Serotonin Pathway in Cancer
Abstract
:1. Introduction
2. Involvement of Serotonin in Carcinogenesis
2.1. Prostate Cancer
2.2. Breast Cancer
2.3. Small-Cell Lung Cancer (SCLC)
2.4. Colorectal Cancer (CRC)
2.5. Cholangiocarcinoma
2.6. Hepatocellular Carcinoma (HCC)
2.7. Glioma
2.8. Carcinoid Tumors
3. Role of Serotonin in Tumor Vasculature and Angiogenesis
4. Role of Serotonin in Immune Dysregulation
5. Serotonin Pathway as a Potential Therapeutic Target
6. Conclusions
Funding
Conflicts of Interest
References
- Mohammad-Zadeh, L.F.; Moses, L.; Gwaltney-Brant, S.M. Serotonin: A review. J. Vet. Pharmacol. Ther. 2008, 31, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Shinka, T.; Onodera, D.; Tanaka, T.; Shoji, N.; Miyazaki, T.; Moriuchi, T.; Fukumoto, T. Serotonin synthesis and metabolism-related molecules in a human prostate cancer cell line. Oncol. Lett. 2011, 2, 211–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoyer, D.; Clarke, D.E.; Fozard, J.R.; Hartig, P.R.; Martin, G.R.; Mylecharane, E.J.; Saxena, P.R.; Humphrey, P.P. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol. Rev. 1994, 46, 157–203. [Google Scholar] [PubMed]
- Gaspar, P.; Lillesaar, C. Probing the diversity of serotonin neurons. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 2382–2394. [Google Scholar] [CrossRef] [Green Version]
- Marin, P.; Becamel, C.; Dumuis, A.; Bockaert, J. 5-HT receptor-associated protein networks: New targets for drug discovery in psychiatric disorders? Curr. Drug Targets 2012, 13, 28–52. [Google Scholar] [CrossRef]
- Sarrouilhe, D.; Mesnil, M. Serotonin and human cancer: A critical view. Biochimie 2019, 161, 46–50. [Google Scholar] [CrossRef]
- Sarrouilhe, D.; Clarhaut, J.; Defamie, N.; Mesnil, M. Serotonin and Cancer: What Is the Link? Curr. Mol. Med. 2015, 15, 62–77. [Google Scholar] [CrossRef]
- Huss, W.J.; Gregory, C.W.; Smith, G.J. Neuroendocrine cell differentiation in the CWR22 human prostate cancer xenograft: Association with tumor cell proliferation prior to recurrence. Prostate 2004, 60, 91–97. [Google Scholar] [CrossRef]
- Bostwick, D.G.; Qian, J.; Pacelli, A.; Zincke, H.; Blute, M.; Bergstralh, E.J.; Slezak, J.M.; Cheng, L. Neuroendocrine expression in node positive prostate cancer: Correlation with systemic progression and patient survival. J. Urol. 2002, 168, 1204–1211. [Google Scholar] [CrossRef]
- Dizeyi, N.; Bjartell, A.; Nilsson, E.; Hansson, J.; Gadaleanu, V.; Cross, N.A.; Abrahamsson, P.-A.; Gǎdǎleanu, V. Expression of serotonin receptors and role of serotonin in human prostate cancer tissue and cell lines. Prostate 2004, 59, 328–336. [Google Scholar] [CrossRef]
- Dizeyi, N.; Bjartell, A.; Hedlund, P.; Taskén, K.; Gadaleanu, V.; Abrahamsson, P.-A.; Gǎdǎleanu, V. Expression of Serotonin Receptors 2B and 4 in Human Prostate Cancer Tissue and Effects of Their Antagonists on Prostate Cancer Cell Lines. Eur. Urol. 2005, 47, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, E.J.; Shabbir, M.; Mikhailidis, D.P.; Thompson, C.S.; Mumtaz, F.H. The Role of Serotonin (5-Hydroxytryptamine 1A and 1B) Receptors in Prostate Cancer Cell Proliferation. J. Urol. 2006, 176, 1648–1653. [Google Scholar] [CrossRef] [PubMed]
- Dizeyi, N.; Hedlund, P.; Bjartell, A.; Tinzl, M.; Austild-Taskén, K.; Abrahamsson, P.-A. Serotonin activates MAP kinase and PI3K/Akt signaling pathways in prostate cancer cell lines. Urol. Oncol. Semin. Orig. Investig. 2011, 29, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Pirozhok, L.; Meye, A.; Hakenberg, O.; Füssel, S.; Wirth, M. 97 DO SEROTONIN AND MELATONIN HAVE A ROLE IN THE GROWTH REGULATION OF PROSTATE CANCER CELL LINES? Eur. Urol. Suppl. 2007, 6, 47. [Google Scholar] [CrossRef]
- Sonier, B.; Arseneault, M.; Lavigne, C.; Ouellette, R.J.; Vaillancourt, C. The 5-HT2A serotoninergic receptor is expressed in the MCF-7 human breast cancer cell line and reveals a mitogenic effect of serotonin. Biochem. Biophys. Res. Commun. 2006, 343, 1053–1059. [Google Scholar] [CrossRef]
- Pai, V.P.; Marshall, A.M.; Hernandez, L.L.; Buckley, A.R.; Horseman, N.D. Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival. Breast Cancer Res. 2009, 11, R81. [Google Scholar] [CrossRef] [Green Version]
- Kopparapu, P.K.; Tinzl, M.; Anagnostaki, L.; Persson, J.; Dizeyi, N. Expression and localization of serotonin receptors in human breast cancer. Anticancer. Res. 2013, 33, 363–370. [Google Scholar]
- Olfati, Z.; Rigi, G.; Vaseghi, H.; Zamanzadeh, Z.; Sohrabi, M.; Hejazi, S.H. Evaluation of serotonin receptors (5HTR2A and 5HTR3A) mRNA expression changes in tumor of breast cancer patients. Med. J. Islam Repub. Iran 2020, 34, 99. [Google Scholar]
- Brandes, L.J.; Arron, R.J.; Bogdanovic, R.P.; Tong, J.; Zaborniak, C.L.; Hogg, G.R.; Warrington, R.C.; Fang, W.; Labella, F.S. Stimulation of malignant growth in rodents by antidepressant drugs at clinically relevant doses. Cancer Res. 1992, 52, 3796–3800. [Google Scholar]
- Eom, C.-S.; Park, S.M.; Cho, K.-H. Use of antidepressants and the risk of breast cancer: A meta-analysis. Breast Cancer Res. Treat. 2012, 136, 635–645. [Google Scholar] [CrossRef]
- Zhou, T.; Duan, J.; Wang, Y.; Chen, X.; Zhou, G.; Wang, R.; Fu, L.; Xu, F. Fluoxetine synergys with anticancer drugs to overcome multidrug resistance in breast cancer cells. Tumor Biol. 2012, 33, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, M.G.; Codignola, A.; Vicentini, L.M.; Clementi, F.; Sher, E. Nicotine stimulates a serotonergic autocrine loop in human small-cell lung carcinoma. Cancer Res. 1993, 53, 5566–5568. [Google Scholar] [PubMed]
- Vicentini, L.M.; Cattaneo, M.G.; Fesce, R. Evidence for receptor subtype cross-talk in the mitogenic action of serotonin on human small-cell lung carcinoma cells. Eur. J. Pharmacol. 1996, 318, 497–504. [Google Scholar] [CrossRef]
- Chan, Y.-L.; Lai, W.-C.; Chen, J.-S.; Tseng, J.T.; Chuang, P.-C.; Jou, J.; Lee, C.-T.; Sun, H.S. TIAM2S Mediates Serotonin Homeostasis and Provokes a Pro-Inflammatory Immune Microenvironment Permissive for Colorectal Tumorigenesis. Cancers 2020, 12, 1844. [Google Scholar] [CrossRef] [PubMed]
- Sakita, J.Y.; Bader, M.; Santos, E.S.; Garcia, S.B.; Minto, S.B.; Alenina, N.; Brunaldi, M.O.; Carvalho, M.C.; Vidotto, T.; Gasparotto, B.; et al. Serotonin synthesis protects the mouse colonic crypt from DNA damage and colorectal tumorigenesis. J. Pathol. 2019, 249, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Tamim, H.; Shapiro, S.; Stang, M.R.; Collet, J.-P. Use of antidepressants and risk of colorectal cancer: A nested case-control study. Lancet Oncol. 2006, 7, 301–308. [Google Scholar] [CrossRef]
- Ataee, R.; Ajdary, S.; Zarrindast, M.; Rezayat, M.; Hayatbakhsh, M.R. Anti-mitogenic and apoptotic effects of 5-HT1B receptor antagonist on HT29 colorectal cancer cell line. J. Cancer Res. Clin. Oncol. 2010, 136, 1461–1469. [Google Scholar] [CrossRef]
- Alpini, G.; Invernizzi, P.; Gaudio, E.; Venter, J.; Kopriva, S.; Bernuzzi, F.; Onori, P.; Franchitto, A.; Coufal, M.; Frampton, G.; et al. Serotonin Metabolism Is Dysregulated in Cholangiocarcinoma, which Has Implications for Tumor Growth. Cancer Res. 2008, 68, 9184–9193. [Google Scholar] [CrossRef] [Green Version]
- Lesurtel, M.; Soll, C.; Humar, B.; Clavien, P.-A. Serotonin: A double-edged sword for the liver? Surgeon 2012, 10, 107–113. [Google Scholar] [CrossRef]
- Soll, C.; Riener, M.-O.; Oberkofler, C.E.; Hellerbrand, C.; Wild, P.J.; DeOliveira, M.L.; Clavien, P.-A. Expression of Serotonin Receptors in Human Hepatocellular Cancer. Clin. Cancer Res. 2012, 18, 5902–5910. [Google Scholar] [CrossRef] [Green Version]
- Then, C.-K.; Liu, K.-H.; Liao, M.-H.; Chung, K.-H.; Wang, J.-Y.; Shen, S.-C. Antidepressants, sertraline and paroxetine, increase calcium influx and induce mitochondrial damage-mediated apoptosis of astrocytes. Oncotarget 2017, 8, 115490–115502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.-H.; Yang, S.-T.; Lin, Y.-K.; Lin, J.-W.; Lee, Y.-H.; Wang, J.-Y.; Hu, C.-J.; Lin, E.-Y.; Chen, S.-M.; Then, C.-K.; et al. Fluoxetine, an antidepressant, suppresses glioblastoma by evoking AMPAR-mediated calcium-dependent apoptosis. Oncotarget 2015, 6, 5088–5101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, V.C.; Hsieh, Y.; Chen, L.-J.; Hsu, T.-C.; Tzang, B.-S. Escitalopram oxalate induces apoptosis in U-87MG cells and autophagy in GBM8401 cells. J. Cell. Mol. Med. 2017, 22, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
- Otto-Meyer, S.; Lumibao, J.; Kim, E.; Ladomersky, E.; Zhai, L.; Lauing, K.L.; Scholtens, D.M.; Penedo, F.; Amidei, C.; Lukas, R.V.; et al. The interplay among psychological distress, the immune system, and brain tumor patient outcomes. Curr. Opin. Behav. Sci. 2019, 28, 44–50. [Google Scholar] [CrossRef]
- Shi, C.; Lamba, N.; Zheng, L.; Cote, D.; Regestein, Q.; Liu, C.; Tran, Q.; Routh, S.; Smith, T.; Mekary, R.; et al. Depression and survival of glioma patients: A systematic review and meta-analysis. Clin. Neurol. Neurosurg. 2018, 172, 8–19. [Google Scholar] [CrossRef]
- Otto-Meyer, S.; DeFaccio, R.; Dussold, C.; Ladomersky, E.; Zhai, L.; Lauing, K.L.; Bollu, L.R.; Amidei, C.; Lukas, R.V.; Scholtens, D.M.; et al. A retrospective survival analysis of Glioblastoma patients treated with selective serotonin reuptake inhibitors. Brain, Behav. Immun. Health 2020, 2, 100025. [Google Scholar] [CrossRef]
- Drozdov, I.; Kidd, M.; Gustafsson, B.I.; Svejda, B.; Bs, R.J.; Pfragner, R.; Modlin, I.M. Autoregulatory effects of serotonin on proliferation and signaling pathways in lung and small intestine neuroendocrine tumor cell lines. Cancer 2009, 115, 4934–4945. [Google Scholar] [CrossRef] [Green Version]
- Rinke, A.; Müller, H.-H.; Schade-Brittinger, C.; Klose, K.-J.; Barth, P.; Wied, M.; Mayer, C.; Aminossadati, B.; Pape, U.-F.; Bläker, M.; et al. Placebo-Controlled, Double-Blind, Prospective, Randomized Study on the Effect of Octreotide LAR in the Control of Tumor Growth in Patients With Metastatic Neuroendocrine Midgut Tumors: A Report From the PROMID Study Group. J. Clin. Oncol. 2009, 27, 4656–4663. [Google Scholar] [CrossRef]
- Caplin, M.E.; Pavel, M.; Ćwikła, J.B.; Phan, A.T.; Raderer, M.; Sedláčková, E.; Cadiot, G.; Wolin, E.M.; Capdevila, J.; Wall, L.; et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med. 2014, 371, 224–233. [Google Scholar] [CrossRef]
- Hörsch, D.; Garcia-Carbonero, R.; Valle, J.; Perros, P.; Welin, S.; Keeber, L.; Houchard, A.; Lapuerta, P. Efficacy and safety of telotristat ethyl (TE) in combination with lanreotide (LAN) in patients with a neuroendocrine tumour and carcinoid syndrome (CS) diarrhoea (CSD): Meta-analysis of phase III double-blind placebo (PBO)-controlled TELESTAR and TELECAST studies. Ann. Oncol. 2018, 29, viii470–viii471. [Google Scholar] [CrossRef]
- Zamani, A.; Qu, Z. Serotonin activates angiogenic phosphorylation signaling in human endothelial cells. FEBS Lett. 2012, 586, 2360–2365. [Google Scholar] [CrossRef] [PubMed]
- Nocito, A.; Dahm, F.; Jochum, W.; Jang, J.H.; Georgiev, P.; Bader, M.; Graf, R.; Clavien, P.-A. Serotonin Regulates Macrophage-Mediated Angiogenesis in a Mouse Model of Colon Cancer Allografts. Cancer Res. 2008, 68, 5152–5158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watts, S.W.; Davis, R.P. 5-Hydroxtryptamine Receptors in Systemic Hypertension: An Arterial Focus. Cardiovasc. Ther. 2011, 29, 54–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vicaut, E.; Laemmel, E.; Stücker, O. Impact of serotonin on tumour growth. Ann. Med. 2000, 32, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Asada, M.; Ebihara, S.; Yamanda, S.; Niu, K.; Okazaki, T.; Sora, I.; Arai, H. Depletion of Serotonin and Selective Inhibition of 2B Receptor Suppressed Tumor Angiogenesis by Inhibiting Endothelial Nitric Oxide Synthase and Extracellular Signal-Regulated Kinase 1/2 Phosphorylation. Neoplasia 2009, 11, 408–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishikawa, T.; Tsuno, N.H.; Shuno, Y.; Sasaki, K.; Hongo, K.; Okaji, Y.; Sunami, E.; Kitayama, J.; Takahashi, K.; Nagawa, H. Antiangiogenic Effect of a Selective 5-HT4 Receptor Agonist. J. Surg. Res. 2010, 159, 696–704. [Google Scholar] [CrossRef]
- Herr, N.; Bode, C.; Duerschmied, D. The Effects of Serotonin in Immune Cells. Front. Cardiovasc. Med. 2017, 4, 48. [Google Scholar] [CrossRef] [Green Version]
- Blaylock, R.L. Cancer microenvironment, inflammation and cancer stem cells: A hypothesis for a paradigm change and new targets in cancer control. Surg. Neurol. Int. 2015, 6, 92. [Google Scholar] [CrossRef]
- Peters, M.A.M.; Meijer, C.; Fehrmann, R.S.N.; Walenkamp, A.M.E.; Kema, I.P.; De Vries, E.G.E.; Hollema, H.; Oosting, S. Serotonin and Dopamine Receptor Expression in Solid Tumours Including Rare Cancers. Pathol. Oncol. Res. 2020, 26, 1539–1547. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Denna, T.H.; Storkersen, J.N.; Gerriets, V.A. Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacol. Res. 2019, 140, 100–114. [Google Scholar] [CrossRef]
Receptor Type | Signal Transduction Pathway | Subtype | Location | Response |
---|---|---|---|---|
5-HT1 | G1/G0-Adenylyl cyclase | 1A | Mainly CNS | Neuronal hyperpolarization |
G1/G0-Adenylyl cyclase | 1B | CNS and peripheral nerves | Inhibits neurotransmitter release | |
G1/G0-Adenylyl cyclase | 1D | Mainly CNS | Inhibits neurotransmitter release | |
G1/G0-Adenylyl cyclase | 1E | CNS | Inhibits adenylyl cyclase | |
G1/G0-Adenylyl cyclase | 1F | Mainly CNS | Inhibits adenylyl cyclase | |
5-HT2 | Gq/G11-Phospholipase C | 2A | Vascular smooth muscles, platelets, lung, CNS, GI tract | Vasoconstriction, platelet aggregation, broncho-constriction |
Gq/G11-Phospholipase C | 2B | Mainly peripheral | Rat stomach muscle contraction | |
Gq/G11-Phospholipase C | 2C | CNS (concentrated in choroid plexus) | Increases turnover of phosphoinositide | |
5-HT3 | Ligand-gated cation channel | - | Peripheral and central neurons | Depolarization |
5-HT4 | Gs-Adenylyl cyclase | - | GI tract, CNS, heart, urinary bladder | Acetylcholine release in gut, tachycardia, release cAMP in CNS neurons |
5-HT5 | G1/G0- Adenylyl cyclase | 5A | CNS | Unknown |
5B | Absent in human | |||
5-HT6 | Gs -Adenylyl cyclase | - | CNS | Activates adenylyl cyclase |
5-HT7 | Gs -Adenylyl cyclase | - | CNS | Activates adenylyl cyclase |
Immune Cell | 5-HT Receptors | Response |
---|---|---|
Monocytes and Macrophages Dendritic cells | 1A, 1E, 2A, 3A, 4, 7 1B, 1E, 2A, 2B, 4, 7 | Releases IL-6, 1β, 8/CXCL8, IFN-γ induced phagocytosis, T-cell stimulation, inhibits release of TNF- α, inhibits NK cell suppression. |
Neutrophils | 1A, 1B, 2 | Inhibits tumor cell phagocytosis and oxidative burst. |
T cells | 1A, 1B, 2A, 2C, 3A, 7 | Releases IL-2, 16 and IFN- γ, T-cell proliferation. |
B cells | 1A, 2A, 3, 7 | |
Endothelial cells | T-cell chemoattractant release, eNOS expression, inhibits leukocyte diapedesis | |
Vascular smooth muscle cells | IL-6 synthesis, inhibits TNF-α induced expression of ICAM-1, VCAM-1, NO, NFκB. | |
Microglia | 2B, 5A, 7 | Promotes injury-induced microglial motility, brain maturation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balakrishna, P.; George, S.; Hatoum, H.; Mukherjee, S. Serotonin Pathway in Cancer. Int. J. Mol. Sci. 2021, 22, 1268. https://doi.org/10.3390/ijms22031268
Balakrishna P, George S, Hatoum H, Mukherjee S. Serotonin Pathway in Cancer. International Journal of Molecular Sciences. 2021; 22(3):1268. https://doi.org/10.3390/ijms22031268
Chicago/Turabian StyleBalakrishna, Pragathi, Sagila George, Hassan Hatoum, and Sarbajit Mukherjee. 2021. "Serotonin Pathway in Cancer" International Journal of Molecular Sciences 22, no. 3: 1268. https://doi.org/10.3390/ijms22031268
APA StyleBalakrishna, P., George, S., Hatoum, H., & Mukherjee, S. (2021). Serotonin Pathway in Cancer. International Journal of Molecular Sciences, 22(3), 1268. https://doi.org/10.3390/ijms22031268