Lithography Processable Ta2O5 Barrier-Layered Chitosan Electric Double Layer Synaptic Transistors
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Fabrication Methods of Ta2O5 Barrier-Layered Chitosan EDL Transistor
3.3. Characterization of Devices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.K.; Chen, T.P.; Liu, P.; Hu, S.G.; Liu, Y.; Zhang, Q.; Lee, P.S. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnOx–Al2O3 thin film structure. J. Appl. Phys. 2006, 119, 244505. [Google Scholar] [CrossRef]
- Yang, R.; Terabe, K.; Yao, Y.; Tsuruoka, T.; Hasegawa, T.; Gimzewski, J.K.; Aono, M. Synaptic plasticity and memory functions achieved in a WO3−x- based nanoionics device by using the principle of atomic switch operation. Nanotechnology 2013, 24, 384003. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wen, J.; Cheng, G.; Yuan, N.; Ding, J. Synaptic behaviors mimicked in indium-zinc-oxide transistors gated by high-proton-conducting graphene oxide-based composite solid electrolytes. J. Mater. Chem. C 2014, 4, 9762–9770. [Google Scholar] [CrossRef]
- Yuan, H.; Shimotani, H.; Tsukazaki, A.; Ohtomo, A.; Kawasaki, M.; Iwasa, Y. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv. Funct. Mater. 2009, 19, 1046–1053. [Google Scholar] [CrossRef]
- Zhou, B.; Sun, J.; Han, X.; Jiang, J.; Wan, Q. Low-voltage organic/inorganic hybrid transparent thin-film transistors gated by chitosan-based proton conductors. IEEE Electron Device Lett. 2011, 32, 1549–1551. [Google Scholar] [CrossRef]
- Liu, Y.H.; Zhu, L.Q.; Feng, P.; Shi, Y.; Wan, Q. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv. Mater. 2015, 27, 5599–5604. [Google Scholar] [CrossRef]
- Dou, W.; Jiang, J.; Sun, J.; Zhou, B.; Wan, Q. Low-voltage oxide-based electric-double-layer TFTs gated by stacked electrolyte/chitosan hybrid dielectrics. IEEE Electron Device Lett. 2012, 33, 848–850. [Google Scholar] [CrossRef]
- Zhang, J.; Dai, J.; Zhu, L.; Chen, C.; Wan, Q. Laterally coupled IZO-based transistors on free-standing proton conducting chitosan membranes. IEEE Electron Device Lett. 2014, 35, 838–840. [Google Scholar] [CrossRef]
- Black, J. Biologic performance of tantalum. Clin. Mater. 1994, 16, 67–173. [Google Scholar] [CrossRef]
- Ding, Z.; Zhou, Q.; Wang, Y.; Ding, Z.; Tang, Y.; He, Q. Microstructure and properties of monolayer, bilayer and multilayer Ta2O5-based coatings on biomedical Ti-6Al-4V alloy by magnetron sputtering. Ceram. Int. 2020, 47, 1133–1144. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Shi, Y.; Wan, Q. Solution-processed chitosan-gated IZO-based transistors for mimicking synaptic plasticity. IEEE Electron Device Lett. 2014, 35, 280–282. [Google Scholar] [CrossRef]
- Yu, F.; Zhu, L.Q.; Gao, W.T.; Fu, Y.M.; Xiao, H.; Tao, J.; Zhou, J.M. Chitosan-based polysaccharide-gated flexible indium tin oxide synaptic transistor with learning abilities. ACS Appl. Mater. Interfaces 2018, 10, 16881–16886. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Zhang, J.; Wan, X.; Yang, Y.; Jiang, S. Chitosan-based biopolysaccharide proton conductors for synaptic transistors on paper substrates. J. Mater. Chem. C 2014, 2, 6249–6255. [Google Scholar] [CrossRef]
- Feng, P.; Du, P.; Wan, C.; Shi, Y.; Wan, Q. Proton conducting graphene oxide/chitosan composite electrolytes as gate dielectrics for new-concept devices. Sci. Rep. 2016, 6, 34065. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.; Liu, Y.; Lin, F.; Gen, K.; Wu, W.J.; Yao, R. Realization of artificial synapse and inverter based on oxide electric-double-layer transistor gated by a chitosan biopolymer electrolyte. Semicond. Sci. Technol. 2020, 35, 075014. [Google Scholar] [CrossRef]
- Ren, Z.Y.; Zhu, L.Q.; Yu, F.; Xiao, H.; Xiong, W.; Ge, Z.Y. Synaptic metaplasticity of protonic/electronic coupled oxide neuromorphic transistor. Org. Electron. 2019, 74, 304–308. [Google Scholar] [CrossRef]
- He, Y.; Nie, S.; Liu, R.; Shi, Y.; Wan, Q. Indium–gallium–zinc–oxide Schottky synaptic transistors for silent synapse conversion emulation. IEEE Electron Device Lett. 2018, 40, 139–142. [Google Scholar] [CrossRef]
- Yu, F.; Zhu, L.Q.; Xiao, H.; Gao, W.T.; Guo, Y.B. Restickable oxide neuromorphic transistors with spike-timing-dependent plasticity and pavlovian associative learning activities. Adv. Funct. Mater. 2018, 28, 1804025. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Wan, C.J.; Guo, L.Q.; Shi, Y.; Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 2014, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J.K.; Aono, M. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 2011, 10, 591–595. [Google Scholar]
- Wen, J.; Zhu, L.Q.; Fu, Y.M.; Xiao, H.; Guo, L.Q.; Wan, Q. Activity dependent synaptic plasticity mimicked on indium–tin–oxide electric-double-layer transistor. ACS Appl. Mater. Interfaces 2017, 9, 37064–37069. [Google Scholar] [CrossRef] [PubMed]
- Buonomano, D.V.; Maass, W. State-dependent computations: Spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 2009, 10, 113–125. [Google Scholar] [CrossRef]
- Zucker, R.S.; Regehr, W.G. Short-Term Synaptic Plasticity. Annu. Rev. Physiol. 2002, 64, 355–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Ni, Z.; Tan, H.; Wang, Y.; Jin, H.; Nie, T.; Yang, D. Electroluminescent synaptic devices with logic functions. Nano Energy 2018, 54, 383–389. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Wan, C.J.; Gao, P.Q.; Liu, Y.H.; Xiao, H.; Ye, J.C.; Wan, Q. Flexible proton-gated oxide synaptic transistors on Si membrane. ACS Appl. Mater. Interfaces 2016, 8, 21770–21775. [Google Scholar] [CrossRef] [PubMed]
- Byrne, J.H. Learning and Memory: A Comprehensive Reference; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M. Principles of Neural Science; McGraw-Hill: New York, NY, USA, 2000; pp. 1227–1246. [Google Scholar]
- Yang, Y.; Wen, J.; Guo, L.; Wan, X.; Du, P.; Feng, P.; Wan, Q. Long-term synaptic plasticity emulated in modified graphene oxide electrolyte gated IZO-based thin-film transistors. ACS Appl. Mater. Interfaces 2016, 8, 30281–30286. [Google Scholar] [CrossRef] [PubMed]
- Shim, H.; Sim, K.; Ershad, F.; Yang, P.; Thukral, A.; Rao, Z.; Kim, H.J.; Liu, Y.; Wang, X.; Gu, G.; et al. Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Sci. Adv. 2019, 5, eaax4961. [Google Scholar] [CrossRef] [Green Version]
- Zhong, G.; Zi, M.; Ren, C.; Xiao, Q.; Tang, M.; Wei, L.; An, F.; Xie, S.; Wang, J.; Zhong, X.; et al. Flexible electronic synapse enabled by ferroelectric field effect transistor for robust neuromorphic computing. Phys. Lett. A 2020, 117, 092903. [Google Scholar] [CrossRef]
References | Gate Insulation Material | Structure Type | Channel Width/Length | Patterning Process |
---|---|---|---|---|
2020 Ref. [15] | Chitosan | Bottom-gate type | 200 µm/200 µm | Shadow mask |
2019 Ref. [16] | Chitosan | Bottom-gate type | 1 mm/80 µm | Shadow mask |
2018 Ref. [17] | Chitosan | Bottom-gate type | 1 mm/80 µm | Shadow mask |
2018 Ref. [18] | Chitosan | Bottom-gate type | 1 mm/80 µm | Shadow mask |
This study | Ta2O5 barrier Chitosan | Top-gate type | 20 µm/10 µm | Photolithography |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-H.; Cho, W.-J. Lithography Processable Ta2O5 Barrier-Layered Chitosan Electric Double Layer Synaptic Transistors. Int. J. Mol. Sci. 2021, 22, 1344. https://doi.org/10.3390/ijms22031344
Kim S-H, Cho W-J. Lithography Processable Ta2O5 Barrier-Layered Chitosan Electric Double Layer Synaptic Transistors. International Journal of Molecular Sciences. 2021; 22(3):1344. https://doi.org/10.3390/ijms22031344
Chicago/Turabian StyleKim, Sung-Hun, and Won-Ju Cho. 2021. "Lithography Processable Ta2O5 Barrier-Layered Chitosan Electric Double Layer Synaptic Transistors" International Journal of Molecular Sciences 22, no. 3: 1344. https://doi.org/10.3390/ijms22031344
APA StyleKim, S. -H., & Cho, W. -J. (2021). Lithography Processable Ta2O5 Barrier-Layered Chitosan Electric Double Layer Synaptic Transistors. International Journal of Molecular Sciences, 22(3), 1344. https://doi.org/10.3390/ijms22031344