Endothelial Progenitor Cells and Rheumatoid Arthritis: Response to Endothelial Dysfunction and Clinical Evidences
Abstract
:1. Introduction
2. EPCs Classification and Their Role in Endothelial Repair
3. Endothelial Dysfunction in RA
4. EPC Response to Endothelial Dysfunction in RA
5. EPCs Levels in RA: Evidence from Clinical Studies
6. EPCs as a Biomarker for CV Comorbidities Related to RA
7. RA Therapy and Modulation of EPCs Level and Function
8. Conclusions and Future Approaches
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Aletaha, D.; Smolen, J.S. Diagnosis and Management of Rheumatoid Arthritis: A Review. JAMA 2018, 320, 1360–1372. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.H.; Erdei, E. Comparative United States autoimmune disease rates for 2010–2016 by sex, geographic region, and race. Autoimmun. Rev. 2020, 19, 102423. [Google Scholar] [CrossRef] [PubMed]
- Ruaro, B.; Casabella, A.; Paolino, S.; Pizzorni, C.; Alessandri, E.; Seriolo, C.; Botticella, G.; Molfetta, L.; Odetti, P.; Smith, V.; et al. Correlation between bone quality and microvascular damage in systemic sclerosis patients. Rheumatology 2018, 57, 1548–1554. [Google Scholar] [CrossRef] [Green Version]
- Ghazi, M.; Kolta, S.; Briot, K.; Fechtenbaum, J.; Paternotte, S.; Roux, C. Prevalence of vertebral fractures in patients with rheumatoid arthritis: Revisiting the role of glucocorticoids. Osteoporos. Int. 2012, 23, 581–587. [Google Scholar] [CrossRef]
- Maiuolo, J.; Muscoli, C.; Gliozzi, M.; Musolino, V.; Carresi, C.; Paone, S.; Ilari, S.; Mollace, R.; Palma, E.; Mollace, V. Endothelial Dysfunction and Extra-Articular Neurological Manifestations in Rheumatoid Arthritis. Biomolecules 2021, 11, 81. [Google Scholar] [CrossRef]
- Bongartz, T.; Nannini, C.; Medina-Velasquez, Y.F.; Achenbach, S.J.; Crowson, C.S.; Ryu, J.; Vassallo, R.; Gabriel, S.E.; Matteson, E.L. Incidence and mortality of interstitial lung disease in rheumatoid arthritis: A population-based study. Arthritis Rheum. 2010, 62, 1583–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodfellow, R.; Symmons, D.P.M.; Lunt, M.; Mercer, L.K.; Gale, C.P.; Watson, K.D.; Dixon, W.G.; Hyrich, K.L. Relationship between exposure to tumour necrosis factor inhibitor therapy and incidence and severity of myocardial infarction in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2017, 76, 654–660. [Google Scholar] [CrossRef] [Green Version]
- O’Neil, L.J.; Kaplan, M.J. Neutrophils in Rheumatoid Arthritis: Breaking Immune Tolerance and Fueling Disease. Trends Mol. Med. 2019, 25, 215–227. [Google Scholar] [CrossRef]
- McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011, 365, 2205–2219. [Google Scholar] [CrossRef] [Green Version]
- Weyand, C.M.; Goronzy, J.J. The immunology of rheumatoid arthritis. Nat. Immunol. 2021, 22, 10–18. [Google Scholar] [CrossRef]
- van Delft, M.A.M.; Huizinga, T.W.J. An overview of autoantibodies in rheumatoid arthritis. J. Autoimmun. 2020, 110, 102392. [Google Scholar] [CrossRef]
- Tuncel, J.; Holmberg, J.; Haag, S.; Hopkins, M.H.; Wester-Rosenlöf, L.; Carlsen, S.; Olofsson, P.; Holmdahl, R. Self-reactive T cells induce and perpetuate chronic relapsing arthritis. Arthritis Res. 2020, 22, 1–12. [Google Scholar] [CrossRef]
- Gerlag, D.M.; Safy, M.; Maijer, K.I.; Tang, M.W.; Tas, S.W.; Starmans-Kool, M.J.F.; van Tubergen, A.; Janssen, M.; De Hair, M.; Hansson, M.; et al. Effects of B-cell directed therapy on the preclinical stage of rheumatoid arthritis: The PRAIRI study. Ann. Rheum. Dis. 2019, 78, 179–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farooq, S.; Ashour, H. Type II Collagen-Specific B Cells Induce Immune Tolerance in Th1-Skewed, Th2-Skewed, and Arthritis-Prone Strains of Mice. Cells 2021, 10, 870. [Google Scholar] [CrossRef] [PubMed]
- Elshabrawy, H.A.; Volin, M.V.; Essani, A.B.; Chen, Z.; McInnes, I.B.; Van Raemdonck, K.; Palasiewicz, K.; Arami, S.; Gonzalez, M.; Ashour, H.; et al. IL-11 facilitates a novel connection between RA joint fibroblasts and endothelial cells. Angiogenesis 2018, 21, 215–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Wang, S.; Lau, J.; Roden, A.C.; Matteson, E.L.; Sun, J.; Luo, F.; Tschumperlin, D.J.; Vassallo, R. IL-23 amplifies the epithelial-mesenchymal transition of mechanically conditioned alveolar epithelial cells in rheumatoid arthritis-associated interstitial lung disease through mTOR/S6 signaling. Am. J. Physiol. Cell. Mol. Physiol. 2021, 321, L1006–L1022. [Google Scholar] [CrossRef]
- Aspal, M.; Zemans, R.L. Mechanisms of ATII-to-ATI Cell Differentiation during Lung Regeneration. Int. J. Mol. Sci. 2020, 21, 3188. [Google Scholar] [CrossRef]
- Ruaro, B.; Salton, F.; Braga, L.; Wade, B.; Confalonieri, P.; Volpe, M.C.; Baratella, E.; Maiocchi, S.; Confalonieri, M. The History and Mystery of Alveolar Epithelial Type II Cells: Focus on Their Physiologic and Pathologic Role in Lung. Int. J. Mol. Sci. 2021, 22, 2566. [Google Scholar] [CrossRef]
- Edwards, N.; Langford-Smith, A.W.W.; Wilkinson, F.L.; Alexander, M.Y. Endothelial Progenitor Cells: New Targets for Therapeutics for Inflammatory Conditions with High Cardiovascular Risk. Front. Med. 2018, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komici, K.; Faris, P.; Negri, S.; Rosti, V.; García-Carrasco, M.; Mendoza-Pinto, C.; Berra-Romani, R.; Cervera, R.; Guerra, G.; Moccia, F. Systemic lupus erythematosus, endothelial progenitor cells and intracellular Ca2+ signaling: A novel approach for an old disease. J. Autoimmun. 2020, 112, 102486. [Google Scholar] [CrossRef] [PubMed]
- Negri, S.; Faris, P.; Berra-Romani, R.; Guerra, G.; Moccia, F. Endothelial transient receptor potential channels and vascular remodeling: Extracellular Ca2+ entry for angiogenesis, arteriogenesis and vasculogenesis. Front. Physiol. 2020, 10, 1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moccia, F.; Guerra, G. Ca2+ signalling in endothelial progenitor cells: Friend or foe? J. Cell Physiol. 2016, 231, 314–327. [Google Scholar] [CrossRef] [PubMed]
- Asahara, T.; Kawamoto, A.; Masuda, H. Concise Review: Circulating Endothelial Progenitor Cells for Vascular Medicine. Stem Cells 2011, 29, 1650–1655. [Google Scholar] [CrossRef] [PubMed]
- Medina, R.J.; Barber, C.L.; Sabatier, F.; Dignat-George, F.; Melero-Martin, J.M.; Khosrotehrani, K.; Ohneda, O.; Randi, A.M.; Chan, J.K.Y.; Yamaguchi, T.; et al. Endothelial progenitors: A consensus statement on nomenclature. Stem Cells Transl. Med. 2017, 6, 1316–1320. [Google Scholar] [CrossRef]
- Medina, R.J.; O’Neill, C.L.; O’Doherty, T.M.; Knott, H.; Guduric-Fuchs, J.; Gardiner, T.A.; Stitt, A.W. Myeloid Angiogenic Cells Act as Alternative M2 Macrophages and Modulate Angiogenesis through Interleukin-8. Mol. Med. 2011, 17, 1045–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, R.-Z.; Moreno-Luna, R.; Li, D.; Jaminet, S.-C.; Greene, A.K.; Melero-Martin, J.M. Human endothelial colony-forming cells serve as trophic mediators for mesenchymal stem cell engraftment via paracrine signaling. Proc. Natl. Acad. Sci. USA 2014, 111, 10137–10142. [Google Scholar] [CrossRef] [Green Version]
- Banno, K.; Yoder, M.C. Tissue regeneration using endothelial colony-forming cells: Promising cells for vascular repair. Pediatr. Res. 2018, 83, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Mudau, M.; Genis, A.; Lochner, A.; Strijdom, H. Endothelial dysfunction: The early predictor of atherosclerosis. Cardiovasc. J. Afr. 2012, 23, 222–231. [Google Scholar] [CrossRef]
- Sandoo, A.; van Zanten, J.J.C.S.V.; Metsios, G.S.; Carroll, D.; Kitas, G.D. Vascular function and morphology in rheumatoid arthritis: A systematic review. Rheumatology 2011, 50, 2125–2139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaudo, G.; Marchesi, S.; Gerli, R.; Allegrucci, R.; Giordano, A.; Siepi, D.; Pirro, M.; Shoenfeld, Y.; Schillaci, G.; Mannarino, E. Endothelial dysfunction in young patients with rheumatoid arthritis and low disease activity. Ann. Rheum. Dis. 2004, 63, 31–35. [Google Scholar] [CrossRef]
- Quick, S.; Moss, J.; Rajani, R.M.; Williams, A. A Vessel for Change: Endothelial Dysfunction in Cerebral Small Vessel Disease. Trends Neurosci. 2021, 44, 289–305. [Google Scholar] [CrossRef]
- Silverman, M.D.; Haas, C.S.; Rad, A.M.; Arbab, A.S.; Koch, A.E. The role of vascular cell adhesion molecule 1/very late activation antigen 4 in endothelial progenitor cell recruitment to rheumatoid arthritis synovium. Arthritis Rheum. 2007, 56, 1817–1826. [Google Scholar] [CrossRef] [Green Version]
- Klimiuk, P.; Sierakowski, S.; Latosiewicz, R.; Cylwik, J.P.; Cylwik, B.; Skowronski, J.; Chwiecko, J. Soluble adhesion molecules (ICAM-1, VCAM-1, and E-selectin) and vascular endothelial growth factor (VEGF) in patients with distinct variants of rheumatoid synovitis. Ann. Rheum. Dis. 2002, 61, 804–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, D.G. Cellular and molecular mechanisms of endothelial cell dysfunction. J. Clin. Investig. 1997, 100, 2153–2157. [Google Scholar] [CrossRef] [Green Version]
- Bacon, P.; Raza, K.; Banks, M.; Townend, J.; Kitas, G. The role of endothelial cell dysfunction in the cardiovascular mortality of RA. Int. Rev. Immunol. 2002, 21, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Schulz, E.; Jansen, T.; Wenzel, P.; Daiber, A.; Münzel, T. Nitric Oxide, Tetrahydrobiopterin, Oxidative Stress, and Endothelial Dysfunction in Hypertension. Antioxid. Redox Signal. 2008, 10, 1115–1126. [Google Scholar] [CrossRef]
- Totoson, P.; Maguin-Gaté, K.; Prati, C.; Wendling, D.; Demougeot, C. Mechanisms of endothelial dysfunction in rheumatoid arthritis: Lessons from animal studies. Arthritis Res. Ther. 2014, 16, 202. [Google Scholar] [CrossRef] [Green Version]
- Zou, M.H.; Shi, C.; Cohen, R.A. Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J. Clin. Investig. 2002, 109, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Sun, Q.; Liu, T.; Wang, H.; Jiao, K.; Xu, J.; Liu, X.; Liu, H.; Wang, W. Nitrative Stress Participates in Endothelial Progenitor Cell Injury in Hyperhomocysteinemia. PLoS ONE 2016, 11, e0158672. [Google Scholar] [CrossRef] [Green Version]
- Chuaiphichai, S.; Crabtree, M.J.; McNeill, E.; Hale, A.B.; Trelfa, L.; Channon, K.M.; Douglas, G. A key role for tetrahydrobiopterin-dependent endothelial NOS regulation in resistance arteries: Studies in endothelial cell tetrahydrobiopterin-deficient mice. Br. J. Pharmacol. 2017, 174, 657–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haruna, Y.; Morita, Y.; Komai, N.; Yada, T.; Sakuta, T.; Tomita, N.; Fox, D.A.; Kashihara, N. Endothelial dysfunction in rat adjuvant-induced arthritis: Vascular superoxide production by NAD(P)H oxidase and uncoupled endothelial nitric oxide synthase. Arthritis Rheum. 2006, 54, 1847–1855. [Google Scholar] [CrossRef] [Green Version]
- Hakami, N.Y.; Ranjan, A.K.; Hardikar, A.A.; Dusting, G.J.; Peshavariya, H.M. Role of NADPH oxidase-4 in human endothelial progenitor cells. Front. Physiol. 2017, 8, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.-B.; Zhang, Y.-Z.; Liu, W.-Q.; Zhang, J.-J.; Peng, J.; Luo, X.-J.; Ma, Q.-L. Correlation between NADPH oxidase-mediated oxidative stress and dysfunction of endothelial progenitor cell in hyperlipidemic patients. Korean J. Intern. Med. 2018, 33, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Sakuta, T.; Morita, Y.; Satoh, M.; Fox, D.A.; Kashihara, N. Involvement of the renin-angiotensin system in the development of vascular damage in a rat model of arthritis: Effect of angiotensin receptor blockers. Arthritis Rheum. 2010, 62, 1319–1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, B.J.; Leonard, P.T.; Shah, N.K. The evolving landscape of RAAS inhibition: From ACE inhibitors to ARBs, to DRIs and beyond. Expert Rev. Cardiovasc. Ther. 2012, 10, 713–725. [Google Scholar] [CrossRef] [PubMed]
- Bahlmann, F.H.; de Groot, K.; Mueller, O.; Hertel, B.; Haller, H.; Fliser, D. Stimulation of endothelial progenitor cells: A new putative therapeutic effect of angiotensin II receptor antagonists. Hypertension 2005, 45, 526–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Kasama, T.; Kobayashi, K.; Yoda, Y.; Shiozawa, F.; Hanyuda, M.; Negishi, M.; Ide, H.; Adachi, M. Vascular Endothelial Growth Factor Expression and Regulation of Murine Collagen-Induced Arthritis. J. Immunol. 2000, 164, 5922–5927. [Google Scholar] [CrossRef] [Green Version]
- Elshabrawy, H.A.; Chen, Z.; Volin, M.V.; Ravella, S.; Virupannavar, S.; Shahrara, S. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis 2015, 18, 433–448. [Google Scholar] [CrossRef] [Green Version]
- Ballara, S.; Taylor, P.C.; Reusch, P.; Feldmann, M.; Maini, R.N.; Paleolog, E.M. Raised serum vascular endothelial growth factor levels are associated with destructive change in inflammatory arthritis. Arthritis Rheum. 2001, 44, 2055–2064. [Google Scholar] [CrossRef]
- Izquierdo, E.; Cañete, J.D.; Celis, R.; Santiago, B.; Usategui, A.; Sanmartí, R.; Del Rey, M.J.; Pablos, J.L. Immature Blood Vessels in Rheumatoid Synovium Are Selectively Depleted in Response to Anti-TNF Therapy. PLoS ONE 2009, 4, e8131. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Sivan, U.; Tan, S.L.; Lippo, L.; De Angelis, J.; Labella, R.; Singh, A.; Chatzis, A.; Cheuk, S.; Medhghalchi, M.; et al. High-resolution 3D imaging uncovers organ-specific vascular control of tissue aging. Sci. Adv. 2021, 7, eabd7819. [Google Scholar] [CrossRef]
- Herbrig, K.; Haensel, S.; Oelschlaegel, U.; Pistrosch, F.; Foerster, S.; Passauer, J. Endothelial dysfunction in patients with rheumatoid arthritis is associated with a reduced number and impaired function of endothelial progenitor cells. Ann. Rheum. Dis. 2006, 65, 157–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grisar, J.; Aletaha, D.; Steiner, C.W.; Kapral, T.; Steiner, S.; Säemann, M.; Schwarzinger, I.; Buranyi, B.; Steiner, G.; Smolen, J.S. Endothelial progenitor cells in active rheumatoid arthritis: Effects of tumour necrosis factor and glucocorticoid therapy. Ann. Rheum. Dis. 2007, 66, 1284–1288. [Google Scholar] [CrossRef] [Green Version]
- Su, C.; Hsu, C.; Tsai, C.; Huang, C.; Wang, S.; Tang, C. Resistin Promotes Angiogenesis in Endothelial Progenitor Cells Through Inhibition of MicroRNA206: Potential Implications for Rheumatoid Arthritis. Stem Cells 2015, 33, 2243–2255. [Google Scholar] [CrossRef]
- Isozaki, T.; Arbab, A.S.; Haas, C.S.; Amin, M.A.; Arendt, M.D.; Koch, A.E.; Ruth, J.H. Evidence That CXCL16 Is a Potent Mediator of Angiogenesis and Is Involved in Endothelial Progenitor Cell Chemotaxis: Studies in Mice With K/BxN Serum-Induced Arthritis. Arthritis Rheum. 2013, 65, 1736–1746. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-C.; Law, Y.-Y.; Liu, S.-C.; Hu, S.-L.; Lin, J.-A.; Chen, C.-J.; Wang, S.-W.; Tang, C.-H. Adiponectin Promotes VEGF Expression in Rheumatoid Arthritis Synovial Fibroblasts and Induces Endothelial Progenitor Cell Angiogenesis by Inhibiting miR-106a-5p. Cells 2021, 10, 2627. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.-K.; Zhong, Y.-H.; Liu, S.-C.; Huang, C.-C.; Tsai, C.-H.; Lee, H.-P.; Wang, S.-W.; Hsu, C.-J.; Tang, C.-H. Apelin Promotes Endothelial Progenitor Cell Angiogenesis in Rheumatoid Arthritis Disease via the miR-525-5p/Angiopoietin-1 Pathway. Front. Immunol. 2021, 12, 4020. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Su, C.-M.; Hsu, C.-J.; Huang, C.-C.; Wang, S.-W.; Liu, S.-C.; Chen, W.-C.; Fuh, L.-J.; Tang, C.-H. CCN1 Promotes VEGF Production in Osteoblasts and Induces Endothelial Progenitor Cell Angiogenesis by Inhibiting miR-126 Expression in Rheumatoid Arthritis. J. Bone Miner. Res. 2017, 32, 34–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.-C.; Tseng, T.-T.; Liu, S.-C.; Lin, Y.-Y.; Law, Y.-Y.; Hu, S.-L.; Wang, S.-W.; Tsai, C.-H.; Tang, C.-H. S1P Increases VEGF Production in Osteoblasts and Facilitates Endothelial Progenitor Cell Angiogenesis by Inhibiting miR-16-5p Expression via the c-Src/FAK Signaling Pathway in Rheumatoid Arthritis. Cells 2021, 10, 2168. [Google Scholar] [CrossRef]
- Özüyaman, B.; Ebner, P.; Niesler, U.; Ziemann, J.; Kleinbongard, P.; Jax, T.; Gödecke, A.; Kelm, M.; Kalka, C. Nitric oxide differentially regulates proliferation and mobilization of endothelial progenitor cells but not of hematopoietic stem cells. Thromb. Haemost. 2005, 94, 770–772. [Google Scholar] [CrossRef]
- Grisar, J.; Aletaha, D.; Steiner, C.W.; Kapral, T.; Steiner, S.; Seidinger, D.; Weigel, G.; Schwarzinger, I.; Wolozcszuk, W.; Steiner, G.; et al. Depletion of Endothelial Progenitor Cells in the Peripheral Blood of Patients with Rheumatoid Arthritis. Circulation 2005, 111, 204–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ablin, J.N.; Boguslavski, V.; Aloush, V.; Elkayam, O.; Paran, D.; Caspi, D.; George, J. Effect of anti-TNFalpha treatment on circulating endothelial progenitor cells (EPCs) in rheumatoid arthritis. Life Sci. 2006, 79, 2364–2369. [Google Scholar] [CrossRef] [PubMed]
- Surdacki, A.; Martens-Lobenhoffer, J.; Wloch, A.; Marewicz, E.; Rakowski, T.; Wieczorek-Surdacka, E.; Dubiel, J.S.; Pryjma, J.; Bode-Böger, S.M. Elevated plasma asymmetric dimethyl-L-arginine levels are linked to endothelial progenitor cell depletion and carotid atherosclerosis in rheumatoid arthritis. Arthritis Rheum. 2007, 56, 809–819. [Google Scholar] [CrossRef]
- Egan, C.G.; Caporali, F.; Garcia-Gonzalez, E.; Galeazzi, M.; Sorrentino, V. Endothelial progenitor cells and colony-forming units in rheumatoid arthritis: Association with clinical characteristics. Rheumatology 2008, 47, 1484–1488. [Google Scholar] [CrossRef] [Green Version]
- Yiu, K.-H.; Wang, S.; Mok, M.-Y.; Ooi, G.C.; Khong, P.-L.; Lau, C.-P.; Lai, W.-H.; Wong, L.-Y.; Lam, K.-F.; Lau, C.-S.; et al. Role of Circulating Endothelial Progenitor Cells in Patients with Rheumatoid Arthritis with Coronary Calcification. J. Rheumatol. 2010, 37, 529–535. [Google Scholar] [CrossRef]
- Jodon de Villeroche, V.; Avouac, J.; Ponceau, A.; Ruiz, B.; Kahan, A.; Boileau, C.; Uzan, G.; Allanore, Y. Enhanced late-outgrowth circulating endothelial progenitor cell levels in rheumatoid arthritis and correlation with disease activity. Arthritis Res. Ther. 2010, 12, R27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Carrio, J.; Prado, C.; De Paz, B.; Lopez-Suarez, P.; Gómez, J.; Alperi-López, M.; Ballina-García, F.J.; Suarez-Diaz, A.M. Circulating endothelial cells and their progenitors in systemic lupus erythematosus and early rheumatoid arthritis patients. Rheumatology 2012, 51, 1775–1784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Carrio, J.; Alperi-López, M.; López, P.; Alonso-Castro, S.; Carro-Esteban, S.R.; Ballina-García, F.J.; Suárez, A.; Lopez-Suarez, P. Red cell distribution width is associated with endothelial progenitor cell depletion and vascular-related mediators in rheumatoid arthritis. Atherosclerosis 2015, 240, 131–136. [Google Scholar] [CrossRef]
- Rodriguez-Carrio, J.; de Paz, B.; Lopez, P.; Prado, C.; Alperi-Lopez, M.; Ballina-García, F.J.; Suarez, A. IFNalpha serum levels are associated with endothelial progenitor cells imbalance and disease features in rheumatoid arthritis patients. PLoS ONE 2014, 9, e86069. [Google Scholar] [CrossRef]
- Rodríguez-Carrio, J.; Alperi-López, M.; López, P.; Alonso-Castro, S.; Ballina-García, F.J.; Suárez, A. Angiogenic T cells are decreased in rheumatoid arthritis patients. Ann. Rheum. Dis. 2015, 74, 921–927. [Google Scholar] [CrossRef]
- Zhao, P.; Miao, J.; Zhang, K.; Yu, Z.; Lv, M.; Xu, Y.; Fu, X.; Han, Q.; Zhu, P. CD147 participates in the activation function of circulating angiogenic T cells in patients with rheumatoid arthritis. Clin. Rheumatol. 2019, 38, 2621–2628. [Google Scholar] [CrossRef] [PubMed]
- Shirinsky, I.; Polovnikova, O.; Kalinovskaya, N.; Shirinsky, V. The effects of fenofibrate on inflammation and cardiovascular markers in patients with active rheumatoid arthritis: A pilot study. Rheumatol. Int. 2013, 33, 3045–3048. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, F.R.; Metere, A.; Barbati, C.; Pierdominici, M.; Iannuccelli, C.; Lucchino, B.; Ciciarello, F.; Agati, L.; Valesini, G.; Di Franco, M. Effect of Therapeutic Inhibition of TNF on Circulating Endothelial Progenitor Cells in Patients with Rheumatoid Arthritis. Mediat. Inflamm. 2013, 2013, 537539. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.-J.; Kim, J.-Y.; Park, J.; Choi, J.-J.; Kim, W.-U.; Cho, C.-S. Bone Erosion Is Associated With Reduction of Circulating Endothelial Progenitor Cells and Endothelial Dysfunction in Rheumatoid Arthritis. Arthritis Rheumatol. 2014, 66, 1450–1460. [Google Scholar] [CrossRef] [Green Version]
- Verma, I.; Syngle, A.; Krishan, P. Predictors of endothelial dysfunction and atherosclerosis in rheumatoid arthritis in Indian population. Indian Hear J. 2017, 69, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Lo Gullo, A.; Mandraffino, G.; Bagnato, G.; Aragona, C.O.; Imbalzano, E.; D’Ascola, A.; Rotondo, F.; Cinquegrani, A.; Mormina, E.; Saitta, C.; et al. Vitamin D Status in Rheumatoid Arthritis: Inflammation, Arterial Stiffness and Circulating Progenitor Cell Number. PLoS ONE 2015, 10, e0134602. [Google Scholar]
- Aviña-Zubieta, J.A.; Choi, H.K.; Sadatsafavi, M.; Etminan, M.; Esdaile, J.M.; Lacaille, D. Risk of cardiovascular mortality in patients with rheumatoid arthritis: A meta-analysis of observational studies. Arthritis Rheum. 2008, 59, 1690–1697. [Google Scholar] [CrossRef]
- Jagpal, A.; Navarro-Millán, I. Cardiovascular co-morbidity in patients with rheumatoid arthritis: A narrative review of risk factors, cardiovascular risk assessment and treatment. BMC Rheumatol. 2018, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Perrotta, F.; Perna, A.; Komici, K.; Nigro, E.; Mollica, M.; D’Agnano, V.; De Luca, A.; Guerra, G. The State of Art of Regenerative Therapy in Cardiovascular Ischemic Disease: Biology, Signaling Pathways, and Epigenetics of Endothelial Progenitor Cells. Cells 2020, 9, 1886. [Google Scholar] [CrossRef]
- Vasa, M.; Fichtlscherer, S.; Aicher, A.; Adler, K.; Urbich, C.; Martin, H.; Zeiher, A.M.; Dimmeler, S. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001, 89, E1–E7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fadini, G.P.; Sartore, S.; Baesso, I.; Lenzi, M.; Agostini, C.; Tiengo, A.; Avogaro, A. Endothelial Progenitor Cells and the Diabetic Paradox. Diabetes Care 2006, 29, 714–716. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.-T.; Coggins, M.; Xiao, C.; Rosenzweig, A.; Bischoff, J. Human vasculogenic cells form functional blood vessels and mitigate adverse remodeling after ischemia reperfusion injury in rats. Angiogenesis 2013, 16, 773–784. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Lee, J.H.; Asahara, T.; Kim, Y.S.; Jeong, H.C.; Ahn, Y.; Jung, J.S.; Kwon, S.M. Genistein promotes endothelial colony-forming cell (ECFC) bioactivities and cardiac regeneration in myocardial infarction. PLoS ONE 2014, 9, e96155. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.; Ngai, M.C.; Chen, Y.; Wu, M.; Yu, Y.; Zhen, Z.; Lai, K.; Cheung, T.; Ho, L.; Chung, H.; et al. Cumulative Rheumatic Inflammation Modulates the Bone-Vascular Axis and Risk of Coronary Calcification. J. Am. Hear Assoc. 2019, 8, e011540. [Google Scholar] [CrossRef]
- Marcovitz, P.A.; Tran, H.H.; Franklin, B.A.; O’Neill, W.W.; Yerkey, M.; Boura, J.; Kleerekoper, M.; Dickinson, C.Z. Usefulness of Bone Mineral Density to Predict Significant Coronary Artery Disease. Am. J. Cardiol. 2005, 96, 1059–1063. [Google Scholar] [CrossRef]
- Ruaro, B.; Casabella, A.; Molfetta, L.; Salton, F.; Confalonieri, P.; Confalonieri, M.; Baratella, E.; De Tanti, A.; Bruni, C. What Role Does Trabecular Bone Score Play in Chronic Inflammatory Rheumatic Diseases? Front. Med. 2020, 7. [Google Scholar] [CrossRef]
- Toussirot, E.M.L.; Wendling, D.; Dumoulin, G. Trabecular bone score in rheumatoid arthritis and ankylosing spondylitis and changes during long term treatment with TNF a blocking agents. J. Bone Miner Res. 2012, 27, 381. [Google Scholar]
- Chan, Y.; Ngai, M.C.; Chen, Y.; Wu, M.; Yu, Y.; Zhen, Z.; Lai, K.; Cheung, T.; Ho, L.; Chung, H.; et al. Osteogenic circulating endothelial progenitor cells are linked to electrocardiographic conduction abnormalities in rheumatic patients. Ann. Noninvasive Electrocardiol. 2019, 24, e12651. [Google Scholar] [CrossRef] [Green Version]
- Pulito-Cueto, V.; Remuzgo-Martínez, S.; Genre, F.; Mora-Cuesta, V.M.; Iturbe-Fernández, D.; Fernández-Rozas, S.; Atienza-Mateo, B.; Lera-Gómez, L.; Alonso-Lecue, P.; Rodríguez-Carrio, J.; et al. Endothelial Progenitor Cells as a Potential Biomarker in Interstitial Lung Disease Associated with Rheumatoid Arthritis. J. Clin. Med. 2020, 9, 4098. [Google Scholar] [CrossRef]
- Fraenkel, L.; Bathon, J.M.; England, B.R.; St. Clair, E.W.; Arayssi, T.; Carandang, K.; Deane, K.D.; Genovese, M.; Huston, K.K.; Kerr, G.; et al. 2021 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheumatol. 2021, 73, 1108–1123. [Google Scholar] [CrossRef] [PubMed]
- Patschan, S.; Nemirovsky, K.; Henze, E.; Scholze, J.; Müller, G.; Patschan, D. Tocilizumab increases EPC regeneration in rheumatoid arthritis. Scand. J. Rheumatol. 2014, 43, 528–530. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kim, J.Y.; Kwok, S.K.; Cho, C.S. Endothelial progenitor cell proliferation and differentiation is increased by hydroxychloroquine (conference abstract). Ann. Rheum. Dis. 2008, 67, 165. [Google Scholar]
First Author and Year | Study Population | Exclusion Criteria | Disease Activity State | MACs/ECFCs Identification | MACs/ECFCs Impairment in RA | Other Findings |
---|---|---|---|---|---|---|
Grisar J et al., 2005 | 52: 16 HC | Significant Hypertension, DM | active, low and no disease activity | CD34+/KDR+/AC133+ | ↓ MACs/ECFCs | MACs/ECFCs levels were inversely related to disease activity |
Herbrig K et al., 2006 | 13 RA: 13 HC | DM, CAD, smokers. | low activity | CD34+/CD133+/KDR+ | ↓ MACs/ECFCs | Migratory activity of EPCs was reduced for RA patients. Adhesion to mature endothelial cells after activation with TNF-α was enhanced only in HC |
Ablin J et al., 2006 | 14 RA receiving infliximab | DM, CAD, CVD, Claudication | active disease | CD31+/Tie-2 | ↑ ECFCs (after infliximab therapy) | Significant correlation was observed between the extent of clinical improvement and the level of increase in the number and function of EPCs |
Grisar J et al., 2007 | 29 RA receiving GC | Significant Hypertension, DM, CVD, CAD. | moderate-high active disease | CD34+/KDR+/AC133+ | ↑ MACs/ECFCs (after GC therapy) | Disease activity and TNF decreased significantly after GC treatment. |
Surdacki A et al., 2007 | 30 RA: 20 HC | Atherosclerosis, CV risk factors and Renal dysfunction. D.A.S < 3.2 | active disease | CD34+/KDR+ | ↓ MACs | Plasma asymmetric dimethyl-L-arginine levels are ↑ in RA patients free of CV risk factors or disease |
Egan C et al., 2008 | 36 RA: 30 HC | Acute macro- or microvascular events, DM, statin treatment | Moderate-high active disease | CD34+/CD133+ CD34+/CD117+ CD34+/CD31+ CD34+/KDR+ CD34+/CD133+/KDR+ | MACs/ECFCs no significant difference | Levels of EPCs were negatively associated with prognostic markers of poor disease status |
Kai-Hang Y et al., 2010 | 70 RA | CAD, myocardial infarction, stroke | N/R | CD34+ CD34+/KDR+ CD133+ CD133+/KDR+ | ↓ MACs | MACs predicted atherosclerosis in RA patients |
Jodon de Villeroche V et al., 2010 | 59 RA: 36 HC | CV risk factors | different active disease | Lin−/7AAD− CD34+/CD133+/VEGFR-2+ | ↑ ECFCs | No association between the EPCs and serum markers of inflammation or endothelial injury or synovitis. |
Rodriguez- Carrio J et al., 2012 | 83 RA: 13 HC | CV risk factors | early stage | CD34+/VEGFR2+/CD133+ | MACs unchanged | EPCs number exhibited a positive correlation with disease activity in early RA |
Shirinsky I et al., 2012 | 25 RA: 16 Osteoarthritis | N/R | active disease | CD34+/CD144+/CD3− | ↓ MACs/ECFCs | After 12 weeks of treatment with fenofibrate, no significant changes were observed in EPCs levels |
Spinelli F.R et al., 2013 | 17 RA: 12 HC | CVD, CKD; Dyslipidemia, DM | active state | CD34+/KDR+ | ↓ MACs | Short-term treatment with anti-TNF was able to increase circulating EPCs |
Rodriguez- Carrio J. et al., 2014 | 120 RA: 52 HC | N/R | different active disease | CD34+/VEGFR2+/CD133+ | ↓ MACs | EPCs reduced in patients with low IFNα |
Rodriguez- Carrio J. et al., 2015 | 103 RA: 18 HC | N/R | different active disease | CD34+/VEGFR2+/CD133+ | ↓ MACs | Angiogenic T cells are reduced in RA and are associated with CV risk factors |
Park YJ et al., 2014 | 126 RA: 26 HC | CAD, stroke, CKD, CHF | different active disease | CD34+/VEGFR-2+ | ↓ MACs | EPCs is independently associated with bone erosion scores in RA patients. serum CXCL12 level is significantly higher in RA patients. |
Rodriguez- Carrio J et al., 2014 | 194 RA | N/R | different active disease | CD34+/VEGFR2+/CD133+ | ↓ MACs (>1 year RA vs. <, =1 year) | RDW was associated with ↓ EPCs and increased levels of different mediators linked to endothelial damage |
Lo Gullo A et al., 2015 | 27 RA: 41 HC | CV risk factors, Vitamin D treatment | moderate disease activity | CD34+ | ↓ MACs | Vitamin D deficiency is associated with ↓ MACs |
Verma I et al, 2015 | 35 RA: 25 HC | CV risk factors | N/R | CD34+/CD133+ | ↓ MACs | Age, IL-6, HDL, LDL and ↓ EPCs predicted accelerated atherosclerosis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komici, K.; Perna, A.; Rocca, A.; Bencivenga, L.; Rengo, G.; Guerra, G. Endothelial Progenitor Cells and Rheumatoid Arthritis: Response to Endothelial Dysfunction and Clinical Evidences. Int. J. Mol. Sci. 2021, 22, 13675. https://doi.org/10.3390/ijms222413675
Komici K, Perna A, Rocca A, Bencivenga L, Rengo G, Guerra G. Endothelial Progenitor Cells and Rheumatoid Arthritis: Response to Endothelial Dysfunction and Clinical Evidences. International Journal of Molecular Sciences. 2021; 22(24):13675. https://doi.org/10.3390/ijms222413675
Chicago/Turabian StyleKomici, Klara, Angelica Perna, Aldo Rocca, Leonardo Bencivenga, Giuseppe Rengo, and Germano Guerra. 2021. "Endothelial Progenitor Cells and Rheumatoid Arthritis: Response to Endothelial Dysfunction and Clinical Evidences" International Journal of Molecular Sciences 22, no. 24: 13675. https://doi.org/10.3390/ijms222413675
APA StyleKomici, K., Perna, A., Rocca, A., Bencivenga, L., Rengo, G., & Guerra, G. (2021). Endothelial Progenitor Cells and Rheumatoid Arthritis: Response to Endothelial Dysfunction and Clinical Evidences. International Journal of Molecular Sciences, 22(24), 13675. https://doi.org/10.3390/ijms222413675