LE-MDCAP: A Computational Model to Prioritize Causal miRNA-Disease Associations
Abstract
:1. Introduction
2. Results
2.1. Overview of LE-MDCAP and Overall Performance Evaluation
2.2. Case Study
2.3. LE-MDCAP Server
3. Discussion
4. Materials and Methods
4.1. Human Causal miRNA-Disease Associations
4.2. MiRNAs Similarities
4.3. Disease Semantic Similarity
4.4. Matrix Decomposition
4.5. Integrated Prediction Score of LE-MDCAP
4.6. Model Evaluation and Server Construction
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Wang, H.; Duan, X.; Liu, C.; Li, Z. Digital quantitative analysis of microRNA in single cell based on ligation-depended polymerase colony (Polony). Biosens. Bioelectron. 2017, 95, 146–151. [Google Scholar] [CrossRef]
- Ambros, V. The functions of animal microRNAs. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 2011, 12, 861–874. [Google Scholar] [CrossRef] [PubMed]
- Gebert, L.F.R.; MacRae, I.J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 2019, 20, 21–37. [Google Scholar] [CrossRef]
- Meola, N.; Gennarino, V.; Banfi, S. microRNAs and genetic diseases. Pathogenetics 2009, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Lin, H.; Xiao, J.; Lu, Y.; Luo, X.; Li, B.; Zhang, Y.; Xu, C.; Bai, Y.; Wang, H.; et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med. 2007, 13, 486–491. [Google Scholar] [CrossRef]
- Zhao, Y.; Ransom, J.F.; Li, A.; Vedantham, V.; von Drehle, M.; Muth, A.N.; Tsuchihashi, T.; McManus, M.T.; Schwartz, R.J.; Srivastava, D. Dysregulation of Cardiogenesis, Cardiac Conduction, and Cell Cycle in Mice Lacking miRNA-1-2. Cell 2007, 129, 303–317. [Google Scholar] [CrossRef] [Green Version]
- Png, K.J.; Yoshida, M.; Zhang, X.H.F.; Shu, W.; Lee, H.; Rimner, A.; Chan, T.A.; Comen, E.; Andrade, V.P.; Kim, S.W.; et al. MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes Dev. 2011, 25, 226–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valastyan, S.; Reinhardt, F.; Benaich, N.; Calogrias, D.; Szász, A.M.; Wang, Z.C.; Brock, J.E.; Richardson, A.L.; Weinberg, R.A. A Pleiotropically Acting MicroRNA, miR-31, Inhibits Breast Cancer Metastasis. Cell 2009, 137, 1032–1046. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.H.; Valdez, G.; Moresi, V.; Qi, X.; McAnally, J.; Elliott, J.L.; Bassel-Duby, R.; Sanes, J.R.; Olson, E.N. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 2009, 326, 1549–1554. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Shi, J.; Gao, Y.; Cui, C.; Zhang, S.; Li, J.; Zhou, Y.; Cui, Q. HMDD v3.0: A database for experimentally supported human microRNA-disease associations. Nucleic Acids Res. 2019, 47, 1013–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Jia, K.; Shi, J.; Zhou, Y.; Cui, Q. A Computational Model to Predict the Causal miRNAs for Diseases. Front. Genet. 2019, 10, 935. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Liu, L.; Gao, Y.; Shi, J.; Cui, Q.; Li, J.; Zhou, Y. Benchmark of computational methods for predicting microRNA-disease associations. Genome Biol. 2019, 20, 202. [Google Scholar] [CrossRef]
- Chen, X.; Xie, D.; Zhao, Q.; You, Z.H. MicroRNAs and complex diseases: From experimental results to computational models. Brief. Bioinform. 2019, 20, 515–539. [Google Scholar] [CrossRef]
- Wang, L.; You, Z.H.; Chen, X.; Li, Y.M.; Dong, Y.N.; Li, L.P.; Zheng, K. LMTRDA: Using logistic model tree to predict MiRNA-disease associations by fusing multisource information of sequences and similarities. PLoS Comput. Biol. 2019, 15, e1006865. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.P.; Liang, C.; Xiao, Q.; Li, G.H.; Ding, P.J.; Luo, J.W. MCLPMDA: A novel method for miRNA-disease association prediction based on matrix completion and label propagation. J. Cell. Mol. Med. 2019, 23, 1427–1438. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Luo, J.; Xiao, Q.; Liang, C.; Ding, P. Predicting microRNA-disease associations using label propagation based on linear neighborhood similarity. J. Biomed. Inform. 2018, 82, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Zhang, H.; Liang, C.; Ding, P.; Luo, J. SNMDA: A novel method for predicting microRNA-disease associations based on sparse neighbourhood. J. Cell. Mol. Med. 2018, 22, 5109–5120. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Huang, L.; Xie, D.; Zhao, Q. EGBMMDA: Extreme gradient boosting machine for MiRNA-disease association prediction. Cell Death Dis. 2018, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Che, K.; Guo, M.; Wang, C.; Liu, X.; Chen, X. Predicting MiRNA-disease association by latent feature extraction with positive samples. Genes 2019, 10, 80. [Google Scholar] [CrossRef] [Green Version]
- Cheung, N.; Mitchell, P.; Wong, T.Y. Diabetic retinopathy. Lancet 2010, 376, 124–136. [Google Scholar] [CrossRef]
- Dong, Y.; Wan, G.; Peng, G.; Yan, P.; Qian, C.; Li, F. Long non-coding RNA XIST regulates hyperglycemia-associated apoptosis and migration in human retinal pigment epithelial cells. Biomed. Pharmacother. 2020, 125, 109959. [Google Scholar] [CrossRef]
- Ji, Q.; Han, J.; Wang, L.; Liu, J.; Dong, Y.; Zhu, K.; Shi, L. MicroRNA-34a promotes apoptosis of retinal vascular endothelial cells by targeting SIRT1 in rats with diabetic retinopathy. Cell Cycle 2020, 19, 2886–2896. [Google Scholar] [CrossRef]
- Wang, C.; Lin, Y.; Fu, Y.; Zhang, D.; Xin, Y. MiR-221-3p regulates the microvascular dysfunction in diabetic retinopathy by targeting TIMP3. Pflug. Arch. Eur. J. Physiol. 2020, 472, 1607–1618. [Google Scholar] [CrossRef]
- Chen, X.; Yu, X.; Li, X.; Li, L.; Li, F.; Guo, T.; Guan, C.; Miao, L.; Cao, G. MiR-126 targets IL-17A to enhance proliferation and inhibit apoptosis in high-glucose-induced human retinal endothelial cells. Biochem. Cell Biol. 2020, 98, 277–283. [Google Scholar] [CrossRef]
- Xu, D.; Dong, P.; Xiong, Y.; Yue, J.; Ihira, K.; Konno, Y.; Kobayashi, N.; Todo, Y.; Watari, H. MicroRNA-361: A multifaceted player regulating tumor aggressiveness and tumor microenvironment formation. Cancers 2019, 11, 1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Liu, C.Y.; Zhang, X.J.; Feng, C.; Zhou, L.Y.; Zhao, Y.; Li, P.F. MiR-361-regulated prohibitin inhibits mitochondrial fission and apoptosis and protects heart from ischemia injury. Cell Death Differ. 2015, 22, 1058–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, B.; Li, Y.; Yang, X.; Niu, X.; Zhao, Y.; Zhu, X. MicroRNA-361-3p promotes human breast cancer cell viability by inhibiting the E2F1/P73 signalling pathway. Biomed. Pharmacother. 2020, 125, 109994. [Google Scholar] [CrossRef] [PubMed]
- Qian, B.; Zhang, D.; Tao, R.; Yu, G.; Jia, B.; Ye, K.; Ma, L.; Wan, S.; Wu, W. MiR-361-5p exerts tumor-suppressing functions in gastric carcinoma by targeting syndecan-binding protein. Anticancer Drugs 2020, 31, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Jiang, F.Q.; Chu, L.; Wei, X. Long non-coding RNA BLACAT1 inhibits prostate cancer cell proliferation through sponging miR-361. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Qi, G.; Li, L. Long non-coding RNA PVT1 contributes to cell growth and metastasis in non-small-cell lung cancer by regulating miR-361-3p/SOX9 axis and activating Wnt/β-catenin signaling pathway. Biomed. Pharmacother. 2020, 126, 110100. [Google Scholar] [CrossRef]
- Zhou, C.; Jiang, X.; Liang, A.; Zhu, R.; Yang, Y.; Zhong, L.; Wan, D. COX10-AS1 Facilitates Cell Proliferation and Inhibits Cell Apoptosis in Glioblastoma Cells at Post-Transcription Level. Neurochem. Res. 2020, 45, 2196–2203. [Google Scholar] [CrossRef]
- Zhang, H.D.; Jiang, L.H.; Sun, D.W.; Hou, J.C.; Ji, Z.L. CircRNA: A novel type of biomarker for cancer. Breast Cancer 2018, 25, 1–7. [Google Scholar] [CrossRef]
- Kai, K.; Dittmar, R.L.; Sen, S. Secretory microRNAs as biomarkers of cancer. Semin. Cell Dev. Biol. 2018, 78, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Wiedrick, J.T.; Phillips, J.I.; Lusardi, T.A.; McFarland, T.J.; Lind, B.; Sandau, U.S.; Harrington, C.A.; Lapidus, J.A.; Galasko, D.R.; Quinn, J.F.; et al. Validation of MicroRNA Biomarkers for Alzheimer’s Disease in Human Cerebrospinal Fluid. J. Alzheimer’s Dis. 2019, 67, 875–891. [Google Scholar] [CrossRef] [PubMed]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. MiRBase: From microRNA sequences to function. Nucleic Acids Res. 2019, 47, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, L.; Chiu, H.S.; Avila Cobos, F.; Gross, S.; Volders, P.J.; Cannoodt, R.; Nuytens, J.; Vanderheyden, K.; Anckaert, J.; Lefever, S.; et al. The RNA Atlas expands the catalog of human non-coding RNAs. Nat. Biotechnol. 2021, 39, 1453–1465. [Google Scholar] [CrossRef] [PubMed]
- Kehl, T.; Kern, F.; Backes, C.; Fehlmann, T.; Stöckel, D.; Meese, E.; Lenhof, H.P.; Keller, A. MiRPathDB 2.0: A novel release of the miRNA Pathway Dictionary Database. Nucleic Acids Res. 2020, 48, 142–147. [Google Scholar] [CrossRef]
- Van Laarhoven, T.; Nabuurs, S.B.; Marchiori, E. Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 2011, 27, 3036–3043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, M.; Zhang, Q.; Deng, M.; Miao, J.; Guo, Y.; Gao, W.; Cui, Q. An analysis of human microRNA and disease associations. PLoS ONE 2008, 3, e3420. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Wang, J.; Lu, M.; Song, F.; Cui, Q. Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 2010, 26, 1644–1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, D.; Li, A.; Feng, H.; Wang, M. NTSMDA: Prediction of miRNA-disease associations by integrating network topological similarity. Mol. Biosyst. 2016, 12, 2224–2232. [Google Scholar] [CrossRef] [PubMed]
Rank | miRNA | Disease | Score | PMID |
---|---|---|---|---|
1 | has-mir-21 | Diabetic retinopathy | 0.1040 | 32106367 |
2 | has-mir-34a | Diabetic retinopathy | 0.0650 | 33064974 |
3 | has-mir-221 | Diabetic retinopathy | 0.0562 | 32648125 |
4 | has-mir-126 | Diabetic retinopathy | 0.0560 | 31608649 |
5 | has-mir-106b | Diabetic retinopathy | 0.0502 | NA |
6 | hsa-mir-155 | Diabetic retinopathy | 0.0453 | NA |
7 | hsa-mir-503 | Diabetic retinopathy | 0.0446 | NA |
8 | hsa-mir-125b | Diabetic retinopathy | 0.0431 | 30988072 |
9 | hsa-mir-590 | Diabetic retinopathy | 0.0428 | 31618425 |
10 | hsa-mir-223 | Diabetic retinopathy | 0.0413 | 31415795 |
11 | hsa-mir-330 | Diabetic retinopathy | 0.0406 | NA |
12 | hsa-mir-145 | Diabetic retinopathy | 0.0406 | NA |
13 | hsa-mir-222 | Diabetic retinopathy | 0.0405 | NA |
14 | hsa-mir-16 | Diabetic retinopathy | 0.0396 | NA |
15 | hsa-mir-18a | Diabetic retinopathy | 0.0393 | 32210827 |
Rank | Disease | miRNA | Score | PMID |
---|---|---|---|---|
1 | Breast Neoplasms | hsa-mir-361 | 0.157 | 32092817 |
2 | Prostatic Neoplasms | hsa-mir-361 | 0.149 | 31957820 |
3 | Stomach Neoplasms | hsa-mir-361 | 0.141 | 31850945 |
4 | Carcinoma, Non-Small-Cell Lung | hsa-mir-361 | 0.128 | 32197208 |
5 | Glioblastoma | hsa-mir-361 | 0.112 | 32770454 |
6 | Osteosarcoma | hsa-mir-361 | 0.106 | 34716310 |
7 | Lung Neoplasms | hsa-mir-361 | 0.089 | NA |
8 | Uterine Cervical Neoplasms | hsa-mir-361 | 0.088 | 33063235 |
9 | Urinary Bladder Neoplasms | hsa-mir-361 | 0.078 | NA |
10 | Carcinoma, Renal Cell | hsa-mir-361 | 0.075 | 34516333 |
11 | Melanoma | hsa-mir-361 | 0.074 | NA |
12 | Ovarian Neoplasms | hsa-mir-361 | 0.069 | 33500694 |
13 | Inflammation | hsa-mir-361 | 0.067 | NA |
14 | Atherosclerosis | hsa-mir-361 | 0.067 | NA |
15 | Endometrial Neoplasms | hsa-mir-361 | 0.058 | 31287002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Han, Y.; Liu, L.; Cui, Q.; Zhou, Y. LE-MDCAP: A Computational Model to Prioritize Causal miRNA-Disease Associations. Int. J. Mol. Sci. 2021, 22, 13607. https://doi.org/10.3390/ijms222413607
Huang Z, Han Y, Liu L, Cui Q, Zhou Y. LE-MDCAP: A Computational Model to Prioritize Causal miRNA-Disease Associations. International Journal of Molecular Sciences. 2021; 22(24):13607. https://doi.org/10.3390/ijms222413607
Chicago/Turabian StyleHuang, Zhou, Yu Han, Leibo Liu, Qinghua Cui, and Yuan Zhou. 2021. "LE-MDCAP: A Computational Model to Prioritize Causal miRNA-Disease Associations" International Journal of Molecular Sciences 22, no. 24: 13607. https://doi.org/10.3390/ijms222413607
APA StyleHuang, Z., Han, Y., Liu, L., Cui, Q., & Zhou, Y. (2021). LE-MDCAP: A Computational Model to Prioritize Causal miRNA-Disease Associations. International Journal of Molecular Sciences, 22(24), 13607. https://doi.org/10.3390/ijms222413607