Melatonin, Clock Genes, and Mammalian Reproduction: What Is the Link?
Abstract
:1. Melatonin and Reproduction
2. Molecular Clock Genes
3. Clock Genes and Reproduction
4. Melatonin—Clock Genes Interactions
5. Melatonin, Clock Genes, and Gonadotropins Disruption: The Case of PCOS
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brzezinski, A. Melatonin in humans. N. Engl. J. Med. 1997, 336, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Tan, D.X.; Manchester, L.C.; Paredes, S.D.; Mayo, J.C.; Sainz, R.M. Melatonin and reproduction revisited. Biol. Reprod. 2009, 81, 445–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, V.; Spence, W.D.; Pandi-Perumal, S.R.; Zakharia, R.; Bhatnagar, K.P.; Brzezinski, A. Melatonin and human reproduction: Shedding light on the darkness hormone. Gynecol. Endocrinol. 2009, 25, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Olcese, J.M. Melatonin and Female Reproduction: An Expanding Universe. Front. Endocrinol. 2020, 11, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wurtman, R.J.; Axelrod, J.; Chu, E.W. Melatonin, a pineal Substance: Its effect on the rat ovary. Science 1963, 141, 277–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ubuka, T.; Bentley, G.E.; Ukena, K.; Wingfield, J.C.; Tsutsui, K. Melatonin induces the expression of gonadotropin-inhibitory hormone in the avian brain. Proc. Natl. Acad. Sci. USA 2005, 102, 3052–3057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanecek, J.; Klein, D.C. Melatonin inhibits gonadotrophin releasing hormone induced elevation of intracellular Ca2. inneonatal rat pituitary cells. Endocrinology 1992, 130, 701–707. [Google Scholar]
- Kennaway, D.J.; Boden, M.J.; Varcoe, T.J. Circadian rhythms and fertility. Mol. Cell. Endocrinol. 2012, 349, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Stein, R.M.; Kang, H.J.; McCorvy, J.D.; Glatfelter, G.C.; Jones, A.J.; Che, T.; Slocum, S.; Huang, X.P.; Savych, O.; Moroz, Y.S.; et al. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature 2020, 579, 609–614. [Google Scholar] [CrossRef]
- Von Gall, C.; Stehle, J.H.; Weaver, D.R. Mammalian melatoninreceptors: Molecular biology and signal transduction. Cell Tissue Res. 2002, 309, 151–162. [Google Scholar] [CrossRef]
- Pandi-Perumal, S.R.; Trakht, I.; Srinivasan, V.; Spence, D.W.; Maestroni, G.J.; Zisapel, N.; Cardinali, D.P. Physiological effectsof melatonin: Role of melatonin receptors and signal transduction pathways. Prog. Neurobiol. 2008, 85, 335–353. [Google Scholar] [CrossRef] [PubMed]
- Brzezinski, A.; Seibel, M.M.; Lynch, H.J.; Deng, M.H.; Wurtman, R.J. Melatonin in human preovulatory follicular fluid. J. Clin. Endocrinol. Metab. 1987, 64, 865–867. [Google Scholar] [CrossRef] [PubMed]
- Yie, S.M.; Niles, J.P.; Younglai, E.V. Melatonin receptors onhuman granulose cell membranes. J. Clin. Endocrinol. Metab. 1995, 80, 1747–1749. [Google Scholar] [PubMed]
- Silman, R.E.; Leone, R.M.; Hooper, R.J.; Preece, M.A. Melatonin, the pineal gland and human puberty. Nature 1979, 282, 301–303. [Google Scholar] [CrossRef] [PubMed]
- Waldhauser, F.; Weiszenbacher, G.; Frisch, H.; Zeitlhuber, U.; Waldhauser, M.; Wurtman, R.J. Fall in nocturnal serum melatonin during prepuberty and pubescence. Lancet 1984, 1, 362–365. [Google Scholar] [CrossRef]
- Attanasio, A.; Borrelli, P.; Gupta, D. Circadian rhythms in serum melatonin from infancy to adolescence. J. Clin. Endocrinol. Metabol. 1985, 61, 388–390. [Google Scholar] [CrossRef]
- Waldhauser, F.; Boepple, P.A.; Schemper, M.; Mansfield, M.J.; Crowley, W.F. Serum melatonin in central precocious puberty is lower than in agematchedprepubertal children. J. Clin. Endocrinol. Metab. 1991, 73, 793–796. [Google Scholar] [CrossRef] [PubMed]
- Kennaway, D.J.; Mcculloch, G.; Matthews, C.D.; Seamark, R.F. Plasma melatonin, luteinizing hormone, follicle-stimulating hormone, prolactin, and corticoids in two patients with pinealoma. J. Clin. Endocrinol. Metab. 1979, 49, 144–145. [Google Scholar] [CrossRef]
- Arendt, J. Melatonin assays in body fluids. J. Neural Trans. Suppl. 1978, 13, 265–278. [Google Scholar]
- Tamarkin, L.; Abastillas, P.; Chen, H.C.; McNemar, A.; Sidbury, J.B. The daily profile of plasma melatonin in obese and Prader-Willi syndrome children. J. Clin. Endocrinol. Metab. 1982, 55, 491–495. [Google Scholar] [CrossRef]
- Salti, R.; Galluzzi, F.; Bindi, G.; Perfetto, F.; Tarquini, R.; Halberg, F.; Cornelissen, G. Nocturnal melatonin patterns in children. J. Clin. Endocrinol. Metab. 2000, 85, 2137–2144. [Google Scholar] [CrossRef] [PubMed]
- Vilches, N.; Spichiger, C.; Mendez, N.; Abarzua-Catalan, L.; Galdames, H.A.; Hazlerigg, D.G.; Richter, H.G.; Torres-Farfan, C. Gestational chronodisruption impairs hippocampal expression of NMDA receptor subunits Grin1b/Grin3a and spatial memory in the adult offspring. PLoS ONE 2014, 9, e91313. [Google Scholar]
- Schenker, S.; Yang, Y.; Perez, A.; Acuff, R.V.; Papas, A.M.; Henderson, G.; Lee, M.P. Antioxidant transport by the human placenta. Clin. Nutr. 1998, 17, 159–167. [Google Scholar] [CrossRef]
- Williams, L.M.; Martinoli, M.G.; Titchener, L.T.; Pelletier, G. The ontogeny of central melatonin binding sites in the rat. Endocrinology 1991, 128, 2083–2090. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.; Lacasse, A.A.; Lanoix, D.; Sagrillo-Fagundes, L.; Boulard, V.; Vaillancourt, C. Placental melatonin system is present throughout pregnancy and regulates villous trophoblast differentiation. J. Pineal Res. 2015, 59, 38–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanoix, D.; Guerin, P.; Vaillancourt, C. Placental melatonin production and melatonin receptor expression are altered in preeclampsia: New insights into the role of this hormone in pregnancy. J. Pineal Res. 2012, 53, 417–425. [Google Scholar] [CrossRef]
- Sagrillo-Fagundes, L.; Salustiano, E.M.A.; Ruano, R.; Markus, R.P.; Vaillancourt, C. Melatonin modulates autophagy and inflammation protecting human placental trophoblast from hypoxia/reoxygenation. J. Pineal Res. 2018, 65, e12520. [Google Scholar] [CrossRef]
- Hobson, S.R.; Gurusinghe, S.; Lim, R.; Alers, N.O.; Miller, S.L.; Kingdom, J.C.; Wallace, E.M. Melatonin improves endothelial function in vitro and prolongs pregnancy in women with early-onset preeclampsia. J. Pineal Res. 2018, 65, e12508. [Google Scholar] [CrossRef] [PubMed]
- Brzezinski, A. Melatonin and Human Reproduction: Why the Effect Is So Elusive? From Molecules to Therapy; Nova Science Publishers: New York, NY, USA, 2007; pp. 219–225. [Google Scholar]
- Berson, D.M.; Dunn, F.A.; Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002, 295, 1070–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karatsoreos, I.N.; Silver, R. Minireview: The Neuroendocrinology of the Suprachiasmatic Nucleus as a Conductor of Body Time in Mammals. Endocrinology 2007, 148, 5640–5647. [Google Scholar] [CrossRef] [PubMed]
- Cox, K.H.; Takahashi, J.S. Circadian clock genes and the transcriptional architecture of the clock mechanism. J. Mol. Endocrinol. 2019, 63, R93–R102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allada, R.; Bass, J. Circadian Mechanisms in Medicine. N. Engl. J. Med. 2021, 384, 550–561. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.H.; Takahashi, J.S. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 2006, 15, R271–R277. [Google Scholar] [CrossRef] [PubMed]
- Nader, N.; Chrousos, G.P.; Kino, T. Interactions of the circadian CLOCK system and the HPA axis. Trends Endocrinol. Metab. 2010, 21, 277–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondratova, A.A.; Kondratov, R.V. The circadian clock and pathology of the ageing brain. Nat. Rev. Neurosci. 2012, 13, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Brzezinski, A.; Saada, A.; Miller, H.; Brzezinski-Sinai, N.A.; Ben-Meir, A. Is the aging human ovary still ticking?: Expression of clock-genes in luteinized granulosa cells of young and older women. J. Ovarian Res. 2018, 11, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Fahrenkrug, J.; Georg, B.; Hannibal, J.; Hindersson, P.; Grais, S. Diurnal rhythmicity of the clock genes Per1 and Per2 in the rat ovary. Endocrinology 2006, 147, 3769–3776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, P.J.; Hirata, M.; Yamauchi, N.; Hashimoto, S.; Hattori, M.A. Gonadotropic regulation of circadian clockwork in rat granulosa cells. Mol. Cell Biochem. 2007, 302, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Karman, B.N.; Tischkau, S.A. Circadian clock gene expression in the ovary: Effects of luteinizing hormone. Biol. Reprod. 2006, 75, 624–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, A.; Hoffmann, H.M. Role of core circadian clock genes in hormone release and target tissue sensitivity in the reproductive axis. Mol. Cell Endocrinol. 2020, 501, 110655. [Google Scholar] [CrossRef]
- Wang, W.; Yin, L.; Bai, L.; Ma, G.; Zhao, C.; Xiang, A.; Pang, W.; Yang, G.; Chu, G. Bmal1 interference impairs hormone synthesis and promotes apoptosis in porcine granulosa cells. Theriogenology 2017, 99, 63–68. [Google Scholar] [CrossRef]
- Kobayashi, M.; Watanabe, K.; Matsumura, R.; Anayama, N.; Miyamoto, A.; Miyazaki, H.; Miyazaki, K.; Shimizu, T.; Akashi, M. Involvement of the luteinizing hormone surge in the regulation of ovary and oviduct clock gene expression in mice. Genes Cells 2018, 23, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Xu, Y.; Miao, B.; Zhao, H.; Gao, J.; Zhou, C. Temporal effects of human chorionic gonadotropin on expression of the circadian genes and steroidogenesis-related genes in human luteinized granulosa cells. Gynecol. Endocrinol. 2017, 33, 570–573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, J.; Zhu, K.; Hong, Y.; Sun, Y.; Zhao, X.; Du, Y.; Chen, Z.J. Effects of BMAL1–SIRT1-positive cycle on estrogen synthesis in human ovarian granulosa cells: An implicative role of BMAL1 in PCOS. Endocrine 2016, 53, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Meng, N.; Bao, H.; Jiang, Y.; Yang, N.; Wu, K.; Wu, J.; Wang, H.; Kong, S.; Zhang, Y. Circadian gene PER1 senses progesterone signal during human endometrial decidualization. J. Endocrinol. 2019, 243, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Coelho, L.A.; Peres, R.; Amaral, F.G.; Reiter, R.J.; Cipolla-Neto, J. Daily differential expression of melatonin-related genes and clock genes in rat cumulus-oocyte complex: Changes after pinealectomy. J. Pineal Res. 2015, 58, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Toffol, E.; Heikinheimo, O.; Partonen, T. Biological rhythms and fertility: The hypothalamus–pituitary–ovary axis. Chron. Physiol. Ther. 2016, 6, 15. [Google Scholar]
- Nagao, S.; Iwata, N.; Soejima, Y.; Takiguchi, T.; Aokage, T.; Kozato, Y.; Otsuka, F. Interaction of ovarian steroidogenesis and clock gene expression modulated by bone morphogenetic protein-7 in human granulosa cells. Endocrinol. J. 2019, 66, 157–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, X.; Taylor, M.J.; Cohen, E.; Hanna, N.; Mota, S. Circadian clock, time- restricted feeding and reproduction. Int. J. Mol. Sci. 2020, 21, 831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, A.; Sellix, M.T. The Circadian Timing System and Environmental Circadian Disruption: From Follicles to Fertility. Endocrinology 2016, 157, 3366–3373. [Google Scholar] [CrossRef]
- Mereness, A.L.; Murphy, Z.C.; Forrestel, A.C.; Butler, S.; Ko, C.; Richards, J.S.; Sellix, M.T. Conditional deletion of Bmal1 in ovarian theca cells disrupts ovulation in female mice. Endocrinology 2016, 157, 913–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Zhai, J.; Chu, W.; Geng, X.; Chen, Z.J.; Du, Y. Altered circadian clock as a novel therapeutic target for constant darkness-induced insulin resistance and hyperandrogenism of polycystic ovary syndrome. Transl. Res. 2020, 219, 13–29. [Google Scholar] [CrossRef]
- Sellix, M.T. Circadian clock function in the mammalian ovary. J. Biol. Rhythm. 2015, 30, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Sciarra, F.; Franceschini, E.; Campolo, F.; Gianfrilli, D.; Pallotti, F.; Paoli, D.; Isidori, A.M.; Venneri, M.A. Disruption of circadian rhythms: A crucial factor in the etiology of infertility. Int. J. Mol. Sci. 2020, 21, 3943. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.H.; Fischer, D.F.; Kalsbeek, A.; Garidou-Boof, M.L.; Vliet, J.V.D.; Heijningen, C.V.; Liu, R.Y.; Zhou, J.N.; Swaab, D.F. Pineal clock gene oscillation is disturbed in Alzheimer’s disease, due to functional disconnection from the master clock. FASEB J. 2006, 20, 1874–1876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, K.; Meng, F.; Francis, H.; Wu, N.; Chen, L.; Kennedy, L.; Zhou, T.; Franchitto, A.; Onori, P.; Gaudio, E.; et al. Melatonin and circadian rhythms in liver diseases: Functional roles and potential therapies. J. Pineal Res. 2020, 68, e12639. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, M.; Kuhn, R.; Krug, L.; Korf, H.W.; Stehle, J.H. Rhythmic variation in beta1-adrenergic receptor mRNAlevels in the rat pineal gland: Circadian and developmentalregulation. Eur. J. Neurosci. 1998, 10, 2896–2904. [Google Scholar] [CrossRef] [PubMed]
- Takekida, S.; Yan, L.; Maywood, E.S.; Hastings, M.H.; Okamura, H. Differential adrenergic regulation of the circadian expression of the clock genes Period1 and Period2 inthe rat pineal gland. Eur. J. Neurosci. 2000, 12, 4557–4561. [Google Scholar] [CrossRef] [PubMed]
- Fukuhara, C.; Dirden, J.C.; Tosini, G. Circadian expression of period 1, period 2, and arylalkylamine N-acetyltransferasemRNA in the rat pineal gland under different light conditions. Neurosci. Lett. 2000, 286, 167–170. [Google Scholar] [CrossRef]
- Fukuhara, C.; Yamazaki, S.; Liang, J. Pineal circadianclocks gate arylalkylamine N-acetyltransferase gene expressionin the mouse pineal gland. J. Neurochem. 2005, 93, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Wongchitrat, P.; Felder-Schmittbuhl, M.P.; Govitrapong, P.; Phansuwan-Pujito, P.; Simonneaux, V.A. Noradrenergic sensitive endogenous clock is present in the rat pineal gland. Neuroendocrinology 2011, 94, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Von Gall, C.; Schneider-Huther, I.; Pfeffer, M.; Dehghani, F.; Korf, H.W.; Stehle, J.H. Clock gene protein mPER1is rhythmically synthesized and under cAMP control in themouse pineal organ. J. Neuroendocrinol. 2001, 13, 313–316. [Google Scholar] [CrossRef]
- Simonneaux, V.; Poirel, V.J.; Garidou, M.L.; Nguyen, D.; Diaz-Rodriguez, E.; Pevet, P. Daily rhythm andregulation of clock gene expression in the rat pineal gland. Mol. Brain Res. 2004, 120, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Vriend, J.; Reiter, R.J. Melatonin feedback on clock genes: A theory involving the proteasome. J. Pineal Res. 2015, 58, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Priya, M.R.; Nanthini, A.; Bini, K.P. Polycystic ovary syndrome: An updated review. Int. J. Health Allied Sci. 2019, 8, 229–235. [Google Scholar] [CrossRef]
- Azziz, R. PCOS in 2015: New insights into the genetics of polycistics ovary syndrome. Nat. Rev. Endocrinol. 2016, 12, 74–75. [Google Scholar] [CrossRef] [PubMed]
- Stein, I.; Leventhal, M. Amenorrhea associated with bilateral polycystic ovaries. Am. J. Obstet. Gynecol. 1935, 29, 181–191. [Google Scholar] [CrossRef]
- Rotterdam ESHRE/ASRM-Sponsered PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004, 81, 19–25. [Google Scholar] [CrossRef] [PubMed]
- El Hayek, S.; Bitar, L.; Hamdar, L.H.; Mirza, F.G.; Daoud, G. Poly Cystic Ovarian Syndrome: An Updated Overview. Front. Physiol. 2016, 7, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connolly, F.; Rae, M.T.; Späth, K.; Boswell, L.; McNeilly, A.S.; Duncan, W.C. In an Ovine Model of Polycystic Ovary Syndrome (PCOS) prenatal androgens suppress female renalgluconeogenesis. PLoS ONE 2015, 10, e0132113. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.J.; Ullah, A.; Basit, S. Genetic Basis of Polycystic Ovary Syndrome (PCOS): Current Perspectives. Appl. Clin. Genet. 2019, 12, 249–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sam, S.; Ehrmann, D.A. Pathogenesis and consequences of disordered sleep in PCOS. Clin. Med. Insights Reprod. Health 2019, 13, 1179558119871269. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Liu, C.; Li, Y.; Jiang, H.; Yang, P.; Tang, J.; Xu, Y.; Wang, H.; He, Y. Loss-of-function mutations with circadian rhythm regulator Per1/Per2 lead to premature ovarian insufficiency. Biol. Reprod. 2019, 100, 1066–1072. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.; Li, S.; Hu, M.; Di, F.; Liu, J.; Du, Y. Decreased brain and muscle ARNT-like protein 1 expression mediated the contribution of hyperandrogenism to insulin resistance in polycystic ovary syndrome. Reprod. Biol. Endocrinol. 2020, 18, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S.J. Polycystic ovary syndrome (PCOS), an inflammatory, systemic, lifestyle endocrinopathy. J. Steroid Biochem. Mol. Biol. 2018, 182, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Abinaya, S.; Siva, D.; Sabitha, R.; Achiraman, S. An overview of hyperandrogenism in PCOS and the prospective underlying factors. Res. J. Life Sci. Bioinform. Pharmac. Chem. Sci. 2019, 1, 179–186. [Google Scholar]
- Lee, Y.; Field, J.M.; Sehgal, A. Circadian Rhythms, Disease and Chronotherapy. J. Biol. Rhythms. 2021. [Google Scholar] [CrossRef] [PubMed]
- Sack, R.L.; Blood, M.L.; Lewy, A.J. Melatonin rhythms in night shift workers. Sleep 1992, 15, 434–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terzieva, D.D.; Orbetzova, M.M.; Mitkov, M.D.; Mateva, N.G. Serum melatonin in women with polycystic ovary syndrome. Folia Med. 2013, 55, 10–15. [Google Scholar] [CrossRef]
- Jain, P.; Jain, M.; Haldar, C.; Singh, T.B.; Jain, S. Melatonin and its correlation with testosterone in polycystic ovarian syndrome. J. Hum. Reprod. Sci. 2013, 6, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.J.R.; Indran, I.R.; Kramer, M.S.; Yong, E.-L. Phenotypic spectrum of polycystic ovary syndrome and their relationship to the circadian biomarkers, melatonin and cortisol. Endocrinol. Diabetes Metab. 2019, 2, e00047. [Google Scholar] [CrossRef] [Green Version]
- Mojaverrostami, S.; Asghari, N.; Khamisabadi, M.; HeidariKhoei, H. The role of melatonin in polycystic ovary syndrome: A review. Int. J. Reprod. Biomed. 2019, 17, 865–882. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xie, N.; Wu, Y.; Zhang, Q.; Zhu, Y.; Dai, M.; Zhou, J.; Pan, J.; Tang, M.; Cheng, Q.; et al. Association between circadian rhythm disruption and polycystic ovary syndrome. Fertil. Steril. 2021, 115, 771–781. [Google Scholar] [CrossRef]
- Basheer, M.; Rai, S.; Ghosh, H.; Hajam, Y.A. Therapeutic Efficacy of Melatonin against Polycystic Ovary Syndrome (PCOS) Induced by Letrozole in Wistar Rat. Pak. J. Biol. Sci. 2018, 21, 340–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, H.; Nakamura, Y.; Korkmaz, A.; Manchester, L.C.; Tan, D.X.; Sugino, N.; Reiter, R.J. Melatonin and the ovary: Physiological and pathophysiological implications. Fertil. Steril. 2009, 92, 328–343. [Google Scholar] [CrossRef] [PubMed]
- Chuffa, L.G.A.; Seiva, F.R.F.; Cucielo, M.S.; Silveira, H.S.; Reiter, R.J.; Lupi, L.A. Clock genes and the role of melatonin in cancer cells: An overview. Melatonin Res. 2019, 2, 133–157. [Google Scholar] [CrossRef]
- Erren, T.C.; Reiter, R.J.; Piekarski, C. Light, timing of biological rhythms, and chronodisruption in man. Naturwissenschaften 2003, 90, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Stevens, R.G. Electric light causes cancer? Surely, you’re joking, Mr. Stevens. Mutat. Res. 2009, 682, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Itoh, M.T.; Ishizuka, B.; Kuribayashi, Y.; Amemiya, A.; Sumi, Y. Melatonin, its precursors, and synthesizing enzyme activities in the human ovary. Mol. Hum. Reprod. 1999, 5, 402–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Clock Genes | Location | Proposed Function | References |
---|---|---|---|
PER1 | SCN, premature ovarian follicle | Participate in the coordination of GnRH and LH surge. | [46] Zheng et al., 2019 |
Melatonin helps in the regulation of the expression of clock genes at neural and peripheral tissue levels. | [47] Coelho et al., 2015; | ||
Knockdown of Per1 or Per2 hampers fertility by the disruption of the estrus cycle. | [48] Toffol et al., 2016 | ||
Per1 plays a role in sustainable pregnancy by stimulating progesterone secretion. | [46] Zhang et al., 2019 | ||
PER2 | SCN, ovarian corpora leutium, granulosa cell, and oviduct | Knockdown of PER2 leads to the flattened diurnal oscillation of all the core clock genes and to disorganized human endometrial stromal cells. | [45] Zhang et al., 2019 |
Per2 influence granulosa cell functions, including cell proliferation, steroid production, and LH receptor expression, (which are associated with the follicular recruitment and selection of follicles. | [49] Nagao et al., 2019 | ||
Mutations in Per2 genes reduces the number of ovarian follicles and leads to a adecrease in the fertility process. | [50] Pan et al., 2020 | ||
CRY1/CRY2 | SCN, leutinized granulosa cell | An age-related decreased expression of these clock genes may partially explain the decreased fertility and steroidogenesis of older women. | [37] Brzezinski et al., 2018 |
BMAL1 | SCN, ovary (antral follicles, corpora leutium), oviduct, GnRH neuron | Bmal1 expression in progesterone induction from leuteinized granulosa cells and maintenance of the postovulatory progesterone surge. | [49] Nagao et al., 2019 |
Expression of BMAL1 in the GnRH neuron determines the timing of secretion of GnRH. | [51] Sen and Sellix, 2016 | ||
Brain and muscle ARNT-like protein 1 (BMAL1) is necessary for fertility and is essential for follicle growth and steroidogenesis. | [45] Zhang et al., 2016 | ||
Minor changes in Bmal1 can alter the timing of LH surge. | [41] Sen and Hoffmann 2020 | ||
Deletion of BMAL1 in ovarian theca cells disrupts the ovulation. | [52] Mereness et al., 2016 | ||
Bmal1 plays a role in the molecular clock of ovarian steroidogenic cells, the production of progesterone, and other aspects of female reproduction. | [50] Pan et al., 2020 | ||
CLOCK | SCN, ovary (late antral follicle) | Knockdown of CLOCK expression in the ovary leads to a significant reduction in litter size and oocyte release. | [50] Pan et al., 2020 |
The heterodimer of BMAL1 and CLOCK determines the timing of secretion of the steroid hormone. | [53] Li et al., 2020 | ||
Rhythms of lhcgr expression are directly regulated by the BMAL1:CLOCK enhancer complex binding to E-box motifs in the lhcgr promoter. | [54] Sellix, 2015 | ||
Defective CLOCK protein enhances the rate of anovulation and pregnancy failure. | [55] Sciarra et al., 2020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzezinski, A.; Rai, S.; Purohit, A.; Pandi-Perumal, S.R. Melatonin, Clock Genes, and Mammalian Reproduction: What Is the Link? Int. J. Mol. Sci. 2021, 22, 13240. https://doi.org/10.3390/ijms222413240
Brzezinski A, Rai S, Purohit A, Pandi-Perumal SR. Melatonin, Clock Genes, and Mammalian Reproduction: What Is the Link? International Journal of Molecular Sciences. 2021; 22(24):13240. https://doi.org/10.3390/ijms222413240
Chicago/Turabian StyleBrzezinski, Amnon, Seema Rai, Adyasha Purohit, and Seithikurippu R. Pandi-Perumal. 2021. "Melatonin, Clock Genes, and Mammalian Reproduction: What Is the Link?" International Journal of Molecular Sciences 22, no. 24: 13240. https://doi.org/10.3390/ijms222413240
APA StyleBrzezinski, A., Rai, S., Purohit, A., & Pandi-Perumal, S. R. (2021). Melatonin, Clock Genes, and Mammalian Reproduction: What Is the Link? International Journal of Molecular Sciences, 22(24), 13240. https://doi.org/10.3390/ijms222413240