Visualization of Chromatin in the Yeast Nucleus and Nucleolus Using Hyperosmotic Shock
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Chromatin Does Not Form a Condensed Structure in Exponentially Growing Yeast Cells
3.2. Budding Yeast Chromatin Forms Condensed Structures upon Hyperosmotic Treatment
3.3. Two Types of DNA Are Present in the Yeast Nucleolus
3.4. The Yeast Nucleus Has a Limited Number of Structural Subcompartments
4. Materials and Methods
4.1. Biological Material
4.2. Electron Microscopy
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dillon, N. Heterochromatin structure and function. Biol. Cell 2004, 96, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, C.L.; Ghosh, R.P. Chromatin Higher-order Structure and Dynamics. Cold Spring Harb. Perspect. Biol. 2010, 2, a000596. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ali, M.; Zhou, Q. Establishment and evolution of heterochromatin. Ann. N. Y. Acad. Sci. 2020, 1476, 59–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niedojadlo, J.; Perret-Vivancos, C.; Kalland, K.-H.; Cmarko, D.; Cremer, M.; Van Driel, R.; Fakan, S. Transcribed DNA is preferentially located in the perichromatin region of mammalian cell nuclei. Exp. Cell Res. 2011, 317, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Esgleas, M.; Falk, S.; Forné, I.; Thiry, M.; Najas, S.; Zhang, S.; Mas-Sanchez, A.; Geerlof, A.; Niessing, D.; Wang, Z.; et al. Trnp1 organizes diverse nuclear membrane-less compartments in neural stem cells. EMBO J. 2020, 39, e103373. [Google Scholar] [CrossRef]
- Lafontaine, D.L.J.; Riback, J.A.; Bascetin, R.; Brangwynne, C.P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 2020, 1–18. [Google Scholar] [CrossRef]
- Thiry, M.; Lafontaine, D.L.J. Birth of a nucleolus: The evolution of nucleolar compartments. Trends Cell Biol. 2005, 15, 194–199. [Google Scholar] [CrossRef]
- Miné-Hattab, J.; Taddei, A. Physical principles and functional consequences of nuclear compartmentalization in budding yeast. Curr. Opin. Cell Biol. 2019, 58, 105–113. [Google Scholar] [CrossRef]
- Gordon, C.N. Chromatin behaviour during the mitotic cell cycle of Saccharomyces cerevisiae. J. Cell Sci. 1977, 24, 81–93. [Google Scholar]
- O’Toole, E.T.; Winey, M.; McIntosh, J.R. High-Voltage Electron Tomography of Spindle Pole Bodies and Early Mitotic Spindles in the YeastSaccharomyces cerevisiae. Mol. Biol. Cell 1999, 10, 2017–2031. [Google Scholar] [CrossRef]
- Robinow, C.F.; Marak, J. A fiber apparatus in the nucleus of the yeast cell. J. Cell Biol. 1966, 29, 129–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winey, M.; Mamay, C.L.; O’Toole, E.T.; Mastronarde, D.N.; Giddings, T.H.; McDonald, K.L.; McIntosh, J.R. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J. Cell Biol. 1995, 129, 1601–1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, S.; Song, Y.; Chen, C.; Shi, J.; Gan, L. Natural chromatin is heterogeneous and self-associates in vitro. Mol. Biol. Cell 2018, 29, 1652–1663. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Lim, H.H.; Shi, J.; Tamura, S.; Maeshima, K.; Surana, U.; Gan, L. Budding yeast chromatin is dispersed in a crowded nucleoplasm in vivo. Mol. Biol. Cell 2016, 27, 3357–3368. [Google Scholar] [CrossRef] [PubMed]
- Delpire, E.; Duchene, C.; Goessens, G.; Gilles, R. Effects of osmotic shocks on the ultrastructure of different tissues and cell types. Exp. Cell Res. 1985, 160, 106–116. [Google Scholar] [CrossRef]
- Gilles, R.; Belkhir, M.; Compere, P.; Libioulle, C.; Thiry, M. Effect of high osmolarity acclimation on tolerance to hyperosmotic shocks in L929 cultured cells. Tissue Cell 1995, 27, 679–687. [Google Scholar] [CrossRef]
- Thiry, M.; Lepoint, A.; Goessens, G. Re-evaluation of the site of transcription in Ehrlich tumour cell nucleoli. Biol. Cell 1985, 54, 57–64. [Google Scholar] [CrossRef]
- Bobichon, H.; Bussy, V.; Angiboust, J.-F.; Manfait, M.; Bouchet, P.; Jardillier, J.-C. Candida albicans- adriamycin interactions: Ultrastructural and spectrofluorometric study of whole yeasts and spheroplasts. Biol. Cell 1990, 70, 53–59. [Google Scholar] [CrossRef]
- Bartholomé, O.; Franck, C.; Piscicelli, P.; Lalun, N.; Defourny, J.; Renauld, J.; Thelen, N.; Lamaye, F.; Ploton, D.; Thiry, M. Relationships between the structural and functional organization of the turtle cell nucleolus. J. Struct. Biol. 2019, 208, 107398. [Google Scholar] [CrossRef]
- Osheim, Y.N.; French, S.L.; Sikes, M.L.; Beyer, A.L. Electron Microscope Visualization of RNA Transcription and Processing in Saccharomyces cerevisiae by Miller Chromatin Spreading. Methods Mol. Biol. 2008, 464, 55–69. [Google Scholar] [CrossRef]
- Uzawa, S.; Yanagida, M. Visualization of centromeric and nucleolar DNA in fission yeast by fluorescence in situ hybridization. J. Cell Sci. 1992, 101, 267–275. [Google Scholar]
- Hsieh, T.-H.S.; Weiner, A.; Lajoie, B.R.; Dekker, J.; Friedman, N.; Rando, O.J. Mapping Nucleosome Resolution Chromosome Folding in Yeast by Micro-C. Cell 2015, 162, 108–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derelle, E.; Ferraz, C.; Rombauts, S.; Rouzé, P.; Worden, A.Z.; Robbens, S.; Partensky, F.; Degroeve, S.; Echeynié, S.; Cooke, R. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc. Natl. Acad. Sci. USA 2006, 103, 11647–11652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swygert, S.G.; Senapati, S.; Bolukbasi, M.F.; Wolfe, S.A.; Lindsay, S.; Peterson, C.L. SIR proteins create compact heterochromatin fibers. Proc. Natl. Acad. Sci. USA 2018, 115, 12447–12452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Ren, Q.; Zhang, Z. Chromosome or chromatin condensation leads to meiosis or apoptosis in stationary yeast (Saccharomyces cerevisiae) cells. FEMS Yeast Res. 2006, 6, 1254–1263. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.D.; Sotoca, R.; Johansson, B.; Ludovico, P.; Sansonetty, F.; Silva, M.T.; Peinado, J.M.; Côrte-Real, M. Hyperosmotic stress induces metacaspase- and mitochondria-dependent apoptosis inSaccharomyces cerevisiae. Mol. Microbiol. 2005, 58, 824–834. [Google Scholar] [CrossRef] [Green Version]
- Mekhail, K.; Seebacher, J.; Gygi, S.P.; Moazed, D. Role for perinuclear chromosome tethering in maintenance of genome stability. Nature 2008, 456, 667–670. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Verdun, D.; Roussel, P.; Thiry, M.; Sirri, V.; Lafontaine, D.L.J. The nucleolus: Structure/function relationship in RNA metabolism. Wiley Interdiscip. Rev. RNA 2010, 1, 415–431. [Google Scholar] [CrossRef]
- Tchelidze, P.; Kaplan, H.; Terryn, C.; Lalun, N.; Ploton, D.; Thiry, M. Electron tomography reveals changes in spatial distribution of UBTF1 and UBTF2 isoforms within nucleolar components during rRNA synthesis inhibition. J. Struct. Biol. 2019, 208, 191–204. [Google Scholar] [CrossRef]
- Yao, R.W.; Xu, G.; Wang, Y.; Shan, L.; Luan, P.F.; Wang, Y.; Wu, M.; Yang, L.Z.; Xing, Y.H.; Yang, L.; et al. Nascent Pre-rRNA Sorting via Phase Separation Drives the Assembly of Dense Fibrillar Components in the Human Nucleolus. Mol. Cell 2019, 76, 767–783. [Google Scholar] [CrossRef]
- Lamaye, F.; Galliot, S.; Alibardi, L.; Lafontaine, D.L.; Thiry, M. Nucleolar structure across evolution: The transition between bi- and tri-compartmentalized nucleoli lies within the class Reptilia. J. Struct. Biol. 2011, 174, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Léger-Silvestre, I.; Trumtel, S.; Noaillac-Depeyre, J.; Gas, N. Functional compartmentalization of the nucleus in the budding yeast Saccharomyces cerevisiae. Chromosoma 1999, 108, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Trumtel, S.; Léger-Silvestre, I.; Gleizes, P.-E.; Teulières, F.; Gas, N. Assembly and Functional Organization of the Nucleolus: Ultrastructural Analysis ofSaccharomyces cerevisiaeMutants. Mol. Biol. Cell 2000, 11, 2175–2189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ploton, D.; Thiry, M.; Menager, M.; Lepoint, A.; Adnet, J.J.; Goessens, G. Behaviour of nucleolus during mitosis. A comparative ultrastructural study of various cancerous cell lines using the Ag-NOR staining procedure. Chromosoma 1987, 95, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Gleizes, P.-E.; Noaillac-Depeyre, J.; Léger-Silvestre, I.; Teulieères, F.; Dauxois, J.-Y.; Pommet, D.; Azum-Gelade, M.-C.; Gas, N. Ultrastructural localization of rRNA shows defective nuclear export of preribosomes in mutants of the Nup82p complex. J. Cell Biol. 2001, 155, 923–936. [Google Scholar] [CrossRef] [PubMed]
- Elliott, D.J.; Bowman, D.; Abovich, N.; Fay, F.; Rosbash, M. A yeast splicing factor is localized in discrete subnuclear domains. EMBO J. 1992, 11, 3731–3736. [Google Scholar] [CrossRef] [PubMed]
- Thiry, M. The interchromatin granules. Histol. Histopathol. 1995, 10, 1035–1045. [Google Scholar] [PubMed]
- Charlier, C.; Lamaye, F.; Thelen, N.; Thiry, M. Ultrastructural detection of nucleic acids within heat shock-induced perichromatin granules of HeLa cells by cytochemical and immunocytological methods. J. Struct. Biol. 2009, 166, 329–336. [Google Scholar] [CrossRef]
- Lafontaine, D.; Tollervey, D. One-step PCR mediated strategy for the construction of conditionally expressed and epitope tagged yeast proteins. Nucleic Acids Res. 1996, 24, 3469–3471. [Google Scholar] [CrossRef] [Green Version]
- Thelen, N.; Thiry, M. DNA Labeling at Electron Microscopy. Methods Mol. Biol. 2017, 1560, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Ploton, M.; Menager, M.; Adnet, J.-J. Simultaneous high resolution localization of Ag-NOR proteins and nucleoproteins in interphasic and mitotic nuclei. Histochem. J. 1984, 16, 897–906. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, W. A method of regressive coloration with use of the electron microscope. Comptes Rendus Hebd. Seances l’Academie Sci. Ser. D Sci. Nat. 1968, 267, 2170–2173. [Google Scholar]
- Thiry, M. Highly sensitive immunodetection of DNA on sections with exogenous terminal deoxynucleotidyl transferase and non-isotopic nucleotide analogues. J. Histochem. Cytochem. 1992, 40, 411–419. [Google Scholar] [CrossRef] [PubMed]
Cytoplasmic Ribosomes | 21.96 ± 2.38 nm | n = 29 |
Nucleolar granules | 21.96 ± 3.09 nm | n = 27 |
Nuclear granules dispersed in nucleoplasmic zone | 20.28 ± 1.99 nm | n = 28 |
Large nuclear granules in nucleoplasmic zone | 38.52 ± 4.78 nm * | n = 35 |
Cell Compartments | Cells without Passage in 1M Sorbitol Solution n = 11 | Cells with Passage in 1M Sorbitol Solution n = 13 |
---|---|---|
NUCLEOLUS | ||
Fibrillar cordons | 3.68 ± 2.55 * | 9.48 ± 5.40 * |
Granular component | 0 | 0.20 ± 0.72 |
Pale areas | 65.73 ± 23.65 * | 79.29 ± 34.80 * |
NUCLEOPLASMIC ZONE | 31.86 ± 10.49 * | 28.98 ± 7.70 * |
Condensed chromatin | / | 70.20 ± 18.29 * |
Interchromatin area | / | 1.07 ± 1.20 |
CYTOPLASM | 0.24 ± 0.31 | 1.53 ± 0.94 |
RESIN | 0.24 ± 0.37 | 1.69 ± 1.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thelen, N.; Defourny, J.; Lafontaine, D.L.J.; Thiry, M. Visualization of Chromatin in the Yeast Nucleus and Nucleolus Using Hyperosmotic Shock. Int. J. Mol. Sci. 2021, 22, 1132. https://doi.org/10.3390/ijms22031132
Thelen N, Defourny J, Lafontaine DLJ, Thiry M. Visualization of Chromatin in the Yeast Nucleus and Nucleolus Using Hyperosmotic Shock. International Journal of Molecular Sciences. 2021; 22(3):1132. https://doi.org/10.3390/ijms22031132
Chicago/Turabian StyleThelen, Nicolas, Jean Defourny, Denis L. J. Lafontaine, and Marc Thiry. 2021. "Visualization of Chromatin in the Yeast Nucleus and Nucleolus Using Hyperosmotic Shock" International Journal of Molecular Sciences 22, no. 3: 1132. https://doi.org/10.3390/ijms22031132
APA StyleThelen, N., Defourny, J., Lafontaine, D. L. J., & Thiry, M. (2021). Visualization of Chromatin in the Yeast Nucleus and Nucleolus Using Hyperosmotic Shock. International Journal of Molecular Sciences, 22(3), 1132. https://doi.org/10.3390/ijms22031132