [Google Scholar] [CrossRef]
- Rotondi, M.; Coperchini, F.; Latrofa, F.; Chiovato, L. Role of Chemokines in Thyroid Cancer Microenvironment: Is CXCL8 the Main Player? Front Endocrinol. 2018, 9, 314. [Google Scholar] [CrossRef]
- Torregrossa, L.; Giannini, R.; Borrelli, N.; Sensi, E.; Melillo, R.M.; Leocata, P.; Materazzi, G.; Miccoli, P.; Santoro, M.; Basolo, F. CXCR4 expression correlates with the degree of tumor infiltration and BRAF status in papillary thyroid carcinomas. Mod. Pathol. 2011, 25, 46–55. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, L.; Teng, X.; Liu, Z.; Liu, C.; Zhang, L.; Liu, Z. The chemokine receptor CXCR7 is a critical regulator for the tumorigenesis and development of papillary thyroid carcinoma by inducing angiogenesis in vitro and in vivo. Tumor Biol. 2015, 37, 2415–2423. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yang, L.; Teng, X.; Zhang, H.; Guan, H. The involvement of CXCR7 in modulating the progression of papillary thyroid carcinoma. J. Surg. Res. 2014, 191, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Werner, T.A.; Forster, C.M.; Dizdar, L.; Verde, P.E.; Raba, K.; Schott, M.; Knoefel, W.T.; Krieg, A. CXCR4/CXCR7/CXCL12-Axis in Follicular Thyroid Carcinoma. J. Cancer 2018, 9, 929–940. [Google Scholar] [CrossRef] [PubMed]
- Jonklaas, J.; Nogueras-Gonzalez, G.; Munsell, M.; Litofsky, D.; Ain, K.B.; Bigos, S.T.; Brierley, J.D.; Cooper, D.S.; Haugen, B.R.; Ladenson, P.W.; et al. The Impact of Age and Gender on Papillary Thyroid Cancer Survival. J. Clin. Endocrinol. Metab. 2012, 97, E878–E887. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, A.; Bondaz, L.; Rajaraman, M.; Leslie, W.D.; Jefford, C.; Young, J.E.; Pathak, K.A.; Bureau, Y.; Rachinsky, I.; Badreddine, M.; et al. Risk for Thyroid Cancer Recurrence Is Higher in Men Than in Women Independent of Disease Stage at Presentation. Thyroid 2020, 30, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Tang, J.; Kong, D.; Cui, Q.; Wang, K.; Gong, Y.; Wu, G. Impact of Gender and Age on the Prognosis of Differentiated Thyroid Carcinoma: A Retrospective Analysis Based on SEER. Horm. Cancer 2018, 9, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, T.; Zeng, W.; Wang, S.; Xiong, Y.; Liu, Z.; Huang, T. Reevaluating the prognostic significance of male gender for papillary thyroid carcinoma and microcarcinoma: A SEER database analysis. Sci. Rep. 2017, 7, 11412. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhao, S.; Shen, X.; Zhu, G.; Liu, R.; Viola, D.; Elisei, R.; Puxeddu, E.; Fugazzola, L.; Colombo, C.; et al. BRAF V600E Confers Male Sex Disease-Specific Mortality Risk in Patients With Papillary Thyroid Cancer. J. Clin. Oncol. 2018, 36, 2787–2795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, X.; Zhu, G.; Liu, R.; Viola, D.; Elisei, R.; Puxeddu, E.; Fugazzola, L.; Colombo, C.; Jarząb, B.; Czarniecka, A.; et al. Patient Age–Associated Mortality Risk Is Differentiated by BRAF V600E Status in Papillary Thyroid Cancer. J. Clin. Oncol. 2018, 36, 438–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, D.-T.; Mengyuan, L.; Lu, R.-Q.; Li, X.; Xu, J.; Lei, M.; Li, H.; Wang, Y.; Liu, Z. Clinicopathological significance of TERT promoter mutation in papillary thyroid carcinomas: A systematic review and meta-analysis. Clin. Endocrinol. 2016, 85, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Lee, Y.M.; Sung, T.Y.; Yoon, J.H.; Song, D.E.; Kim, T.Y.; Baek, J.H.; Ryu, J.S.; Chung, K.W.; Hong, S.J. Is Male Gender a Prognostic Factor for Papillary Thyroid Microcarcinoma? Ann. Surg. Oncol. 2017, 24, 1958–1964. [Google Scholar] [CrossRef]
- Chou, C.-K.; Chi, S.-Y.; Chou, F.-F.; Huang, S.-C.; Wang, J.-H.; Chen, C.-C.; Kang, H.-Y. Aberrant Expression of Androgen Receptor Associated with High Cancer Risk and Extrathyroidal Extension in Papillary Thyroid Carcinoma. Cancers 2020, 12, 1109. [Google Scholar] [CrossRef]
- Rubio, G.A.; Catanuto, P.; Glassberg, M.K.; Lew, J.I.; Elliot, S.J. Estrogen receptor subtype expression and regulation is altered in papillary thyroid cancer after menopause. Surgery 2018, 163, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Shayota, B.J.; Pawar, S.C.; Chamberlain, R.S. MeSS: A novel prognostic scale specific for pediatric well-differentiated thyroid cancer: A population-based, SEER outcomes study. Surgery 2013, 154, 429–435. [Google Scholar] [CrossRef]
- Ivell, R.; Alhujaili, W.; Kohsaka, T.; Anand-Ivell, R. Physiology and evolution of the INSL3/RXFP2 hormone/receptor system in higher vertebrates. Gen. Comp. Endocrinol. 2020, 299, 113583. [Google Scholar] [CrossRef]
- Bialek, J.; Hombach-Klonisch, S.; Fiebig, B.; Weber, E.; Hoang-Vu, C.; Klonisch, T. Lysosomal Acid Hydrolases of the Cathepsin Family Are Novel Targets of INSL3 in Human Thyroid Carcinoma Cells. Ann. New York Acad. Sci. 2009, 1160, 361–366. [Google Scholar] [CrossRef]
- Hombach-Klonisch, S.; Bialek, J.; Radestock, Y.; Truong, A.; Agoulnik, A.I.; Fiebig, B.; Willing, C.; Weber, E.; Hoang-Vu, C.; Klonisch, T. INSL3 has tumor-promoting activity in thyroid cancer. Int. J. Cancer 2010, 127, 521–531. [Google Scholar] [CrossRef]
- Castinetti, F.; Albarel, F.; Archambeaud, F.; Bertherat, J.; Bouillet, B.; Buffier, P.; Briet, C.; Cariou, B.; Caron, P.; Chabre, O.; et al. French Endocrine Society Guidance on endocrine side effects of immunotherapy. Endocr.-Relat. Cancer 2019, 26, G1–G18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castinetti, F.; Borson-Chazot, F. Immunotherapy-induced endocrinopathies: Insights from the 2018 French Endocrine Society Guidelines. Bull. Cancer 2019, 106, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Illouz, F.; Drui, D.; Caron, P.; Cao, C.D. Expert opinion on thyroid complications in immunotherapy. Ann. d’Endocrinologie 2018, 79, 555–561. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suteau, V.; Munier, M.; Briet, C.; Rodien, P. Sex Bias in Differentiated Thyroid Cancer. Int. J. Mol. Sci. 2021, 22, 12992. https://doi.org/10.3390/ijms222312992
Suteau V, Munier M, Briet C, Rodien P. Sex Bias in Differentiated Thyroid Cancer. International Journal of Molecular Sciences. 2021; 22(23):12992. https://doi.org/10.3390/ijms222312992
Chicago/Turabian StyleSuteau, Valentine, Mathilde Munier, Claire Briet, and Patrice Rodien. 2021. "Sex Bias in Differentiated Thyroid Cancer" International Journal of Molecular Sciences 22, no. 23: 12992. https://doi.org/10.3390/ijms222312992
APA StyleSuteau, V., Munier, M., Briet, C., & Rodien, P. (2021). Sex Bias in Differentiated Thyroid Cancer. International Journal of Molecular Sciences, 22(23), 12992. https://doi.org/10.3390/ijms222312992