Nucleolar Proteins and Non-Coding RNAs: Roles in Renal Cancer
Abstract
:1. Introduction
2. Clear Cell Renal Cell Carcinoma: The Molecular Background
3. The Nucleolus
4. Nucleolar Small and Long Non-Coding RNAs in Cancer
5. ccRCC and the Nucleolar Proteins
6. ccRCC and the Nucleolar Non-Coding RNAs
snoRNA | Alteration of Expression; Correlation with Prognosis (If Known) | Ref. |
---|---|---|
NHG9, SNHG10, DANCR and SNHG14 | Downregulated | [45] |
SNORA70F, SNORA2, SNORD116-24, SNORD116-4, SNORD116-2, SNORD116-26, SNORD116-1, SNORD116-27, SNORA80B | Downregulated | [45] |
SNHG1, GAS5, SNHG3-8, SNHG11, SNHG12, SNHG15-17, SNHG20, SNHG22 and SNHG25 | Upregulated; SNHG3: poor; SNHG15: poor | [45] |
SNORD63 and SNORD96A | Upregulated | [60] |
SNORD99, SNORD60, SNORD104, SNORA73B, SNORD123, SNORD63, SNORA16, SNORA71A, SNORD93, SNORA71C, SNORA7, SNORD124, SNORD12B, SNORD117, SNORA53, SNORA59B, snoZ196, SNORD17, SNORD15B | Upregulated; poor (for the signature consisting of six snoRNAs (six of them (SNORA2, SNORD12B, SNORA59B, SNORA70B, SNORD93 and SNORD116-2) | [46] |
SNHG1 | Upregulated; poor | [51] |
SNHG4 | Upregulated; poor | [54] |
SNHG6 | Upregulated; poor | [58] |
SNHG12 | Upregulated; poor | [47,48,49,50] |
7. Nucleolar Non-Coding RNAs in Other Types of Kidney Cancers
8. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ricketts, C.J.; De Cubas, A.A.; Fan, H.; Smith, C.C.; Lang, M.; Reznik, E.; Bowlby, R.; Gibb, E.A.; Akbani, R.; Beroukhim, R.; et al. The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. Cell Rep. 2018, 23, 313–326.e5. [Google Scholar] [CrossRef] [Green Version]
- Ljungberg, B.; Bensalah, K.; Canfield, S.; Dabestani, S.; Hofmann, F.; Hora, M.; Kuczyk, M.A.; Lam, T.; Marconi, L.; Merseburger, A.S.; et al. EAU Guidelines on Renal Cell Carcinoma: 2014 Update. Eur. Urol. 2015, 67, 913–924. [Google Scholar] [CrossRef]
- MacLennan, G.T.C.L. 2-Neoplasms of the Kidney. In Urologic Surgical Pathology, 4th ed.; Cheng, L.M.G.T., Bostwick, D.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 83–163.e23. [Google Scholar] [CrossRef]
- Williamson, S.R. Clear cell papillary renal cell carcinoma: An update after 15 years. Pathology 2021, 53, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Tsui, K.H.; Shvarts, O.; Smith, R.B.; Figlin, R.A.; deKernion, J.B.; Belldegrun, A. Prognostic indicators for renal cell carcinoma: A multivariate analysis of 643 patients using the revised 1997 TNM staging criteria. J. Urol. 2000, 163, 1090–1095. [Google Scholar] [CrossRef]
- Bielecka, Z.F.; Czarnecka, A.M.; Solarek, W.; Kornakiewicz, A.; Szczylik, C. Mechanisms of Acquired Resistance to Tyrosine Kinase Inhibitors in Clear-Cell Renal Cell Carcinoma (ccRCC). Curr. Signal Transduct. Ther. 2014, 8, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Lughezzani, G.; Perrotte, P.; Karakiewicz, P.I. Treatment of metastatic renal cell carcinoma. Nat. Rev. Urol. 2010, 7, 327–338. [Google Scholar] [CrossRef]
- Audas, T.E.; Jacob, M.D.; Lee, S. Immobilization of Proteins in the Nucleolus by Ribosomal Intergenic Spacer Noncoding RNA. Mol. Cell 2012, 45, 147–157. [Google Scholar] [CrossRef]
- Mekhail, K.; Gunaratnam, L.; Bonicalzi, M.-E.; Lee, S. HIF activation by pH-dependent nucleolar sequestration of VHL. Nat. Cell Biol. 2004, 6, 642–647. [Google Scholar] [CrossRef]
- Zimta, A.-A.; Țigu, A.B.; Braicu, C.; Stefan, C.; Ionescu, C.; Berindan-Neagoe, I. An Emerging Class of Long Non-coding RNA With Oncogenic Role Arises From the snoRNA Host Genes. Front. Oncol. 2020, 10, 389. [Google Scholar] [CrossRef]
- Linehan, W.M.; Srinivasan, R.; Schmidt, L.S. The genetic basis of kidney cancer: A metabolic disease. Nat. Rev. Urol. 2010, 7, 277–285. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013, 499, 43–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakimi, A.A.; Reznik, E.; Lee, C.-H.; Creighton, C.J.; Brannon, A.R.; Luna, A.; Aksoy, B.A.; Liu, E.M.; Shen, R.; Lee, W.; et al. An Integrated Metabolic Atlas of Clear Cell Renal Cell Carcinoma. Cancer Cell 2016, 29, 104–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roche, B.; Arcangioli, B.; Martienssen, R. New roles for Dicer in the nucleolus and its relevance to cancer. Cell Cycle 2017, 16, 1643–1653. [Google Scholar] [CrossRef] [Green Version]
- Moy, T.I.; Silver, P.A. Nuclear export of the small ribosomal subunit requires the Ran-GTPase cycle and certain nucleoporins. Genes Dev. 1999, 13, 2118–2133. [Google Scholar] [CrossRef] [Green Version]
- Grzanka, M.; Piekiełko-Witkowska, A. The Role of TCOF1 Gene in Health and Disease: Beyond Treacher Collins Syndrome. Int. J. Mol. Sci. 2021, 22, 2482. [Google Scholar] [CrossRef]
- Andersen, J.S.; Lyon, C.E.; Fox, A.H.; Leung, A.K.; Lam, Y.W.; Steen, H.; Mann, M.; Lamond, A.I. Directed Proteomic Analysis of the Human Nucleolus. Curr. Biol. 2002, 12, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Villacís, L.N.; Wong, M.S.; Ferguson, L.L.; Hein, N.; George, A.J.; Hannan, K.M. New Roles for the Nucleolus in Health and Disease. BioEssays 2018, 40, e1700233. [Google Scholar] [CrossRef]
- Carotenuto, P.; Pecoraro, A.; Palma, G.; Russo, G.; Russo, A. Therapeutic Approaches Targeting Nucleolus in Cancer. Cells 2019, 8, 1090. [Google Scholar] [CrossRef] [Green Version]
- Bai, B.; Yegnasubramanian, S.; Wheelan, S.J.; Laiho, M. RNA-Seq of the Nucleolus Reveals Abundant SNORD44-Derived Small RNAs. PLoS ONE 2014, 9, e107519. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Jiang, Z.; Wang, S.; Zhao, Y.; Song, X.; Xiao, Y.; Yang, S. Long non-coding small nucleolar RNA host genes in digestive cancers. Cancer Med. 2019, 8, 7693–7704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, J.; Li, Y.; Liu, C.-J.; Xiang, Y.; Li, C.; Ye, Y.; Zhang, Z.; Hawke, D.H.; Park, P.K.; Diao, L.; et al. A Pan-cancer Analysis of the Expression and Clinical Relevance of Small Nucleolar RNAs in Human Cancer. Cell Rep. 2017, 21, 1968–1981. [Google Scholar] [CrossRef] [Green Version]
- Mei, Y.-P.; Liao, J.-P.; Shen, J.; Yu, L.; Liu, B.L.; Liu, L.; Li, R.-Y.; Ji, L.; Dorsey, S.G.; Jiang, Z.-R.; et al. Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene 2012, 31, 2794–2804. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, Z.; Han, Q.; Bai, H.; Wang, Y.; Yi, X.; Yi, Z.; Yang, L.; Jiang, L.; Song, X.; et al. G6PD promotes renal cell carcinoma proliferation through positive feedback regulation of p-STAT3. Oncotarget 2017, 8, 109043–109060. [Google Scholar] [CrossRef]
- Caudron-Herger, M.; Pankert, T.; Seiler, J.; Németh, A.; Voit, R.; Grummt, I.; Rippe, K. Alu element-containing RNA s maintain nucleolar structure and function. EMBO J. 2015, 34, 2758–2774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmo-Fonseca, M. Assembly of the nucleolus: In need of revision. EMBO J. 2015, 34, 2731–2732. [Google Scholar] [CrossRef]
- Politz, J.C.; Hogan, E.M.; Pederson, T. MicroRNAs with a nucleolar location. RNA 2009, 15, 1705–1715. [Google Scholar] [CrossRef] [Green Version]
- Bai, B.; Liu, H.; Laiho, M. Small RNA expression and deep sequencing analyses of the nucleolus reveal the presence of nucleolus-associated microRNAs. FEBS Open Bio 2014, 4, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Gutierrez, P.; Politz, J.C.R.; Pederson, T. A mRNA and Cognate MicroRNAs Localize in the Nucleolus. Nucleus 2014, 5, 636–642. [Google Scholar] [CrossRef] [Green Version]
- Atwood, B.L.; Woolnough, J.L.; Lefevre, G.M.; Ribeiro, M.S.J.; Felsenfeld, G.; Giles, K.E. Human Argonaute 2 Is Tethered to Ribosomal RNA through MicroRNA Interactions. J. Biol. Chem. 2016, 291, 17919–17928. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.F.; Liang, Y.M.; Lau, P.N.; Shen, W.; Wang, D.K.; Cheung, W.-T.; Xue, C.J.; Poon, L.M.; Lam, Y.W. Dynamic Localisation of Mature MicroRNAs in Human Nucleoli is Influenced by Exogenous Genetic Materials. PLoS ONE 2013, 8, e70869. [Google Scholar] [CrossRef] [Green Version]
- Diaz, N.L.; Böker, K.O.; Rodriguez-Polo, I.; Mitter, M.; Preis, J.; Arlt, M.; Gruber, J. Dissecting miRNA gene repression on single cell level with an advanced fluorescent reporter system. Sci. Rep. 2017, 7, 45197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckstein, M.; Sailer, V.; Nielsen, B.S.; Wittenberg, T.; Wiesmann, V.; Lieb, V.; Nolte, E.; Hartmann, A.; Kristiansen, G.; Wernert, N.; et al. Co-staining of microRNAs and their target proteins by miRNA in situ hybridization and immunohistofluorescence on prostate cancer tissue microarrays. Lab. Investig. 2019, 99, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Fuhrman, S.A.; Lasky, L.C.; Limas, C. Prognostic significance of morphologic parameters in renal cell carcinoma. Am. J. Surg. Pathol. 1982, 6, 655–663. [Google Scholar] [CrossRef]
- Dagher, J.; Delahunt, B.; Rioux-Leclercq, N.; Egevad, L.; Srigley, J.R.; Coughlin, G.; Dunglinson, N.; Gianduzzo, T.; Kua, B.; Malone, G.; et al. Clear cell renal cell carcinoma: Validation of World Health Organization/International Society of Urological Pathology grading. Histopathology 2017, 71, 918–925. [Google Scholar] [CrossRef]
- Fukawa, T.; Ono, M.; Matsuo, T.; Uehara, H.; Miki, T.; Nakamura, Y.; Kanayama, H.-O.; Katagiri, T. DDX31 Regulates the p53-HDM2 Pathway and rRNA Gene Transcription through Its Interaction with NPM1 in Renal Cell Carcinomas. Cancer Res. 2012, 72, 5867–5877. [Google Scholar] [CrossRef] [Green Version]
- Penthala, N.R.; Ketkar, A.; Sekhar, K.R.; Freeman, M.L.; Eoff, R.L.; Balusu, R.; Crooks, P.A. 1-Benzyl-2-methyl-3-indolylmethylene barbituric acid derivatives: Anti-cancer agents that target nucleophosmin 1 (NPM1). Bioorg. Med. Chem. 2015, 23, 7226–7233. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, J.E.; Bambury, R.M.; Van Allen, E.M.; Drabkin, H.A.; Lara, P.N., Jr.; Harzstark, A.L.; Wagle, N.; Figlin, R.A.; Smith, G.W.; Garraway, L.A.; et al. A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma. Investig. New Drugs 2014, 32, 178–187. [Google Scholar] [CrossRef]
- Wettersten, H.I.; Hakimi, A.A.; Morin, D.; Bianchi, C.; Johnstone, M.E.; Donohoe, D.R.; Trott, J.F.; Abu Aboud, O.; Stirdivant, S.; Neri, B.; et al. Grade-Dependent Metabolic Reprogramming in Kidney Cancer Revealed by Combined Proteomics and Metabolomics Analysis. Cancer Res. 2015, 75, 2541–2552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarboui, M.A.; Bidoia, C.; Woods, E.; Roe, B.; Wynne, K.; Elia, G.; Hall, W.W.; Gautier, V.W. Nucleolar Protein Trafficking in Response to HIV-1 Tat: Rewiring the Nucleolus. PLoS ONE 2012, 7, e48702. [Google Scholar] [CrossRef]
- Gizak, A.; Grenda, M.; Mamczur, P.; Wiśniewski, J.; Sucharski, F.; Silberring, J.; McCubrey, J.A.; Wisniewski, J.R.; Rakus, D. Insulin/IGF1-PI3K-dependent nucleolar localization of a glycolytic enzyme-phosphoglycerate mutase 2, is necessary for proper structure of nucleolus and RNA synthesis. Oncotarget 2015, 6, 17237–17250. [Google Scholar] [CrossRef]
- Li, C.; Shu, F.; Lei, B.; Lv, D.; Zhang, S.; Mao, X. Expression of PGAM1 in renal clear cell carcinoma and its clinical significance. Int. J. Clin. Exp. Pathol. 2015, 8, 9410–9415. [Google Scholar]
- Lawrie, C.H.; Larrea, E.; Larrinaga, G.; Goicoechea, I.; Arestin, M.; Fernandez-Mercado, M.; Hes, O.; Cáceres, F.; Manterola, L.; Lopez, J.I. Targeted next-generation sequencing and non-coding RNA expression analysis of clear cell papillary renal cell carcinoma suggests distinct pathological mechanisms from other renal tumour subtypes. J. Pathol. 2013, 232, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Zhang, K.; Li, L.; Ma, K.; Hong, B.; Gong, Y.; Gong, K. Discovery and validation of the prognostic value of the lncRNAs encoding snoRNAs in patients with clear cell renal cell carcinoma. Aging 2020, 12, 4424–4444. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yan, Y.; Ma, R.; Lv, X.; Zhang, L.; Wang, J.; Zhu, W.; Zhao, L.; Jiang, L.; Zhao, L.; et al. Expression signature of six-snoRNA serves as novel non-invasive biomarker for diagnosis and prognosis prediction of renal clear cell carcinoma. J. Cell. Mol. Med. 2020, 24, 2215–2228. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, D.; Wang, K.; Cao, C.; Xu, X. Long Non-coding RNA SNHG12 Functions as a Competing Endogenous RNA to Regulate MDM4 Expression by Sponging miR-129-5p in Clear Cell Renal Cell Carcinoma. Front. Oncol. 2019, 9, 1260. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Liang, H.; Zhou, J.; Wang, Y.; Liu, S.; Wang, X.; Su, L.; Kang, X. lncRNA small nucleolar RNA host gene 12 promotes renal cell carcinoma progression by modulating the miR200c5p/collagen type XI alpha1 chain pathway. Mol. Med. Rep. 2020, 22, 3677–3686. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Liu, J.; Zhang, Z.; Zhu, Y.; Bi, J.; Kong, C. SNHG12 promotes carcinogenesis of human renal cell cancer via functioning as a competing endogenous RNA and sponging miR-30a-3p. J. Cell. Mol. Med. 2021, 25, 4696–4708. [Google Scholar] [CrossRef]
- Chen, Q.; Zhou, W.; Du, S.-Q.; Gong, D.-X.; Li, J.; Bi, J.-B.; Li, Z.-H.; Zhang, Z.; Li, Z.-L.; Liu, X.-K.; et al. Overexpression of SNHG12 regulates the viability and invasion of renal cell carcinoma cells through modulation of HIF1alpha. Cancer Cell Int. 2019, 19, 128. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Wang, Y.; Luo, M.; Cui, W.; Zhou, X.; Miao, L. Long Noncoding RNA Small Nucleolar RNA Host Gene 1 (SNHG1) Promotes Renal Cell Carcinoma Progression and Metastasis by Negatively Regulating miR-137. Med. Sci. Monit. 2018, 24, 3824–3831. [Google Scholar] [CrossRef]
- Tian, P.; Wei, J.X.; Li, J.; Ren, J.K.; Yang, J.J. LncRNA SNHG1 regulates immune escape of renal cell carcinoma by targeting miR-129-3p to activate STAT3 and PD-L1. Cell Biol. Int. 2021, 45, 1546–1560. [Google Scholar] [CrossRef]
- Zhang, C.; Qu, Y.; Xiao, H.; Xiao, W.; Liu, J.; Gao, Y.; Li, M.; Liu, J. LncRNA SNHG3 promotes clear cell renal cell carcinoma proliferation and migration by upregulating TOP2A. Exp. Cell Res. 2019, 384, 111595. [Google Scholar] [CrossRef]
- Wu, J.; Liu, T.; Sun, L.; Zhang, S.; Dong, G. Long noncoding RNA SNHG4 promotes renal cell carcinoma tumorigenesis and invasion by acting as ceRNA to sponge miR-204-5p and upregulate RUNX2. Cancer Cell Int. 2020, 20, 514. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-Z.; Zou, Y.; Song, Z.-Y.; Wei, Z.-W.; Chen, G.; Cai, Q.-L.; Wang, Z. Long non-coding RNA SNHG5 affects the invasion and apoptosis of renal cell carcinoma by regulating the miR-363-3p-Twist1 interaction. Am. J. Transl. Res. 2020, 12, 697–707. [Google Scholar]
- Toraih, E.A.; Alghamdi, S.A.; El-Wazir, A.; Hosny, M.M.; Hussein, M.H.; Khashana, M.S.; Fawzy, M.S. Dual biomarkers long non-coding RNA GAS5 and microRNA-34a co-expression signature in common solid tumors. PLoS ONE 2018, 13, e0198231. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Pang, X.; Shang, W.; Xie, H.; Feng, Y.; Feng, G. Long non-coding RNA GAS5 sensitizes renal cell carcinoma to sorafenib via miR-21/SOX5 pathway. Cell Cycle 2019, 18, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Deng, Y.; Wu, Y.; Guo, Q.; Zhou, L.; Yang, X.; Wang, C. Long noncoding RNA SNHG6 promotes carcinogenesis by enhancing YBX1-mediated translation of HIF1alpha in clear cell renal cell carcinoma. FASEB J. 2021, 35, e21160. [Google Scholar] [CrossRef]
- Du, Y.; Kong, C.; Zhu, Y.; Yu, M.; Li, Z.; Bi, J.; Li, Z.; Liu, X.; Zhang, Z.; Yu, X. Knockdown of SNHG15 suppresses renal cell carcinoma proliferation and EMT by regulating the NF-kappaB signaling pathway. Int. J. Oncol. 2018, 53, 384–394. [Google Scholar] [CrossRef]
- Shang, X.; Song, X.; Wang, K.; Yu, M.; Ding, S.; Dong, X.; Xie, L.; Song, X. SNORD63 and SNORD96A as the non-invasive diagnostic biomarkers for clear cell renal cell carcinoma. Cancer Cell Int. 2021, 21, 56. [Google Scholar] [CrossRef]
- Zhang, C.; Ren, X.; Zhang, W.; He, L.; Qi, L.; Chen, R.; Tu, C.; Li, Z. Prognostic and clinical significance of long non-coding RNA SNHG12 expression in various cancers. Bioengineered 2020, 11, 1112–1123. [Google Scholar] [CrossRef]
- Colau, G.; Thiry, M.; Leduc, V.; Bordonné, R.; Lafontaine, D.L.J. The Small Nucle(ol)ar RNA Cap Trimethyltransferase Is Required for Ribosome Synthesis and Intact Nucleolar Morphology. Mol. Cell. Biol. 2004, 24, 7976–7986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popławski, P.; Bogusławska, J.; Hanusek, K.; Piekiełko-Witkowska, A. Nucleolar Proteins and Non-Coding RNAs: Roles in Renal Cancer. Int. J. Mol. Sci. 2021, 22, 13126. https://doi.org/10.3390/ijms222313126
Popławski P, Bogusławska J, Hanusek K, Piekiełko-Witkowska A. Nucleolar Proteins and Non-Coding RNAs: Roles in Renal Cancer. International Journal of Molecular Sciences. 2021; 22(23):13126. https://doi.org/10.3390/ijms222313126
Chicago/Turabian StylePopławski, Piotr, Joanna Bogusławska, Karolina Hanusek, and Agnieszka Piekiełko-Witkowska. 2021. "Nucleolar Proteins and Non-Coding RNAs: Roles in Renal Cancer" International Journal of Molecular Sciences 22, no. 23: 13126. https://doi.org/10.3390/ijms222313126
APA StylePopławski, P., Bogusławska, J., Hanusek, K., & Piekiełko-Witkowska, A. (2021). Nucleolar Proteins and Non-Coding RNAs: Roles in Renal Cancer. International Journal of Molecular Sciences, 22(23), 13126. https://doi.org/10.3390/ijms222313126