New Insights into Development of Female Reproductive Tract—Hedgehog-Signal Response in Wolffian Tissues Directly Contributes to Uterus Development
Abstract
:1. Introduction
2. Results
2.1. Characterization of Hedgehog-Related Gene Expression in Urogenital Ridge Region
2.2. Developmental Defects of Female Reproductive Tract in Shh KO Mice
2.3. Wolffian Region Specific Hedgehog-Signal-Responsiveness in Embryonic Reproductive Tract
2.4. Contribution of Wolffian-Derived Hedgehog-Signal-Responsive Cells to Developing and Adult Uterine Tissues
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Genetic Lineage Tracing Experiments
4.3. Histological Analysis
4.4. X-Gal Staining
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cunha, G.R.; Robboy, S.J.; Kurita, T.; Isaacson, D.; Shen, J.; Cao, M.; Baskin, L.S. Development of the human female reproductive tract. Differentiation 2018, 103, 46–65. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, A.; Behringer, R.R. Developmental genetics of the female reproductive tract in mammals. Nat. Rev. Genet. 2003, 4, 969–980. [Google Scholar] [CrossRef]
- Robboy, S.J.; Kurita, T.; Baskin, L.; Cunha, G.R. New insights into human female reproductive tract development. Differentiation 2017, 97, 9–22. [Google Scholar] [CrossRef]
- Gruenwald, P. The relation of the growing müllerian duct to the wolffian duct and its importance for the genesis of malformations. Anat. Rec. 1941, 81, 1–19. [Google Scholar] [CrossRef]
- Orvis, G.D.; Behringer, R.R. Cellular mechanisms of Mullerian duct formation in the mouse. Dev. Biol. 2007, 306, 493–504. [Google Scholar] [CrossRef] [Green Version]
- Atsuta, Y.; Takahashi, Y. Early formation of the Mullerian duct is regulated by sequential actions of BMP/Pax2 and FGF/Lim1 signaling. Development 2016, 143, 3549–3559. [Google Scholar] [CrossRef] [Green Version]
- Chiga, M.; Ohmori, T.; Ohba, T.; Katabuchi, H.; Nishinakamura, R. Preformed Wolffian duct regulates Mullerian duct elongation independently of canonical Wnt signaling or Lhx1 expression. Int. J. Dev. Biol. 2014, 58, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Tripathi, P.; Poyo, E.; Wang, Y.; Austin, P.F.; Bates, C.M.; Chen, F. Cell death serves as a single etiological cause of a wide spectrum of congenital urinary tract defects. J. Urol. 2011, 185, 2320–2328. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, A.; Kwan, K.M.; Carroll, T.J.; McMahon, A.P.; Mendelsohn, C.L.; Behringer, R.R. Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development 2005, 132, 2809–2823. [Google Scholar] [CrossRef] [Green Version]
- Cooke, P.S.; Buchanan, D.L.; Young, P.; Setiawan, T.; Brody, J.; Korach, K.S.; Taylor, J.; Lubahn, D.B.; Cunha, G.R. Stromal estrogen receptors mediate mitogenic effects of estradiol on uterine epithelium. Proc. Natl. Acad. Sci. USA 1997, 94, 6535–6540. [Google Scholar] [CrossRef] [Green Version]
- Kurita, T.; Lee, K.J.; Cooke, P.S.; Taylor, J.A.; Lubahn, D.B.; Cunha, G.R. Paracrine regulation of epithelial progesterone receptor by estradiol in the mouse female reproductive tract. Biol. Reprod. 2000, 62, 821–830. [Google Scholar] [CrossRef] [Green Version]
- Kitajewski, J.; Sassoon, D. The emergence of molecular gynecology: Homeobox and Wnt genes in the female reproductive tract. Bioessays 2000, 22, 902–910. [Google Scholar] [CrossRef]
- Zhao, F.; Franco, H.L.; Rodriguez, K.F.; Brown, P.R.; Tsai, M.J.; Tsai, S.Y.; Yao, H.H. Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice. Science 2017, 357, 717–720. [Google Scholar] [CrossRef] [Green Version]
- Franco, H.L.; Yao, H.H. Sex and hedgehog: Roles of genes in the hedgehog signaling pathway in mammalian sexual differentiation. Chromosome Res. 2012, 20, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Bitgood, M.J.; McMahon, A.P. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev. Biol. 1995, 172, 126–138. [Google Scholar] [CrossRef] [Green Version]
- Little, M.H.; Brennan, J.; Georgas, K.; Davies, J.A.; Davidson, D.R.; Baldock, R.A.; Beverdam, A.; Bertram, J.F.; Capel, B.; Chiu, H.S.; et al. A high-resolution anatomical ontology of the developing murine genitourinary tract. Gene Expr. Patterns 2007, 7, 680–699. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Li, Y.; Huang, X.; Li, Y.; Pu, W.; Tian, X.; Cai, D.; Huang, H.; Lui, K.O.; Zhou, B. Genetic lineage tracing of resident stem cells by DeaLT. Nat. Protoc. 2018, 13, 2217–2246. [Google Scholar] [CrossRef]
- Kobayashi, A.; Shawlot, W.; Kania, A.; Behringer, R.R. Requirement of Lim1 for female reproductive tract development. Development 2004, 131, 539–549. [Google Scholar] [CrossRef] [Green Version]
- Haraguchi, R.; Matsumaru, D.; Nakagata, N.; Miyagawa, S.; Suzuki, K.; Kitazawa, S.; Yamada, G. The hedgehog signal induced modulation of bone morphogenetic protein signaling: An essential signaling relay for urinary tract morphogenesis. PLoS ONE 2012, 7, e42245. [Google Scholar] [CrossRef] [Green Version]
- Haraguchi, R.; Motoyama, J.; Sasaki, H.; Satoh, Y.; Miyagawa, S.; Nakagata, N.; Moon, A.; Yamada, G. Molecular analysis of coordinated bladder and urogenital organ formation by Hedgehog signaling. Development 2007, 134, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.; Joyner, A.L. Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell 2004, 118, 505–516. [Google Scholar] [CrossRef] [Green Version]
- Ingham, P.W.; McMahon, A.P. Hedgehog signaling in animal development: Paradigms and principles. Genes Dev. 2001, 15, 3059–3087. [Google Scholar] [CrossRef] [Green Version]
- Ikram, M.S.; Neill, G.W.; Regl, G.; Eichberger, T.; Frischauf, A.M.; Aberger, F.; Quinn, A.; Philpott, M. GLI2 is expressed in normal human epidermis and BCC and induces GLI1 expression by binding to its promoter. J. Investig. Dermatol. 2004, 122, 1503–1509. [Google Scholar] [CrossRef] [Green Version]
- Altaba, A.R.I. Catching a Gli-mpse of Hedgehog. Cell 1997, 90, 193–196. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Rodriguez, K.; Yao, H.H. Mapping lineage progression of somatic progenitor cells in the mouse fetal testis. Development 2016, 143, 3700–3710. [Google Scholar] [CrossRef] [Green Version]
- Murashima, A.; Akita, H.; Okazawa, M.; Kishigami, S.; Nakagata, N.; Nishinakamura, R.; Yamada, G. Midline-derived Shh regulates mesonephric tubule formation through the paraxial mesoderm. Dev. Biol. 2014, 386, 216–226. [Google Scholar] [CrossRef] [Green Version]
- Kretzschmar, K.; Watt, F.M. Lineage tracing. Cell 2012, 148, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Jin, H.; Zhou, B. Genetic lineage tracing with multiple DNA recombinases: A user’s guide for conducting more precise cell fate mapping studies. J. Biol. Chem. 2020, 295, 6413–6424. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.S.; Lee, J.H.; Koo, B.K. Lineage Tracing: Computational Reconstruction Goes Beyond the Limit of Imaging. Mol. Cells 2019, 42, 104–112. [Google Scholar]
- Chiang, C.; Litingtung, Y.; Lee, E.; Young, K.E.; Corden, J.L.; Westphal, H.; Beachy, P.A. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 1996, 383, 407–413. [Google Scholar] [CrossRef]
- Yamamoto, M.; Shook, N.A.; Kanisicak, O.; Yamamoto, S.; Wosczyna, M.N.; Camp, J.R.; Goldhamer, D.J. A multifunctional reporter mouse line for Cre- and FLP-dependent lineage analysis. Genesis 2009, 47, 107–114. [Google Scholar] [CrossRef]
- Haraguchi, R.; Kitazawa, R.; Imai, Y.; Kitazawa, S. Growth plate-derived hedgehog-signal-responsive cells provide skeletal tissue components in growing bone. Histochem. Cell Biol. 2018, 149, 365–373. [Google Scholar] [CrossRef]
- Haraguchi, R.; Kitazawa, R.; Murashima, A.; Yamada, G.; Kitazawa, S. Developmental Contribution of Wnt-signal-responsive Cells to Mouse Reproductive Tract Formation. Acta Histochem. Cytochem. 2017, 50, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Ding, Q.; Motoyama, J.; Gasca, S.; Mo, R.; Sasaki, H.; Rossant, J.; Hui, C.C. Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development 1998, 125, 2533–2543. [Google Scholar] [PubMed]
- Motoyama, J.; Liu, J.; Mo, R.; Ding, Q.; Post, M.; Hui, C.C. Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat. Genet. 1998, 20, 54–57. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haraguchi, R.; Yamada, G.; Murashima, A.; Matsumaru, D.; Kitazawa, R.; Kitazawa, S. New Insights into Development of Female Reproductive Tract—Hedgehog-Signal Response in Wolffian Tissues Directly Contributes to Uterus Development. Int. J. Mol. Sci. 2021, 22, 1211. https://doi.org/10.3390/ijms22031211
Haraguchi R, Yamada G, Murashima A, Matsumaru D, Kitazawa R, Kitazawa S. New Insights into Development of Female Reproductive Tract—Hedgehog-Signal Response in Wolffian Tissues Directly Contributes to Uterus Development. International Journal of Molecular Sciences. 2021; 22(3):1211. https://doi.org/10.3390/ijms22031211
Chicago/Turabian StyleHaraguchi, Ryuma, Gen Yamada, Aki Murashima, Daisuke Matsumaru, Riko Kitazawa, and Sohei Kitazawa. 2021. "New Insights into Development of Female Reproductive Tract—Hedgehog-Signal Response in Wolffian Tissues Directly Contributes to Uterus Development" International Journal of Molecular Sciences 22, no. 3: 1211. https://doi.org/10.3390/ijms22031211
APA StyleHaraguchi, R., Yamada, G., Murashima, A., Matsumaru, D., Kitazawa, R., & Kitazawa, S. (2021). New Insights into Development of Female Reproductive Tract—Hedgehog-Signal Response in Wolffian Tissues Directly Contributes to Uterus Development. International Journal of Molecular Sciences, 22(3), 1211. https://doi.org/10.3390/ijms22031211