Human Glucose Transporters in Renal Glucose Homeostasis
Abstract
:1. Introduction
2. Glucose Metabolism in the Healthy Kidney
Overview of Renal Physiology
3. Glucose Transporters in Healthy Human Kidneys
3.1. Characteristics of Human Glucose Transporters
3.1.1. Human Renal GLUT Proteins
Glucose Transporter | Gene | Characteristics | References |
---|---|---|---|
GLUT1 | SLC2A1 | Expressed at the basolateral membrane of the epithelial cells in the S3 segment of the proximal tubule. GLUT1 releases glucose reabsorbed earlier by SGLT1 into the bloodstream. | [7,8,13,21,27] |
GLUT2 | SLC2A2 | Expressed at the basolateral membrane of the epithelial renal tubules. GLUT2 releases glucose, reabsorbed earlier by SGLT2, and fructose, reabsorbed by GLUT5, into the bloodstream. | [13,21,22,23,26] |
GLUT4 | SLC2A4 | Expressed in the glomerulus, mesangial cells, and podocytes. Its role in the human kidneys needs further investigation. | [13,27] |
GLUT5 | SLC2A5 | Expressed in the apical plasma membrane in the S3 segment of the proximal tubule cells. GLUT5 reabsorbs fructose from urine. | [13,29] |
GLUT8 | SLC2A8 | Expressed in the glomerulus and in podocytes. Its precise role in human kidneys needs further investigation. | [13,27] |
GLUT9 (earlier designated as GLUTX) | SLC2A9 | GLUT9 is expressed in the epithelial cells of proximal tubule; GLUT9a in the basolateral membrane; GLUT9b is localized on the apical pole. It is involved in transport of uric acid. | [13,15,21] |
GLUT10 | SLC2A10 | GLUT10 mRNA is detected at low levels in kidney. Its role in kidney remains unclear. | [13,32] |
GLUT11 (earlier designated as GLUT10) | SLC2A11 | In the human kidneys are expressed GLUT11-A and GLUT11-B isoforms, lack of expression of GLUT11-C isoform. Their role in human kidneys needs further investigation. | [13,33] |
GLUT12 (earlier designated as GLUT8) | SLC2A12 | Its expression was described in the renal distal tubules and collecting ducts in animal models of hypertension and diabetic nephropathy. | [13,34] |
GLUT13 (HMIT) | SLC2A13 | An H+/myo-inositol co-transporter that exhibits transport activity only for myo-inositol. Its function in kidney remains unknown. | [13,34,35] |
3.1.2. Human Renal Sodium-Dependent Glucose Co-Transporters
Glucose Transporter | Gene | Characteristics | References |
---|---|---|---|
SGLT1 | SLC5A1 | Expressed in the S3 segment of the proximal tubule on the luminal surface of the kidney cells. It reabsorbs glucose from urine, which is then released into the circulation by GLUT1. | [1,13,21,22,40,41,45] |
SGLT2 | SLC5A2 | Expressed in the S1 and S2 segments of the proximal tubule on the luminal surface of the epithelial cells. SGLT2 plays a major role in the reabsorption of glucose from urine, which is then released into the circulation via GLUT1. | [13,22,46] |
SGLT3 | SLC5A4 | Expressed in the proximal tubule of the human kidneys. Little is known about its expression and function. It may be responsible for the reabsorption of sodium. | [13,47] |
SGLT4 | SLC5A9 | Expressed in human kidney tissue, but few studies have been carried out regarding its function. It may be responsible for the reabsorption of mannose, and may be involved in mannose homeostasis. | [3,18,48] |
SGLT5 | SLC5A10 | Expressed in the human kidney cortex. Its physiological role in the kidney remains unknown. | [13,49] |
SGLT6 (SMIT2) | SLC5A11 | Its precise localization and function in human kidney remain unknown and need further investigation. | [13,50] |
SMIT1 | SLC5A3 | An Na+/myo-inositol co-transporter; however, its precise localization and function need further investigation. | [13,21,52] |
SMVT | SLC5A6 | Multivitamin co-transporter. Its precise localization and function in the kidney need further investigation. | [3,13,53] |
SMCT1 (AIT) | SLC5A8 | Expressed in the kidney, but its precise localization and function need further investigation. | [13,54,55] |
4. Renal Diseases Associated with Changes in Expression of Glucose Transporters
4.1. Glucose–Galactose Malabsorption
4.2. Familial Renal Glucosuria
4.3. Fanconi-Bickel Syndrome
4.4. Urate Metabolism Disorders
4.5. Severe Inflammation
4.6. Diabetic Kidney Disease
4.7. Renal Cancers
4.8. Metabolic Syndrome
5. Role of Glucose Transporters as Potential Targets in Kidney Disease
5.1. Diabetic Kidney
5.2. Renal Cancers
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Triplitt, C.L. Understanding the kidney’s role in blood glucose regulation. Am. J. Manag. Care 2012, 18, S11–S16. [Google Scholar]
- Szablewski, L. Distribution of glucose transporters in renal diseases. J. Biomed. Sci. 2017, 24, 64. [Google Scholar] [CrossRef] [Green Version]
- Wright, E.M. Glucose transport families SLC5 and SLC50. Mol. Asp. Med. 2013, 34, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Vallon, V. Glucose transporters in the kidney in health and disease. Pflügers Arch.-Eur. J. Physiol. 2020, 472, 1345–1370. [Google Scholar] [CrossRef]
- Gronda, E.; Jessup, M.; Jacoviello, M.; Palazzouli, A.; Napoli, C. Glucose metabolism in the kidney: Neurohormonal activation and heart failure development. Am. J. Heart Assoc. 2020, 9, e018889. [Google Scholar] [CrossRef]
- DeFronzo, L.A.; Norton, L.; Abdul-Ghani, M.R. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nature 2017, 13, 11–26. [Google Scholar] [CrossRef]
- Gerich, J.E. Role of the kidney in normal glucose homeostasis and in the hyperglycemia of diabetes mellitus: Therapeutic implications. Diabet. Med. 2010, 27, 136–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mather, A.; Polock, C. Glucose handling by the kidney. Kidney Int. 2011, 79 (Suppl. S120), S1–S6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitrakou, A. Kidney: Its impact on glucose homeostasis and hormonal regulation. Diabet. Res. Clin. Pract. 2011, 93 (Suppl. S1), S66–S72. [Google Scholar] [CrossRef]
- Veiner, D.; Verlander, J.W. Renal glucosuria metabolism and transport. Comp. Physiol. 2013, 3, 201–220. [Google Scholar]
- Saier, M.H., Jr. Families of transmembrane sugar transport proteins. Mol. Microbiol. 2000, 35, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Long, W.; Cheeseman, C.I. Structure of and functional insight into the GLUT family of membrane transporters. Cell Health Cytosk. 2015, 7, 167–183. [Google Scholar]
- Szablewski, L. Expression of glucose transporters in health. In Human Glucose Transporters in Health and Diseases; Cambridge Scholars Publishing, Lady Stephenson Library: Newcastle upon Tyne, UK, 2019; pp. 5–61. [Google Scholar]
- Uldry, M.; Thorens, B. The SLC2 family of facilitative hexose and polyol transporters. Pflügers Arch. 2004, 447, 480–489. [Google Scholar] [CrossRef] [Green Version]
- Mueckler, M.; Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol. Asp. Med. 2013, 34, 121–138. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.-Q.; Keating, A.F. Functional properties and genomic of glucose transporters. Curr. Genom. 2007, 8, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Uldry, M.; Ibberson, M.; Horisberger, J.-D.; Rieder, B.M.; Thorens, B. Identification of a mammalian H+-myo-inositol symporter expressed predominantly in the brain. EMBO J. 2001, 20, 4467–4477. [Google Scholar] [CrossRef] [PubMed]
- Wright, E.M.; Turk, E. The sodium/glucose cotransport family SLC5. Pflügers Arch.-Eur. J. Physiol. 2004, 447, 510518. [Google Scholar] [CrossRef] [Green Version]
- Turk, E.; Wright, E.M. Membrane topology motifs in the SGLT cotransporter family. J. Membr. Biol. 1997, 159, 1–20. [Google Scholar] [CrossRef]
- Bianchi, L.; Diez-Sampedro, A. A single amino acid change converts the sugar sensor SGLT3 into a sugar transporter. PLoS ONE 2010, 5, e10241. [Google Scholar] [CrossRef]
- Augustin, R.; Mayoux, E. Mammalian sugar transporters. In Glucose Homeostasis; Szablewski, L., Ed.; InTech Open: Rijeka, Croatia, 2014; pp. 3–36. [Google Scholar]
- Woods, I.S.; Trayhurn, P. Glucose transporters (GLUT and SGLT): Expanded families of sugar transport protein. Br. J. Nutr. 2003, 89, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Thorens, B.; Lodish, H.F.; Brown, D. Differential localization of two glucose transporter isoforms in rat kidney. Am. J. Physiol. 1990, 259, C280–C294. [Google Scholar] [CrossRef]
- Chin, E.; Zamah, A.M.; Landau, D.; Grönbcek, H.; Flyvbierg, A.; LeRoith, D.; Bondy, C.A. Changes in facilitative glucose transporter messenger ribonucleic acid levels in the diabetic rat kidney. Endocrinology 1997, 138, 1267–1275. [Google Scholar] [CrossRef]
- Holman, G.D. Structure, function and regulation of mammalian glucose transporters in the SLC2 family. Pflügers Arch.-Eur. J. Physiol. 2020, 472, 1155–1175. [Google Scholar] [CrossRef]
- Wong, G.W. Renal glucose transporters “sweeten the pot”. Exp. Physiol. 2016, 101, 693–694. [Google Scholar] [CrossRef] [Green Version]
- Brossius, F.C.; Heilig, C.W. Glucose transporters in diabetic nephropathy. Pediatr. Nephrol. 2005, 20, 447–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewko, B.; Maryn, A.; Latawiec, E.; Daca, A.; Rybczynska, A. Angiotensin II modulates podocyte glucose transport. Front. Endocrinol. 2018, 9, 418. [Google Scholar] [CrossRef]
- Sugawara-Yokoo, M.; Suzuki, T.; Matsuzaki, T.; Naruse, T.; Takata, K. Presence of glucose transporter GLUT5 in the S3 proximal tubules in the rat kidney. Kidney Int. 1999, 56, 1022–1028. [Google Scholar] [CrossRef] [Green Version]
- Douard, V.; Ferraris, R.P. Regulation of the fructose transporter GLUT5 in health and disease. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E227–E237. [Google Scholar] [CrossRef] [Green Version]
- Schiffer, M.; Susztak, K.; Ranaletta, M.; Raff, A.C.; Böttinger, E.P.; Charron, M.J. Localization of the GLUT8 glucose transporter in murine kidney and regulation in vivo in nondiabetic and diabetic conditions. Am. J. Physiol. Renal. Physiol. 2005, 289, F186–F193. [Google Scholar] [CrossRef] [PubMed]
- McVie-Wylie, A.J.; Lamson, D.R.; Chen, Y.T. Molecular cloning of a novel member of the family of transporters SLC2A10 (GLUT10), localized on chromosome 20q13:1: A candidate gene for NIDDM susceptibility. Genomics 2001, 72, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Scheepers, A.; Schmidt, S.; Manolescu, A.; Cheeseman, C.I.; Bell, A.; Zahn, C.; Joost, H.-G.; Schürmann, A. Characterization of the human SLC2A11 (GLUT11) gene: Alternative promoter usage, function, expression, and subcellular distribution of three isoforms, and lack of mouse orthologue. Mol. Membr. Biol. 2005, 22, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Linden, K.C.; DeHaan, C.L.; Zhang, Y.; Glowacka, S.; Cox, A.J.; Kelly, D.J.; Rogers, S. Renal expression and localization of the facilitative glucose transporters GLUT1 and GLUT12 in animal models of hypertension and diabetic nephropathy. Am. J. Physiol. Ren. Physiol. 2006, 290, F205–F213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augustin, R. The protein family of glucose transport facilitators: It’s not only about glucose after all. JUBMB 2010, 62, 315–333. [Google Scholar] [CrossRef]
- Wasik, A.A.; Lehtonen, S. Glucose transporters in diabetic kidney disease—Friends or foes? Front. Endocrinol. 2018, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vrhovac, I.; Balen, E.D.; Klessen, D.; Burger, C.; Breljak, D.; Kraus, O.; Radovic, N.; Jadrijevic, S.; Aleksic, I.; Walles, T.; et al. Localizations of Na-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflügers Arch.-Eur. J. Physiol. 2015, 467, 1881–1898. [Google Scholar] [CrossRef] [PubMed]
- Madunic, I.V.; Breljak, D.; Karaica, D.; Koepsell, H.; Sabolic, I. Expression profiling and immunolocalization of Na+-D-glucose transporter 1 in mice employing knockout mice as specificity control indicate novel locations and differences between mice and rats. Pflügers Arch.-Eur. J. Physiol. 2017, 469, 1545–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Wei, J.; Jiang, S.; Xu, L.; Wang, L.; Cheng, F.; Buggs, J.; Koepsell, H.; Vallon, V.; Liu, R. Macula densa SGLT1-NOS1-TGF pathway—A new mechanism for glomerular hyperfiltration during hyperglycemia. J. Am. Soc. Nephrol. 2019, 30, 578–593. [Google Scholar] [CrossRef] [Green Version]
- Marsenic, O. Glucose control by the kidney: An emerging target in diabetes. Am. J. Kidney Dis. 2009, 53, 875–883. [Google Scholar] [CrossRef] [Green Version]
- Mota, M.; Mota, E.; Dinu, I.-R. The role of the kidney in glucose homeostasis. In Treatment of Type 2 Diabetes; Croniger, C., Ed.; InTech Open: Rijeka, Croatia, 2015; pp. 3–21. [Google Scholar]
- Hummel, C.S.; Lu, C.; Loo, D.D.; Hirayama, B.A.; Voss, A.A.; Wright, E.M. Glucose transport by human renal Na+/D-glucose cotransporters. Am. J. Physiol. Cell Physiol. 2011, 30, C14–C21. [Google Scholar] [CrossRef] [Green Version]
- Sabino-Silva, R.; Mori, R.C.; David-Silva, A.; Okamoto, M.M.; Freitas, H.S.; Machadou, F. The Na+/glucose cotransporters: From genes to therapy. Braz. J. Med. Biol. Res. 2010, 43, 1019–1026. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.J.; DeFronzo, R.A. Why do SGLT2 inhibitors inhibit only 30–50% of renal glucose reabsorption in humans? Diabetes 2012, 61, 2199–2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, E.M.; Loo, D.D.; Hirayama, B.A. Biology of human sodium glucose transporters. Physiol. Rev. 2011, 9, 733–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanai, Y.; Lee, W.S.; You, G.; Brown, D.; Hediger, M.A. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J. Clin. Investig. 1994, 93, 397–404. [Google Scholar] [CrossRef]
- Kothinti, R.K.; Blodgett, A.B.; North, P.E.; Roman, R.J.; Tabatabai, N.M. A novel SGLT is expressed in the human kidney. Eur. J. Pharmacol. 2012, 690, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Tazawa, S.; Yamato, T.; Fujikura, H.; Hiratochi, M.; Itoh, F.; Tomae, M.; Takemura, Y.; Maruyama, H.; Sugiyama, T.; Wakamatsu, A.; et al. SLC5A9/SGLT4, a new Na+-dependent glucose transporter, is an essential for mannose, 1,5-anhydro-D-glucitol and fructose. Life Sci. 2005, 76, 1039–1050. [Google Scholar] [CrossRef] [PubMed]
- Grempler, R.; Augustin, R.; Froehner, S.; Hildebrandt, T.; Simon, E.; Mark, M.; Eickelmann, P. Functional characterisation of human SGLT-5 as a novel kidney-specific sodium-dependent sugar transporter. FEBS Lett. 2012, 586, 248–253. [Google Scholar] [CrossRef] [Green Version]
- Lahjouji, K.; Aouameur, R.; Bissonnette, P.; Coady, M.J.; Bichet, D.G.; Lapointe, J.Y. Expression and functionality of the Na+/myo-inositol cotransporter SMIT2 in rabbit kidney. Biochim. Biophys. Acta 2007, 1768, 1154–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, L.J.; Hsiao, S.H.; Tsai, L.M.; Lin, C.Y.; Tsai, J.J.; Liou, D.M.; Lan, J.L. The sodium-dependent glucose cotransporter SLC5A11 as an autoimmune modifier gene in SLE. Tis. Antig. 2008, 71, 114–126. [Google Scholar] [CrossRef]
- Coady, M.J.; Wallendorf, B.; Gagnon, D.G.; Lapointe, J.Y. Identification of a novel Na+/myo-inositol cotransporter. J. Biol. Chem. 2002, 277, 35219–35224. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho, F.D.; Quick, M. Surprising substrate versatility in SLC5A6: Na+-coupled I− transport by the human Na+/multivitamin transporter (hSMVT). J. Biol. Chem. 2011, 286, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Coady, M.J.; Wallendorf, B.; Bourgeois, F.; Charron, F.; Lapointe, J.Y. Establishing a definitive stoichiometry for Na+/monocarboxylate cotransporter SMCT1. Biophys. J. 2007, 93, 2325–2331. [Google Scholar] [CrossRef] [Green Version]
- Miauchi, S.; Gopal, E.; Fei, Y.J.; Ganopathy, V. Functional identification of SLC5A8, a tumor suppressor down-regulated in colon cancer, as a Na+-coupled transporter for short-chain fatty acids. J. Biol. Chem. 2004, 279, 13293–13296. [Google Scholar] [CrossRef] [Green Version]
- Lostao, M.P.; Loo, D.D.; Meeuwisse, G.; Martin, M.G.; Wright, E.M. The molecular basis of glucose galactose malabsorption in a large Swedish pedigree. Function 2021, 2, 5. [Google Scholar] [CrossRef]
- Wright, E.M.; Hirayama, B.A.; Loo, D.F. Active sugar transport in health and disease. J. Inter. Med. 2007, 261, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.G.; Turk, E.; Lastao, M.P.; Kerner, C.; Wright, E.M. Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption. Nat. Genet. 1996, 12, 216–220. [Google Scholar] [CrossRef]
- Lindquyist, B.; Meeuwisse, G.W. Chronic diarrhea caused by monosaccharide malabsorption. Acta Pediatr. 1962, 51, 674–685. [Google Scholar] [CrossRef] [PubMed]
- Calado, J.; Santer, R.; Rueff, J. Effect of kidney disease on glucose handling (including genetic defects). Kidney Int. 2011, 79, S7–S13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tasic, V.; Slaveska, N.; Blau, N.; Santer, R. Nephrolithiasis in a child with glucose-galactose malabsorption. Padiatr. Nephrol. 2004, 19, 244–246. [Google Scholar] [CrossRef]
- Van den Heuvel, L.P.; Assink, K.; Willemsen, M.; Monnens, L. Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2). Hum. Genet. 2002, 111, 544–547. [Google Scholar] [CrossRef] [PubMed]
- Brodehl, J.; Oemar, B.S.; Hoyer, P.F. Renal glucosuria. Pediatr. Nephrol. 1987, 1, 502–508. [Google Scholar] [CrossRef]
- Zhao, X.; Cui, L.; Lang, Y.; Iliu, T.; Lu, J.; Wang, C.; Tuffery-Giraud, S.; Bottillo, I.; Wang, X.; Shao, L. A recurrent deletion in the SLC5A2 gene including the intron 7, branch site responsible for familial renal glucosuria. Sci. Rep. 2016, 6, 33920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calado, J.; Sznajer, Y.; Metzger, D.; Rita, A.; Hogar, M.C.; Kattamis, A.; Scharf, M.; Tasic, V.; Greil, J.; Brinkert, F.; et al. Twenty-one additional cases of familial renal glucosuria: Absence of genetic heterogeneity, high prevalence of private mutations and further evidence of volume depletion. Nephrol. Dial. Transplant. 2008, 23, 3874–3879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santer, R.; Kinner, M.; Lassen, C.L.; Schneppenheim, R.; Eggert, P.; Bald, M.; Brodehl, J.; Daschner, M.; Ehrich, J.H.H.; Kemper, M.; et al. Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J. Am. Soc. Nephrol. 2003, 14, 2873–2882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanconi, G.; Bickel, H. Die chronische Aminoacidurie (Aminosäurediabetes oder nephrotischglukosuricher Zwergwuchs) bei der Glycogenose und der Cystinkrankenheit. Helv. Pediatr. Acta 1949, 4, 359–396. [Google Scholar]
- Santer, R.; Steinmann, B.; Schaub, J. Fanconi-Bickel syndrome—A congenital defect of facilitative glucose transport. Curr. Mol. Med. 2002, 2, 213–227. [Google Scholar] [CrossRef]
- Sullivan, M.A.; Forbes, J.M. Glucose and glycogen in the diabetic kidney: Heroes or villains. EBioMedicine 2019, 47, 590–597. [Google Scholar] [CrossRef] [Green Version]
- Santer, R.; Groth, S.; Kinner, M.; Dombrowski, A.; Berry, G.T.; Brodehl, B.; Leonard, J.V.; Moses, S.; Norgren, S.; Skovby, F.; et al. The mutation spectrum of the facilitative glucose transporter gene SLC2A2 (GLUT2) in patients with Fanconi-Bickel syndrome. Hum. Genet. 2002, 111, 21–29. [Google Scholar] [CrossRef]
- Pascual, J.M.; Wang, D.; Lecumberri, B.; Yang, H.; Mao, X.; Yang, R.; De Vivo, D.C. GLUT1 deficiency and other glucose transporters disease. Eur. J. Endocrinol. 2004, 150, 627–633. [Google Scholar] [CrossRef] [Green Version]
- Santer, R.; Klepper, J. Disorders of glucose transport. In Inborn Metabolic Diseases. Diagnosis and Treatment; Saudubray, J.M., Baumgartner, M., Walter, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 151–157. [Google Scholar]
- Santer, R.; Schneppenheim, R.; Dombrowski, A.; Gotze, H.; Steinmann, B.; Schaub, J. Mutations in GLUT2, the gene for liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nat. Genet. 1997, 17, 324–326. [Google Scholar] [CrossRef]
- So, A.; Thorens, B. Uric acid transport and disease. J. Clin. Investig. 2010, 120, 1791–1799. [Google Scholar] [CrossRef] [Green Version]
- Döring, A.; Gieger, C.; Mehta, D.; Gohlke, H.; Prakisch, H.; Coassin, S.; Fischer, G.; Henke, K.; Klopp, N.; Kronenberg, F.; et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat. Genet. 2008, 40, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Mou, L.; Jiang, L.; Hu, Y. A novel homozygous GLUT9 mutation cause recurrent exercise-induced acute renal failure and posterior revisable encephalopathy syndrome. J. Nephrol. 2015, 28, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Dinour, D.; Gray, N.; Campbell, S.; Shu, X.; Sawyer, L.; Richardson, W.; Rechavi, G.; Amariglio, N.; Ganon, L.; Sela, B.-A.; et al. Homozygous SLC2A9 mutations cause severe renal hypouricemia. J. Am. Soc. Nephrol. 2010, 21, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, H.; Chiba, T.; Nagamori, S.; Nakayama, A.; Domoto, H.; Phetdee, K.; Wiriyasermku, P.; Kikuchi, Y.; Oda, T.; Nishiuyama, J.; et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am. J. Hum. Genet. 2008, 83, 744–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, C.; Höchere, K.; Bucher, M. Regulation of renal glucose transporter during severe inflammation. Am. J. Physiol. Renal. Physiol. 2007, 292, F804–F811. [Google Scholar] [CrossRef]
- Camussi, G.; Ronco, C.; Monterucchio, G.; Piccoli, G. Role of soluble mediators in sepsis and renal failure. Kidney Int. Suppl. 1998, 66, S38–S42. [Google Scholar]
- Bucher, M.; Kees, F.; Taeger, K.; Kurtz, A. Cytokines down-regulate α1-adrenergic receptor expression during endotoxemia. Crit. Care Med. 2003, 31, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Zanoli, L.; Granata, A.; Lentini, P.; Rastelli, S.; Fatuzzo, P.; Rapisarda, F.; Castellino, P. Sodium-glucose linked transporter-2 inhibitors in chronić kidney disease. Sci. World 2015, 2015, 317507. [Google Scholar] [CrossRef] [Green Version]
- Meyer, C.; Stumvoll, M.; Nadkarni, J.; Dostou, J.; Mitrakou, A.; Gerich, J. Abnormal renal and hepatic metabolism in type 2 diabetes. J. Clin. Investig. 1998, 102, 619–624. [Google Scholar] [CrossRef]
- Stanton, R.C. Sodium glucose transporter 2 (SGLT2) inhibition decreases hyperfiltration. Is there a role for SGLT2 inhibitors in diabetic kidney disease? Circulation 2014, 129, 542–544. [Google Scholar] [CrossRef] [Green Version]
- Gembardt, F.; Bartgaun, C.; Jarzebska, N.; Mayoux, E.; Todorov, V.T.; Hohenstain, B.; Hugo, C. The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension. Am. J. Physiol. Ren. Physiol. 2014, 307, F317–F325. [Google Scholar] [CrossRef] [Green Version]
- Vallon, V.; Rose, M.; Gerasimova, M.; Satriano, J.; Platt, K.A.; Koepsell, H.; Cunard, R.; Sharma, K.; Thomson, S.C.; Rieg, T. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am. J. Physiol. Ren. Physiol. 2013, 304, F156–F167. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.X.; Levi, J.; Luo, Y.; Myakala, K.; Herman-Edelstein, M.; Qiu, L.; Wang, D.; Peng, Y.; Grenz, A.; Lucia, S.; et al. SGLT2 expression is increased in human diabetic nephropathy: SGLT2 inhibition decreases renal lipid accumulation, inflammation and the development of nephropathy in diabetic mice. J. Biol. Chem. 2017, 292, 5335–5348. [Google Scholar] [CrossRef] [Green Version]
- Ghezi, C.; Wright, E.M. Regulation of the human Na+ dependent glucose cotransporter hSGLT2. Am. J. Physiol. Cell Physiol. 2012, 303, C348–C354. [Google Scholar] [CrossRef] [Green Version]
- Kamran, M.; Peterson, R.G.; Dominiquez, J.H. Overexpression of GLUT2 gene in renal proximal tubules of diabetic Zucker rats. J. Am. Soc. Nephrol. 1997, 8, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Tabatabai, N.M.; Sharma, M.; Blumental, S.S.; Petering, D.H. Enhanced expression of sodium glucose cotransporters in the kidneys of diabetic Zucker rats. Diab. Res. Clin. Pract. 2009, 83, e27–e30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norton, L.; Shannen, C.E.; Fourcaudot, M.; Hu, C.; Wang, N.; Song, J.; Abdul-Ghani, M.; DeFronzo, R.A.; Ren, J.; Jia, W.; et al. Sodium-glucose co-transporter (SGLT) and glucose transporter (GLUT) expression in the kidney of type 2 diabetic subjects. Diabet. Obes. Metab. 2017, 19, 1322–1326. [Google Scholar] [CrossRef]
- Rahmoune, H.; Thompson, P.W.; Ward, J.M.; Smith, C.D.; Hong, G. Glucose transporters in human proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 2005, 54, 3427–3433. [Google Scholar]
- Vestri, S.; Okamoto, M.M.; de Freitas, H.S.; Dos Santos, R.A.; Nunes, M.T.; Morimatsu, M.; Heimann, J.C.; Machado, U.F. Changes in sodium or glucose filtration rate modulate expression of glucose transporters in renal proximal tubular cells of rat. J. Membr. Biol. 2001, 182, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Solini, A.; Rossi, C.; Mazzanti, C.M.; Proietti, A.; Koepsell, H.; Ferrannini, E. Sodium-glucose co-transporter (SGLT)2 and SGLT1 renal expression in patient with type 2 diabetes. Diabet. Obes. Metab. 2017, 19, 1289–1294. [Google Scholar] [CrossRef]
- Diez-Sampedro, A.; Hirayama, B.A.; Osswald, C.; Garboulev, V.; Baumgarten, K.; Volk, C.; Wright, E.M.; Koepsell, H. A glucose sensor hinding in a family of transporters. Proc. Natl. Acad. Sci. USA 2003, 100, 11753–11758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pruijm, M.; Wuerzner, G.; Maillard, M.; Bovet, P.; Renaud, C.; Bochud, M.; Burnier, M. Glomerular hyperfiltration and increased proximal sodium reabsorption in subjects with type 2 diabetes or impaired fasting glucose in a population of the African regions. Nephrol. Dial. Transplant. 2010, 25, 2225–2231. [Google Scholar] [CrossRef] [Green Version]
- Mbanya, J.C.; Thomas, T.H.; Taylor, R.; Alberti, K.G.; Wilkinson, R. Increased proximal tubular sodium reabsorption in hypertensive patients with type 2 diabetes. Diab. Med. 1989, 6, 614–620. [Google Scholar]
- O’Hagan, M.; Howey, J.; Greene, S.A. Increased proximal tubular reabsorption of sodium in childhood diabetes mellitus. Diab. Med. 1991, 8, 44–48. [Google Scholar] [CrossRef]
- Pfäffin, A.; Brodbeck, K.; Heilig, C.W.; Härring, H.U.; Schleicher, E.D.; Weigert, C. Increased glucose uptake and metabolism in mesangial cells overexpressing glucose transporter 1 increases interleukin-6 and vascular endothelial growth factor production: Role of AP-1 and HIF-1α. Cell Physiol. Biochem. 2006, 18, 199–210. [Google Scholar] [CrossRef]
- Gnudi, L.; Thomas, S.M.; Viberti, G. Mechanical forces in diabetic kidney disease: A trigger for impaired glucose metabolism. J. Am. Soc. Nephrol. 2007, 18, 2226–2232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, C.C.; Kao, W.L.; Steffes, M.W.; Gambir, T.; Brancati, F.L.; Heilig, C.W.; Shuldiner, A.R.; Boerwinkle, E.A.; Coresh, J. Genetic variation of glucose transporter-1 (GLUT1) and albuminuria in 10,278 European and African Americans: A case-control study in the atherosclerosis risk in communities (ARIC) study. BMC Med. Genet. 2011, 12, 16. [Google Scholar] [CrossRef] [Green Version]
- Marks, J.; Carvou, N.J.; Debnam, E.S.; Srai, S.K.; Unwin, R.J. Diabetes increases facilitative glucose uptake and GLUT2 expression at the rat proximal tubule brush border membrane. J. Physiol. 2003, 553, 137–147. [Google Scholar] [CrossRef]
- Dion, F.; Durmayne, C.; Henley, N.; Beauchemin, S.; Arias, E.B.; Leblond, F.A.; Lesage, S.; Lefrançois, S.; Cartee, G.D.; Pichette, V. Mechanism of insulin resistance in a rat model of kidney disease and the risk of developing type 2 diabetes. PLOS ONE 2017, 12, e0176650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gnidić, M.; Fucak, I.K. Renal cell carcinoma: Molecular pathways and targeted therapy. Period. Biol. 2014, 116, 393–398. [Google Scholar]
- Szablewski, L. Expression of glucose transporters in diseases. In Human Glucose Transporters in Health and Diseases; Cambridge Scholars Publishing, Lady Stephenson Library: Newcastle upon Tyne, UK, 2019; pp. 63–163. [Google Scholar]
- Page, T.; Hodgkinson, A.D.; Ollerenshow, M.; Hammonds, J.C.; Demaine, A.G. Glucose transporter polymorphisms are associated with clear-cell renal carcinoma. Cancer Genet. Cytogenet. 2005, 163, 151–155. [Google Scholar] [CrossRef]
- Calvo, M.B.; Figurea, A.; Pulido, E.G.; Campelo, R.G.; Aparicio, L.A. Potential role of sugar transporters in cancer and their relationship with anticancer therapy. Int. J. Endocrinol. 2010, 2010, 205357. [Google Scholar] [CrossRef] [Green Version]
- Singer, K.; Kastenberger, M.; Gottfried, H.; Hammerschmidt, C.G.; Büttner, M.; Aigner, M.; Seliger, B.; Walter, B.; Schlösser, H.; Hartmann, A.; et al. Warburg phenotype in renal cell carcinoma: A high expression of glucose-transporter (GLUT-1) correlates with low CD8+ T-cell infiltration in the cancer. Int. J. Cancer 2011, 128, 2085–2095. [Google Scholar] [CrossRef]
- Kobayashi, M.; Uematsu, T.; Tokura, Y.; Takei, K.; Sakamoto, K.; Narimatsu, T.; Nukui, A.; Kamai, T. Immunohistochemical expression sodium-dependent glucose transporter-2 (SGLT-2) in clear cell renal carcinoma: Possible prognostic implications. Int. Braz. J. Urol. 2019, 45, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Ozcan, A.; Shen, S.S.; Zhai, Q.J.; Truong, L.D. Expression of GLUT1 in primary renal tumors. Morphologic and biologic implications. Am. J. Clin. Pathol. 2007, 128, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.A.; Sutphin, P.D.; Nguyen, P.; Turcotte, S.; Lai, E.W.; Banh, A.; Reynolds, G.E.; Chi, J.-T.; Wu, J.; Solow-Cordero, D.E.; et al. Targeting GLUT1 and the Warburg effect in renal cell carcinoma as by chemical synthetic lethality. Sci. Transl. Med. 2011, 3, 94ra70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aparicio, L.M.A.; Villamil, V.M.; Calvo, M.B.; Rubira, L.V.; Rois, J.M.; Valladares-Ayerbes, M.; Campelo, R.G.; Bolós, M.V.; Pulido, E.G. Glucose transporter expression and the potential role of fructose in renal cell carcinoma: A correlation with pathological parameters. Mol. Med. Rep. 2010, 3, 575–580. [Google Scholar] [CrossRef]
- Suganuma, M.; Segade, F.; Matsuzu, K.; Bowden, D.W. Differential expression of facilitative glucose transporters in normal and tumour kidney tissues. BJU Inter. 2007, 99, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Soltysova, A.; Breza, J.; Takacova, M.; Feruszova, J.; Hudecova, S.; Nowotna, B.; Rozborilova, E.; Pastorekova, S.; Kadasi, L.; Krizanova, O. Deregulation of energetic metabolism in the clear cell renal carcinoma: A multiple pathway analysis based on microarray profiling. Int. J. Oncol. 2015, 47, 287–295. [Google Scholar] [CrossRef]
- Ng, H.-Y.; Lee, Y.-T.; Kuo, W.-H.; Huang, P.-C.; Lee, W.-C.; Lee, C.-T. Alterations of renal epithelial glucose and uric acid transporters in fructose induced metabolic syndrome. Kidney Blood Press. Res. 2018, 43, 1822–1831. [Google Scholar] [CrossRef] [PubMed]
- Ares, G.R.; Ortiz, P.A. Direct renal effects of a fructose-enriched diet: Interaction with high salt intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 309, R1078–R1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanaspa, M.A.; Tapia, E.; Soto, V.; Sautin, Y.; Sánchez-Lozada, L.G. Uric acid and fructose: Potential biological mechanisms. Smin. Nephrol. 2011, 31, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Lehnen, A.M.; Leguisamo, N.M.; Dias, L.D.; Pinto, G.H.; Okamoto, N.M.; Machado, U.F.; Schaan, B.D. Changes in renal glucose transporters in an animal model of metabolic syndrome. Horm. Metab. Res. 2013, 45, 840–843. [Google Scholar] [CrossRef]
- Petersen, C. Analyse des phloridizins. Ann. Acad. Sci. Fr. 1835, 15, 178. [Google Scholar]
- Scheen, P.J.; Paquot, N. Metabolic effects of SGLT-2 inhibitors increased glucosuria: A review of the clinical evidence. Diab. Metab. 2014, 40, S4–S11. [Google Scholar]
- Rossetti, L.; Smith, D.; Shulman, G.I.; Papachristou, D.; DeFronzo, R.A. Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J. Clin. Investig. 1987, 79, 1510–1515. [Google Scholar] [CrossRef]
- Thomson, S.C.; Vallon, V. Renal effects of sodium-glucose co-transporter inhibitors. Am. J. Med. 2019, 132, S30–S38. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, R.E. Sodium-glucose linked transporter-2 inhibitors: Potential for renoprotection beyond blood glucose lowering. Kidney Int. 2014, 86, 693–700. [Google Scholar] [PubMed] [Green Version]
- Rola, N.; Elias, K.; Farid, N.; Inbal, D.; Farber, E.; Anam, H.; Nakhoul, N. Sodium-glucose transporter inhibitors and diabetic nephropathy in humans and animal models. J. Cli. Exp. Nephrol. 2018, 3, 10. [Google Scholar] [CrossRef]
- Ferrannini, E.; Pereira-Moreira, R.; Seghieri, M.; Rebelos, E.; Souza, A.L.; Chueire, V.B.; Arvia, C.; Muscelli, E. Insulin enhances renal glucose excretion: Relation to insulin sensitivity and sodium-glucose cotransport. BMJ Open Diab. Res. Care 2020, 8, e001178. [Google Scholar] [CrossRef]
- Alicic, R.Z.; Neumiller, J.J.; Johnson, E.J.; Dieter, B.; Tuttle, K.R. Sodium-glucose cotransporter 2 inhibition and diabetic kidney disease. Diabetes 2019, 68, 248–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerosime, E.; Solis-Herrera, C.; Triplitt, C. Inhibition of renal glucose reabsorption as a novel treatment for diabetes patients. J. Bras. Nefrol. 2014, 36, 80–92. [Google Scholar] [CrossRef]
- Thomson, S.C.; Vallon, V. Renal effects of incretin-based diabetes therapies: Pre-clinical predictions and clinical trial outcomes. Curr. Diab. Rep. 2018, 18, 28. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Perkovic, V.; Johansen, O.E.; Cooper, M.E.; Kahn, S.E.; Marx, N.; Alexander, J.H.; Pencina, M.; Toto, R.D.; Wanner, C.; et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: The CARMELINA randomized clinical trial. JAMA 2019, 321, 69–79. [Google Scholar] [CrossRef]
- Hinden, L.; Tam, J. Do endocannabinoids regulate glucose reabsorption in the kidney? Nephron 2019, 143, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Pliszka, M.; Szablewski, L. Glucose transporters as a target for anticancer therapy. Cancers 2021, 13, 4184. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sędzikowska, A.; Szablewski, L. Human Glucose Transporters in Renal Glucose Homeostasis. Int. J. Mol. Sci. 2021, 22, 13522. https://doi.org/10.3390/ijms222413522
Sędzikowska A, Szablewski L. Human Glucose Transporters in Renal Glucose Homeostasis. International Journal of Molecular Sciences. 2021; 22(24):13522. https://doi.org/10.3390/ijms222413522
Chicago/Turabian StyleSędzikowska, Aleksandra, and Leszek Szablewski. 2021. "Human Glucose Transporters in Renal Glucose Homeostasis" International Journal of Molecular Sciences 22, no. 24: 13522. https://doi.org/10.3390/ijms222413522
APA StyleSędzikowska, A., & Szablewski, L. (2021). Human Glucose Transporters in Renal Glucose Homeostasis. International Journal of Molecular Sciences, 22(24), 13522. https://doi.org/10.3390/ijms222413522