Magnesium and Morphine in the Treatment of Chronic Neuropathic Pain–A Biomedical Mechanism of Action
Abstract
:1. Introduction
2. Results
2.1. The Influence of Mg2+ on the Analgesic Effect of Morphine in Streptozotocin-Induced Hyperalgesia after Mechanical Stimulation
2.2. Changes in the Expression of Phosphorylated Proteins Measured at the Serine Residues of N-methyl-D-aspartate Receptor NR1 Subunit and µ Opioid Receptor
2.3. Changes in the Activity of Protein Kinase A and Protein Kinase C in the Streptozotocin-Treated Rats after Administration of Tested Compounds
3. Discussion
4. Materials and Methods
4.1. Ethical Approval
4.2. Laboratory Animals
4.3. Drug Administration
4.4. Time Schedule
4.5. Measurement of the Pain Threshold
4.6. Preparation of Lysates for Western blot Analysis
4.7. Western blot Analysis
4.8. Enzyme-Linked Immunosorbent Assays (ELISA): Quantification of Protein Kinase A and Protein Kinase C Activity
4.9. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnér, S.; Meyerson, B.A. Lack of analgesic effect of opioids on neuropathic and idiopathic forms of pain. Pain 1988, 33, 11–23. [Google Scholar] [CrossRef]
- Morrone, L.; Scuteri, D.; Rombola, L.; Mizoguchi, H.; Bagetta, G. Opioids Resistance in Chronic Pain Management. Curr. Neuropharmacol. 2017, 15, 444–456. [Google Scholar] [CrossRef] [PubMed]
- Yekkirala, A.S.; Roberson, D.P.; Bean, B.P.; Woolf, C.J. Breaking barriers to novel analgesic drug development. Nat. Rev. Drug Discov. 2017, 16, 545–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickenson, A.H. NMDA receptor antagonists: Interactions with opioids. Acta Anaesthesiol. Scand. 1997, 41, 112–115. [Google Scholar] [CrossRef]
- Mao, J. NMDA and opioid receptors: Their interactions in antinociception, tolerance and neuroplasticity. Brain Res. Rev. 1999, 30, 289–304. [Google Scholar] [CrossRef]
- Portenoy, R.K.; Foley, K.M.; Inturrisi, C.E. The nature of opioid responsiveness and its implications for neuropathic pain: New hypotheses derived from studies of opioid infusions. Pain 1990, 43, 273–286. [Google Scholar] [CrossRef]
- Lavand’Homme, P.; Steyaert, A. Opioid-free anesthesia opioid side effects: Tolerance and hyperalgesia. Best Pract. Res. Clin. Anaesthesiol. 2017, 31, 487–498. [Google Scholar] [CrossRef]
- Mercadante, S.; Arcuri, E.; Santoni, A. Opioid-Induced Tolerance and Hyperalgesia. CNS Drugs 2019, 33, 943–955. [Google Scholar] [CrossRef]
- Nee, J.; Rangan, V.; Lembo, A. Reduction in pain: Is it worth the gain? The effect of opioids on the GI tract. Neurogastroenterol. Motil. 2018, 30, e13367. [Google Scholar] [CrossRef]
- Kiyatkin, E.A. Respiratory depression and brain hypoxia induced by opioid drugs: Morphine, oxycodone, heroin, and fentanyl. Neuropharmacology 2019, 151, 219–226. [Google Scholar] [CrossRef]
- Begon, S.; Pickering, G.; Eschalier, A.; Dubray, C. Magnesium and MK-801 have a similar effect in two experimental models of neuropathic pain. Brain Res. 2000, 887, 436–439. [Google Scholar] [CrossRef]
- Mao, J.; Price, D.; Hayes, R.L.; Lu, J.; Mayer, D.J.; Frenk, H. Intrathecal treatment with dextrorphan or ketamine potently reduces pain-related behaviors in a rat model of peripheral mononeuropathy. Brain Res. 1993, 605, 164–168. [Google Scholar] [CrossRef]
- Mizoguchi, H.; Watanabe, C.; Yonezawa, A.; Sakurada, S. New Therapy for Neuropathic Pain. Int. Rev. Neurobiol. 2009, 85, 249–260. [Google Scholar] [CrossRef]
- Sang, C.N. NMDA-Receptor Antagonists in Neuropathic Pain: Experimental Methods to Clinical Trials. J. Pain Symptom Manag. 2000, 19, 21–25. [Google Scholar] [CrossRef]
- Swartjes, M.; Morariu, A.; Niesters, M.; Aarts, L.; Dahan, A. Nonselective and NR2B-selective N -methyl-d-aspartic Acid Receptor Antagonists Produce Antinociception and Long-term Relief of Allodynia in Acute and Neuropathic Pain. Anesthesiology 2011, 115, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Martinez, V.; Christensen, D.; Kayser, V. The glycine/NMDA receptor antagonist (+)-HA966 enhances the peripheral effect of morphine in neuropathic rats. Pain 2002, 99, 537–545. [Google Scholar] [CrossRef]
- Nichols, M.L.; Lopez, Y.; Ossipov, M.H.; Bian, D.; Porreca, F. Enhancement of the antiallodynic and antinociceptive efficacy of spinal morphine by antisera to dynorphin A (1–13) or MK-801 in a nerve-ligation model of peripheral neuropathy. Pain 1997, 69, 317–322. [Google Scholar] [CrossRef]
- Yamamoto, T.; Yaksh, T.L. Studies on the spinal interaction of morphine and the NMDA antagonist MK-801 on the hyperesthesia observed in a rat model of sciatic mononeuropathy. Neurosci. Lett. 1992, 135, 67–70. [Google Scholar] [CrossRef]
- Rondón, L.J.; Privat, A.M.; Daulhac, L.; Davin, N.; Mazur, A.; Fialip, J.; Eschalier, A.; Courteix, C. Magnesium attenuates chronic hypersensitivity and spinal cord NMDA receptor phosphorylation in a rat model of diabetic neuropathic pain. J. Physiol. 2010, 588, 4205–4215. [Google Scholar] [CrossRef]
- Xiao, W.-H.; Bennett, G.J. Magnesium suppresses neuropathic pain responses in rats via a spinal site of action. Brain Res. 1994, 666, 168–172. [Google Scholar] [CrossRef]
- Brill, S.; Sedgwick, P.M.; Hamann, W.; Di Vadi, P.P. Efficacy of intravenous magnesium in neuropathic pain. Br. J. Anaesth. 2002, 89, 711–714. [Google Scholar] [CrossRef]
- Yousef, A.A.; Al-Deeb, A.E. A double-blinded randomised controlled study of the value of sequential intravenous and oral magnesium therapy in patients with chronic low back pain with a neuropathic component. Anaesthesia 2013, 68, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Begon, S.; Pickering, G.; Eschalier, A.; DuBray, C. Magnesium Increases Morphine Analgesic Effect in Different Experimental Models of Pain. Anesthesiology 2002, 96, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Bujalska, M.; Makulska-Nowak., H.; Gumułka, S.W. Magnesium ions and opioid agonists in vincristine-induced neuropathy. Pharmacol. Rep. 2009, 61, 1096–1104. [Google Scholar] [CrossRef]
- Bujalska, M.; Malinowska, E.; Makulska-Nowak, H.; Gumułka, S.W. Magnesium Ions and Opioid Agonist Activity in Streptozotocin-Induced Hyperalgesia. Pharmacology 2008, 82, 180–186. [Google Scholar] [CrossRef]
- Ulugol, A.; Aslantas, A.; Ipci, Y.; Tuncer, A.; Karadag, C.H.; Dokmeci, I. Combined systemic administration of morphine and magnesium sulfate attenuates pain-related behavior in mononeuropathic rats. Brain Res. 2002, 943, 101–104. [Google Scholar] [CrossRef]
- Williams, J.T.; Ingram, S.L.; Henderson, G.; Chavkin, C.; Von Zastrow, M.; Schulz, S.; Koch, T.; Evans, C.J.; Christie, M.J. Regulation of µ-Opioid Receptors: Desensitization, Phosphorylation, Internalization, and Tolerance. Pharmacol. Rev. 2013, 65, 223–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, A.; Illing, S.; Miess, E.; Schulz, S. Different mechanisms of homologous and heterologous μ-opioid receptor phosphorylation. Br. J. Pharmacol. 2014, 172, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Schulz, S.; Mayer, D.; Pfeiffer, M.; Stumm, R.; Koch, T.; Höllt, V. Morphine induces terminal μ-opioid receptor desensitization by sustained phosphorylation of serine-375. EMBO J. 2004, 23, 3282–3289. [Google Scholar] [CrossRef] [Green Version]
- Hansen, K.B.; Yi, F.; Perszyk, R.; Furukawa, H.; Wollmuth, L.P.; Gibb, A.; Traynelis, S.F. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 2018, 150, 1081–1105. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, P.; Neyton, J. NMDA receptor subunits: Function and pharmacology. Curr. Opin. Pharmacol. 2007, 7, 39–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tingley, W.G.; Ehlers, M.D.; Kameyama, K.; Doherty, C.; Ptak, J.B.; Riley, C.T.; Huganir, R.L. Characterization of Protein Kinase A and Protein Kinase C Phosphorylation of the N-Methyl-D-aspartate Receptor NR1 Subunit Using Phosphorylation Site-specific Antibodies. J. Biol. Chem. 1997, 272, 5157–5166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.Q.; Guo, M.-L.; Jin, D.-Z.; Xue, B.; Fibuch, E.E.; Mao, L.-M. Roles of subunit phosphorylation in regulating glutamate receptor function. Eur. J. Pharmacol. 2014, 728, 183–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, J.-Y.; Skeberdis, V.A.; Jover, T.; Grooms, S.Y.; Lin, Y.; Araneda, R.; Zheng, X.; Bennett, M.V.L.; Zukin, R.S. Protein kinase C modulates NMDA receptor trafficking and gating. Nat. Neurosci. 2001, 4, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Lin, Q.; Willis, W.D. Effect of protein kinase C blockade on phosphorylation of NR1 in dorsal horn and spinothalamic tract cells caused by intradermal capsaicin injection in rats. Brain Res. 2004, 1020, 95–105. [Google Scholar] [CrossRef]
- Kow, L.-M.; Commons, K.; Ogawa, S.; Pfaff, D. Potentiation of the excitatory action of NMDA in ventrolateral periaqueductal gray by the μ-opioid receptor agonist, DAMGO. Brain Res. 2002, 935, 87–102. [Google Scholar] [CrossRef]
- Koyama, S.; Akaike, N. Activation of μ-opioid receptor selectively potentiates NMDA-induced outward currents in rat locus coeruleus neurons. Neurosci. Res. 2008, 60, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.; Nie, Z.; Siggins, G.R. μ-opioid Receptors Modulate NMDA Receptor-Mediated Responses in Nucleus Accumbens Neurons. J. Neurosci. 1997, 17, 11–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Muñoz, M.; Sánchez-Blázquez, P.; Vicente-Sánchez, A.; Berrocoso, E.; Garzón, J. The μ-Opioid Receptor and the NMDA Receptor Associate in PAG Neurons: Implications in Pain Control. Neuropsychopharmacology 2011, 37, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Blázquez, P.; Rodríguez-Muñoz, M.; Berrocoso, E.; Garzón, J. The plasticity of the association between μ-opioid receptor and glutamate ionotropic receptor N in opioid analgesic tolerance and neuropathic pain. Eur. J. Pharmacol. 2013, 716, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Blázquez, P.; Rodríguez-Muñoz, M.; Garzón, J. μ-Opioid Receptors Transiently Activate the Akt-nNOS Pathway to Produce Sustained Potentiation of PKC-Mediated NMDAR-CaMKII Signaling. PLoS ONE 2010, 5, e11278. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Muñoz, M.; de la Torre-Madrid, E.; Sánchez-Blázquez, P.; Garzón, J. NO-released Zinc Supports the Simultaneous Binding of Raf-1 and PKCγ Cysteine-Rich Domains to HINT1 Protein at the μ-Opioid Receptor. Antioxid. Redox Signal. 2011, 14, 2413–2425. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Muñoz, M.; De La Torre-Madrid, E.; Sánchez-Blázquez, P.; Wang, J.B.; Garzón, J. NMDAR-nNOS generated zinc recruits PKCgamma to the HINT1–RGS17 complex bound to the C terminus of μ-opioid receptors. Cell. Signal. 2008, 20, 1855–1864. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Blázquez, P.; Rodríguez-Muñoz, M.; Montero, C.; De La Torre-Madrid, E.; Garzón, J. Calcium/calmodulin-dependent protein kinase II supports morphine antinociceptive tolerance by phosphorylation of glycosylated phosducin-like protein. Neuropharmacology 2008, 54, 319–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Just, S.; Illing, S.; Trester-Zedlitz, M.; Lau, E.K.; Kotowski, S.J.; Miess, E.; Mann, A.; Doll, C.; Trinidad, J.C.; Burlingame, A.L.; et al. Differentiation of Opioid Drug Effects by Hierarchical Multi-Site Phosphorylation. Mol. Pharmacol. 2012, 83, 633–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garzón, J.; Rodríguez-Muñoz, M.; Sánchez-Blázquez, P. Do pharmacological approaches that prevent opioid tolerance target different elements in the same regulatory machinery? Curr. Drug Abus. Rev. 2008, 1, 222–238. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; A Bauer, B.; Wahner-Roedler, D.L.; Chon, T.Y.; Xiao, L. The Modified WHO Analgesic Ladder: Is It Appropriate for Chronic Non-Cancer Pain? J. Pain Res. 2020, 13, 411–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bujalska-Zadrożny, M.; Tatarkiewicz, J.; Kulik, K.; Filip, M.; Naruszewicz, M. Magnesium enhances opioid-induced analgesia —What we have learnt in the past decades? Eur. J. Pharm. Sci. 2017, 99, 113–127. [Google Scholar] [CrossRef]
- Lueptow, L.; Fakira, A.; Bobeck, E.N. The Contribution of the Descending Pain Modulatory Pathway in Opioid Tolerance. Front. Neurosci. 2018, 12, 886. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-S.; Huang, Y.-H.; Yen, C.-T. Periaqueductal gray stimulation suppresses spontaneous pain behavior in rats. Neurosci. Lett. 2012, 514, 42–45. [Google Scholar] [CrossRef]
- Bujalska-Zadrożny, M.; Duda, K. Additive Effect of Combined Application of Magnesium and MK-801 on Analgesic Action of Morphine. Pharmacology 2014, 93, 113–119. [Google Scholar] [CrossRef]
- Parsons, C.G. NMDA receptors as targets for drug action in neuropathic pain. Eur. J. Pharmacol. 2001, 429, 71–78. [Google Scholar] [CrossRef]
- Christrup, L. Morphine metabolites. Acta Anaesthesiol. Scand. 1997, 41, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Lötsch, J.; Geisslinger, G. Morphine-6-Glucuronide: An analgesic of the future? Clin. Pharmacokinet. 2001, 40, 485–499. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.Y.; Liu-Chen, L.-Y.; Pickel, V.M. Dual ultrastructural immunocytochemical labeling of mu and delta opioid receptors in the superficial layers of the rat cervical spinal cord. Brain Res. 1997, 778, 367–380. [Google Scholar] [CrossRef]
- Garzón, J.; Rodríguez-Muñoz, M.; Sánchez-Blázquez, P. Morphine alters the selective association between μ-opioid receptors and specific RGS proteins in mouse periaqueductal gray matter. Neuropharmacol. 2005, 48, 853–868. [Google Scholar] [CrossRef]
- Gomes, I.; Jordan, B.A.; Gupta, A.; Trapaidze, N.; Nagy, V.; Devi, L.A. Heterodimerization of mu and delta Opioid Receptors: A Role in Opiate Synergy. J. Neurosci. 2000, 20, RC110. [Google Scholar] [CrossRef] [Green Version]
- Traynor, J.; Elliott, J. δ-Opioid receptor subtypes and cross-talk with μ-receptors. Trends Pharmacol. Sci. 1993, 14, 84–86. [Google Scholar] [CrossRef]
- Fundytus, M.E.; Schiller, P.W.; Shapiro, M.; Weltrowska, G.; Coderre, T.J. Attenuation of morphine tolerance and dependence with the highly selective δ-opioid receptor antagonist TIPP[ψ]. Eur. J. Pharmacol. 1995, 286, 105–108. [Google Scholar] [CrossRef]
- Gucker, S.; Bidlack, J.M. Protein kinase C activation increases the rate and magnitude of agonist-induced δ-opioid receptor down-regulation in NG108-15 cells. Mol. Pharmacol. 1992, 42, 656–665. [Google Scholar]
- Gao, X.; Kim, H.K.; Chung, J.M.; Chung, K. Enhancement of NMDA receptor phosphorylation of the spinal dorsal horn and nucleus gracilis neurons in neuropathic rats. Pain 2005, 116, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Kim, H.K.; Chung, J.M.; Chung, K. Reactive oxygen species (ROS) are involved in enhancement of NMDA-receptor phosphorylation in animal models of pain. Pain 2007, 131, 262–271. [Google Scholar] [CrossRef] [Green Version]
- Scott, D.B.; Blanpied, T.; Ehlers, M.D. Coordinated PKA and PKC phosphorylation suppresses RXR-mediated ER retention and regulates the surface delivery of NMDA receptors. Neuropharmacology 2003, 45, 755–767. [Google Scholar] [CrossRef]
- De Gregori, S.; De Gregori, M.; Ranzani, G.; Allegri, M.; Minella, C.; Regazzi, M. Morphine metabolism, transport and brain disposition. Metab. Brain Dis. 2011, 27, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oppelt, W.W.; MacIntyre, I.; Rall, D.P. Magnesium exchange between blood and cerebrospinal fluid. Am. J. Physiol. 1963, 205, 959–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakhoda, A.; Wong, H.A. The induction of diabetes in rats by intramuscular administration of streptozotocin. Experientia 1979, 35, 1679–1680. [Google Scholar] [CrossRef]
- Randall, L.; Selitto, J.J. A method for measurement of analgesic activity on inflamed tissue. Arch. Int. Pharmacodyn. Ther. 1957, 111, 409–419. [Google Scholar] [PubMed]
- Rodríguez-Muñoz, M.; de la Torre-Madrid, E.; Sánchez-Blázquez, P.; Garzón, J. Morphine Induces Endocytosis of Neuronal μ-opioid Receptors Through the Sustained Transfer of Gα Subunits to RGSZ2 Proteins. Mol. Pain 2007, 3, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Blázquez, P.; Rodríguez-Díaz, M.; López-Fando, A.; Rodriguez-Muñoz, M.; Garzón, J. The GBeta5 subunit that associates with the R7 subfamily of RGS proteins regulates μ-opioid effects. Neuropharmacology 2003, 45, 82–95. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulik, K.; Żyżyńska-Granica, B.; Kowalczyk, A.; Kurowski, P.; Gajewska, M.; Bujalska-Zadrożny, M. Magnesium and Morphine in the Treatment of Chronic Neuropathic Pain–A Biomedical Mechanism of Action. Int. J. Mol. Sci. 2021, 22, 13599. https://doi.org/10.3390/ijms222413599
Kulik K, Żyżyńska-Granica B, Kowalczyk A, Kurowski P, Gajewska M, Bujalska-Zadrożny M. Magnesium and Morphine in the Treatment of Chronic Neuropathic Pain–A Biomedical Mechanism of Action. International Journal of Molecular Sciences. 2021; 22(24):13599. https://doi.org/10.3390/ijms222413599
Chicago/Turabian StyleKulik, Kamila, Barbara Żyżyńska-Granica, Agnieszka Kowalczyk, Przemysław Kurowski, Małgorzata Gajewska, and Magdalena Bujalska-Zadrożny. 2021. "Magnesium and Morphine in the Treatment of Chronic Neuropathic Pain–A Biomedical Mechanism of Action" International Journal of Molecular Sciences 22, no. 24: 13599. https://doi.org/10.3390/ijms222413599
APA StyleKulik, K., Żyżyńska-Granica, B., Kowalczyk, A., Kurowski, P., Gajewska, M., & Bujalska-Zadrożny, M. (2021). Magnesium and Morphine in the Treatment of Chronic Neuropathic Pain–A Biomedical Mechanism of Action. International Journal of Molecular Sciences, 22(24), 13599. https://doi.org/10.3390/ijms222413599