Recent Insights into the Rhythmogenic Core of the Locomotor CPG
Abstract
:1. Introduction
2. Conceptual Models of the Locomotor CPG
3. Intrinsic Properties and Cellular Mechanisms Involved in Locomotor Rhythm Generation
3.1. Locomotor Rhythm-Generating Neurons Are Glutamatergic
3.2. Ion Channels Involved in Rhythmogenesis
3.3. Gap Junctions Are Involved in Locomotor Rhythm Generation
4. Molecularly Defined Interneuronal Populations that May Generate the Locomotor Rhythm
4.1. Hb9-Expressing Interneurons
4.2. Shox2-Expressing Interneurons
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, T.G. The intrinsic factors in the act of progression in the mammals. Proc. R. Soc. 1911, 84, 308. [Google Scholar]
- Bussel, B.; Roby-Brami, A.; Néris, O.R.; Yakovleff, A. Evidence for a spinal stepping generator in man. Paraplegia 1996, 34, 91–92. [Google Scholar] [CrossRef] [Green Version]
- Dominici, N.; Ivanenko, Y.P.; Cappellini, G.; d’Avella, A.; Mondi, V.; Cicchese, M. Locomotor primitives in newborn babies and their development. Science 2011, 334, 997–999. [Google Scholar] [CrossRef] [PubMed]
- Duysens, J.; Van de Crommert, H. Neural control of locomotion: Part 1: The central pattern generator from cats to humans. Gair Posture 1998, 7, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Grillner, S. The motor infrastructure: From ion channels to neural networks. Nat. Rev. Neurosci. 2003, 4, 573–586. [Google Scholar] [CrossRef] [PubMed]
- Kiehn, O. Locomotor circuits in the mammalian spinal cord. Annu. Rev. Neurosci. 2006, 29, 279–306. [Google Scholar] [CrossRef] [Green Version]
- Kiehn, O. Decoding the organization of spinal circuits that control locomotion. Nat. Rev. Neurosci. 2016, 17, 224–238. [Google Scholar] [CrossRef]
- Rossignol, S.; Dubuc, R. Spinal Pattern Generation. Curr. Opin. Neurobiol. 1994, 4, 894–902. [Google Scholar] [CrossRef]
- Thuret, S.; Moon, L.D.; Gage, F.H. Therapeutic interventions after spinal cord injury. Nat. Rev. Neurosci. 2006, 7, 628–643. [Google Scholar] [CrossRef]
- Caggiano, V.; Leiras, R.; Goñi-Erro, H.; Masini, D.; Bellardita, C.; Bouvier, J.; Caldeira, V.; Fisone, G.; Kiehn, O. Midbrain circuits that set locomotor speed and gait selection. Nature 2018, 553, 455–460. [Google Scholar] [CrossRef]
- Josset, N.; Roussel, M.; Lemieux, M.; Lafrance-Zoubga, D.; Rastqar, A.; Bretzner, F. Distinct Contributions of Mesencephalic Locomotor Region Nuclei to Locomotor Control in the Freely Behaving Mouse. Curr. Biol. 2018, 28, 884–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouvier, J.; Caggiano, V.; Leiras, R.; Caldeira, V.; Bellardita, C.; Balueva, K.; Fuchs, A.; Kiehn, O. Descending Command Neurons in the Brainstem that Halt Locomotion. Cell 2015, 163, 1191–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capelli, P.; Pivetta, C.; Soledad Esposito, M.; Arber, S. Locomotor speed control circuits in the caudal brainstem. Nature 2017, 551, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Cregg, J.M.; Leiras, R.; Montalant, A.; Wanken, P.; Wickershaw, I.R.; Kiehn, O. Brainstem neurons that command mammalian locomotor asymmetries. Nat. Neurosci. 2020, 23, 730–740. [Google Scholar] [CrossRef] [PubMed]
- Goulding, M.; Lanuza, G.; Sapir, T.; Narayan, S. The formation of sensorimotor circuits. Curr. Opin. Neurobiol. 2002, 12, 508–515. [Google Scholar] [CrossRef]
- Lanuza, G.M.; Gosgnach, S.; Pierani, A.; Jessell, T.M.; Goulding, M. Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements. Neuron 2004, 42, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Talpalar, A.E.; Bouvier, J.; Borgius, L.; Fortin, G.; Pierani, A.; Kiehn, O. Dual-mode operation of neuronal networks involved in left-right alternation. Nature 2013, 500, 85–88. [Google Scholar] [CrossRef]
- Britz, O.; Zhang, J.; Grossmann, K.; Dyck, J.; Dymecki, S.; Gosgnach, S.; Goulding, M. A genetically-defined asymmetry underlies the inhibitory control of flexor-extensor locomotor behaviors. eLife 2015. [Google Scholar] [CrossRef]
- Zhang, J.; Lanuza, G.M.; Britz, O.; Wang, Z.; Siembab, V.C.; Zhang, Y.; Velasquez, T.; Alvarez, F.J.; Frank, E.; Goulding, M. V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion. Neuron 2014, 82, 138–150. [Google Scholar] [CrossRef] [Green Version]
- Brocard, F.; Tazerart, S.; Vinay, L. Do pacemakers drive the central pattern generator for locomotion in mammals? Neuroscientist 2010, 16, 139–155. [Google Scholar] [CrossRef]
- Dougherty, K.J.; Ha, N.T. The rhythm section: An update on spinal interneurons setting the beat for mammalian locomotion. Curr. Opin. Physiol. 2019, 8, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Ampatzis, K.; Song, J.; Ausborn, J.; El Manira, A. Separate microcircuit modules of distinct v2a interneurons and motoneurons control the speed of locomotion. Neuron 2014, 83, 934–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ausborn, J.; Mahmood, R.; El Manira, A. Decoding the rules of recruitment of excitatory interneurons in the adult zebrafish locomotor network. Proc. Natl. Acad. Sci. USA 2012, 109, E3631–E3639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, E.M.; Björnfors, E.R.; Pallucchi, I.; Picton, L.D.; El Manira, A. Principles Governing Locomotion in Vertebrates: Lessons From Zebrafish. Front. Neural Circuits 2018, 12, 73. [Google Scholar] [CrossRef]
- Song, J.; Dahlberg, E.; El Manira, A. V2a interneuron diversity tailors spinal circuit organization to control the vigor of locomotor movements. Nat. Commun. 2018, 9, 3370. [Google Scholar] [CrossRef] [Green Version]
- Caldeira, V.; Dougherty, K.J.; Borgius, L.; Kiehn, O. Spinal Hb9: Cre-derived excitatory interneurons contribute to rhythm generation in the mouse. Sci. Rep. 2017, 7, 41369. [Google Scholar] [CrossRef]
- Dougherty, K.J.; Zagoraiou, L.; Satoh, D.; Rozani, I.; Doobar, S.; Arber, S.; Jessell, T.M.; Kiehn, O. Locomotor rhythm generation linked to the output of spinal Shox2 excitatory interneurons. Neuron 2013, 80, 920–933. [Google Scholar] [CrossRef] [Green Version]
- Jankowska, E.; Jukes, M.G.; Lund, S.; Lundberg, A. The effect of DOPA on the spinal cord. 6. Half-centre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiol. Scand. 1967, 70, 389–402. [Google Scholar] [CrossRef]
- Grillner, S. Control of locomotion in bipeds, tetrapods, and fish. In Handbok of Physiology; The Nervous System II; Brookhart, M., Ed.; American Physiology Society Bethesda: Rockville, MD, USA, 1981; pp. 1179–1236. [Google Scholar]
- McCrea, D.A.; Rybak, I.A. Organization of mammalian locomotor rhythm and pattern generation. Brain Res. Rev. 2008, 57, 134–146. [Google Scholar] [CrossRef] [Green Version]
- Rybak, I.A.; Shevtsova, N.A.; Lafreniere-Roula, M.; McCrea, D.A. Modelling spinal circuitry involved in locomotor pattern generation: Insights from deletions during fictive locomotion. J. Physiol. 2006, 577, 617–639. [Google Scholar] [CrossRef]
- Lafreniere-Roula, M.; McCrea, D.A. Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. J. Neurophysiol. 2005, 94, 1120–1132. [Google Scholar] [CrossRef] [PubMed]
- Ausborn, J.; Snyder, A.C.; Shevtsova, N.A.; Rybak, I.A.; Rubin, J.E. State-dependent rhythmogenesis and frequency control in a half-center locomotor CPG. J. Neurophysiol. 2018, 119, 96–117. [Google Scholar] [CrossRef] [PubMed]
- Danner, S.M.; Wilshin, S.D.; Shevtsova, N.A.; Rybak, I.A. Central control of interlimb coordination and speed-dependent gait expression in quadrupeds. J. Physiol. 2016, 594, 6947–6967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danner, S.M.; Shevtsova, N.A.; Frigon, A.; Rybak, I.A. Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds. Elife 2017, 6, e31050. [Google Scholar] [CrossRef] [PubMed]
- Sherwood, W.E.; Harris-Warrick, R.; Guckenheimer, J. Synaptic patterning of left-right alternation in a computational model of the rodent hindlimb central pattern generator. J. Comput. Neurosci. 2011, 30, 323–360. [Google Scholar] [CrossRef]
- Kiehn, O.; Quinlan, K.A.; Restrepo, C.E.; Lundfald, L.; Borgius, L.; Talpalar, A.E.; Endo, T. Excitatory components of the mammalian locomotor CPG. Brain Res. Rev. 2008, 57, 56–63. [Google Scholar] [CrossRef]
- Beato, M.; Bracci, E.; Nistri, A. Contribution of NMDA and non-NMDA glutamate receptors to locomotor pattern generation in the neonatal rat spinal cord. Proc. Biol Sci. 1997, 264, 877–884. [Google Scholar] [CrossRef] [Green Version]
- Nishimaru, H.; Kudo, N. Formation of the central pattern generator for locomotion in the rat and mouse. Brain Res. Bull. 2000, 53, 661–669. [Google Scholar] [CrossRef]
- Whelan, P.; Bonnot, A.; O’Donovan, M.J. Properties of rhythmic activity generated by the isolated spinal cord of the neonatal mouse. J. Neurophysiol. 2000, 84, 2821–2833. [Google Scholar] [CrossRef]
- Talpalar, A.E.; Kiehn, O. Glutamatergic mechanisms for speed control and network operation in the rodent locomotor CPG. Front. Neural Circuits 2010, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Hagglund, M.; Borgius, L.; Dougherty, K.J.; Kiehn, O. Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat. Neurosci. 2010, 13, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Hägglund, M.; Dougherty, K.J.; Borgius, L.; Itohara, S.; Iwasato, T.; Kiehn, O. Optogenetic dissection reveals multiple rhythmogenic modules underlying locomotion. Proc. Natl. Acad. Sci. USA 2013, 110, 11589–11594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris-Warrick, R.M. General Principles of Rhythmogenesis in Central Pattern Networks. Prog. Brain Res. 2010, 187, 213–222. [Google Scholar]
- Selverston, A.I. A neural infrastructure for rhythmic motor patterns. Cell Mol. Neurobiol. 2005, 25, 223–244. [Google Scholar] [CrossRef] [PubMed]
- Wallen, P.; Grillner, S. N-methyl-D-aspartate receptor induced.; inherent oscillatory activity in neurons active during fictive locomotion in the lamprey. J. Neurosci. 1987, 7, 2745–2755. [Google Scholar] [CrossRef] [Green Version]
- Crill, W.E. Persistent sodium current in mammalian central neurons. Annu. Rev. Physiol. 1996, 58, 349–362. [Google Scholar] [CrossRef]
- Kiehn, O.; Johnson, B.R.; Raastad, M. Plateau properties in mammalian spinal interneurons. Neuroscience 1996, 75, 263–273. [Google Scholar] [CrossRef]
- MacLean, J.N.; Schmidt, B.J.; Hochman, S. NMDA receptor activation triggers voltage oscillations.; plateau potentials and bursting in neonatal rat lumbar motoneurons in vitro. Eur. J. Neurosci. 1997, 9, 2702–2711. [Google Scholar] [CrossRef]
- Hotson, J.R.; Prince, D.A.; Schwartzkroin, P.A. Anomalous inward rectification in hippocampal neurons. J. Neurophysiol. 1979, 42, 889–895. [Google Scholar] [CrossRef]
- Llinás, R.; Sugimori, M. Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol. 1980, 305, 171–195. [Google Scholar] [CrossRef]
- Koizumi, H.; Smith, J.C. Persistent Na+ and K+-dominated leak currents contribute to respiratory rhythm generation in the pre-Bötzinger complex in vitro. J. Neurosci. 2008, 28, 1773–1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paton, J.F.; Abdala, A.P.; Koizumi, H.; Smith, J.C.; St-John, W.M. Respiratory rhythm generation during gasping depends on persistent sodium current. Nat. Neurosci. 2006, 9, 311–313. [Google Scholar] [CrossRef] [PubMed]
- Rybak, I.A.; Shevtsova, N.A.; St-John, W.M.; Paton, J.F.; Pierrefiche, O. Endogenous rhythm generation in the pre-Bötzinger complex and ionic currents: Modelling and in vitro studies. Eur. J. Neurosci. 2003, 18, 239–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rybak, I.A.; Shevtsova, N.A.; Ptak, K.; McCrimmon, D.R. Intrinsic bursting activity in the pre-Bötzinger complex: Role of persistent sodium and potassium currents. Biol. Cybern. 2004, 90, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Carlin, K.P.; Li, Z.; McMahon, D.G.; Brownstone, R.M.; Jordan, L.M. Electrophysiological and pharmacological properties of locomotor activity-related neurons in cfos-EGFP mice. J. Neurophysiol. 2009, 102, 3365–3383. [Google Scholar] [CrossRef] [Green Version]
- Tazerart, S.; Viemari, J.C.; Darbon, P.; Vinay, L.; Brocard, F. Contribution of persistent sodium current to locomotor pattern generation in neonatal rats. J. Neurophysiol. 2007, 98, 613–628. [Google Scholar] [CrossRef]
- Zhong, G.; Masino, M.A.; Harris-Warrick, R.M. Persistent sodium currents participate in fictive locomotion generation in neonatal mouse spinal cord. J. Neurosci. 2007, 27, 4507–4518. [Google Scholar] [CrossRef] [Green Version]
- Ziskind-Conhaim, L.; Wu, L.; Wiesner, E.P. Persistent sodium current contributes to induced voltage oscillations in locomotor-related Hb9 interneurons in the mouse spinal cord. J. Neurophysiol. 2008, 100, 2254–2264. [Google Scholar] [CrossRef] [Green Version]
- El Manira, A.; Tegner, J.; Grillner, S. Calcium-dependent potassium chanels play a critical role for burst termination in the locomotor netowrk in lamprey. J. Neurophysiol. 1994, 72, 1852–1861. [Google Scholar] [CrossRef]
- Beierlein, M.; Gibson, J.R.; Connors, B.W. A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat. Neurosci. 2000, 3, 904–910. [Google Scholar] [CrossRef]
- Bou-Flores, C.; Berger, A.J. Gap junctions and inhibitory synapses modulate inspiratory motoneuron synchronization. J. Neurophysiol. 2001, 85, 1543–1551. [Google Scholar] [CrossRef] [PubMed]
- Marder, E.; Calabrese, R.L. Principles of rhythmic motor pattern generation. Physiol. Rev. 1996, 76, 687–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pernelle, G.; Nicola, W.; Clopath, C. Gap junction plasticity as a mechanism to regulate network-wide oscillations. PLoS Comput. Biol. 2018, 14, 1–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rekling, J.C.; Shao, X.M.; Feldman, J.L. Electrical coupling and excitatory synaptic transmission between rhythmogenic respiratory neurons in the preBotzinger complex. J. Neurosci. 2000, 20, RC113. [Google Scholar] [CrossRef]
- Traub, R.D.; Kopell, N.; Bibbig, E.H.; Buhl, F.E.; Whittington, M.A. Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. J. Neurosci. 2001, 21, 9478–9486. [Google Scholar] [CrossRef] [Green Version]
- Dugue, G.P.; Brunel, N.; Hakim, V.; Schwartz, E.; Chat, M.; Levesque, M.; Courtemanche, R.; Lena, C.; Dieudonne, S. Electrical coupling mediates tunable low-frequency oscillations and resonance in the cerebellar Golgi cell network. Neuron 2009, 61, 126–139. [Google Scholar] [CrossRef] [Green Version]
- Stagkourakis, S.; Pérez, C.T.; Hellysaz, A.; Ammari, R.; Broberger, C. Network oscillation rules imposed by species-specific electrical coupling. Elife 2018, 7, 1–18. [Google Scholar] [CrossRef]
- Bautista, W.; Nagy, J.I.; Dai, Y.; McCrea, D.A. Requirement of neuronal connexin36 in pathways mediating presynaptic inhibition of primary afferents in functionally mature mouse spinal cord. J. Physiol. 2012, 590, 3821–3839. [Google Scholar] [CrossRef]
- Hinckley, C.A.; Ziskind-Conhaim, L. Electrical coupling between locomotor-related excitatory interneurons in the mammalian spinal cord. J. Neurosci. 2006, 26, 8477–8483. [Google Scholar] [CrossRef] [Green Version]
- Rash, J.E.; Yasumura, T.; Davidson, K.G.; Furman, C.S.; Dudek, F.E.; Nagy, J.I. Identification of cells expressing Cx43.; Cx30.; Cx26.; Cx32 and Cx36 in gap junctions of rat brain and spinal cord. Cell Commun. Adhes. 2001, 8, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Tresch, M.C.; Kiehn, O. Motor coordination without action potentials in the mammalian spinal cord. Nat. Neurosci. 2000, 3, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Marina, N.; Becker, D.L.; Gilbey, M.P. Immunohistochemical detection of connexin36 in sympathetic preganglionic and somatic motoneurons in the adult rat. Auton Neurosci. 2008, 139, 15–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Personius, K.E.; Chang, Q.; Mentis, G.Z.; O’Donovan, M.J.; Balice-Gordon, R.J. Reduced gap junctional coupling leads to uncorrelated motor neuron firing and precocious neuromuscular synapse elimination. Proc. Natl. Acad. Sci. USA 2007, 104, 11808–11813. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.M.; Cowan, A.I.; Brownstone, R.M. Heterogeneous electrotonic coupling and synchronization of rhythmic bursting activity in mouse HB9 interneurons. J. Neurophysiol. 2007, 98, 2370–2381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, N.T.; Dougherty, K.J. Spinal Shox2 interneuron interconnectivity related to function and development. eLife 2018, 7, e42519. [Google Scholar] [CrossRef]
- Kiehn, O.; Tresch, M.C. Gap junctions and motor behavior. TINS 2002, 25, 108–115. [Google Scholar] [CrossRef]
- Chang, Q.; Gonzalez, M.; Pinter, M.J.; Balice-Gordon, R.J. Gap junctional coupling and patterns of connexin expression among neonatal rat lumbar spinal motor neurons. J. Neurosci. 1999, 19, 10813–10828. [Google Scholar] [CrossRef]
- Turecek, J.; Yuen, G.S.; Han, V.Z.; Zeng, X.H.; Bayer, K.U.; Welsh, J.P. NMDA receptor activation strengthens weak electrical coupling in mammalian brain. Neuron 2014, 81, 1375–1388. [Google Scholar] [CrossRef] [Green Version]
- .Haas, J.S.; Landisman, C.E. State-dependent modulation of gap junction signalling by the persistent sodium current. Front. Cell Neurosci. 2012, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Jessell, T.M. Neuronal specification in the spinal cord: Inductive signals and transcriptional codes. Nat. Rev. Genet. 2000, 1, 20–29. [Google Scholar] [CrossRef]
- Bikoff, J.B.; Gabitto, M.I.; Rivard, A.F.; Drobac, E.; Machado, T.A.; Miri, A.; Brenner-Morton, S.; Famojure, E.; Diaz, C.; Alvarez, F.J.; et al. Spinal Inhibitory Interneuron Diversity Delineates Variant Motor Microcircuits. Cell 2016, 165, 207–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gosgnach, S.; Bikoff, J.B.; Dougherty, K.J.; El Manira, A.; Lanuza, G.M.; Zhang, Y. Delineating the diversity of spinal interneurons in locomotor circuits. J. Neurosci. 2017, 37, 10835–10841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinckley, C.A.; Hartley, R.; Wu, L.; Todd, A.; Ziskind-Conhaim, L. Locomotor-like rhythms in a genetically distinct cluster of interneurons in the mammalian spinal cord. J. Neurophysiol. 2005, 93, 1439–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwan, A.C.; Dietz, S.B.; Webb, W.W.; Harris-Warrick, R.M. Activity of Hb9 interneurons during fictive locomotion in mouse spinal cord. J. Neurosci. 2009, 29, 11601–11613. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.M.; Hartley, R.; Maxwell, D.J.; Todd, A.J.; Lieberam, I.; Kaltschmidt, J.A.; Yoshida, Y.; Jessell, T.M.; Brownstone, R.M. Conditional rhythmicity of ventral spinal interneurons defined by expression of the Hb9 homeodomain protein. J. Neurosci. 2005, 25, 5710–5719. [Google Scholar] [CrossRef] [Green Version]
- Ziskind-Conhaim, L.; Mentis, G.Z.; Wiesner, E.P.; Titus, D.J. Synaptic integration of rhythmogenic neurons in the locomotor circuitry: The case of Hb9 interneurons. Ann. N. Y. Acad. Sci. 2020, 1198, 72–84. [Google Scholar] [CrossRef]
- Brownstone, R.M.; Wilson, J.M. Strategies for delineating spinal locomotor rhythm-generating networks and the possible role of Hb9 interneurones in rhythmogenesis. Brain Res. Rev. 2008, 57, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Crone, S.A.; Quinlan, K.A.; Zagoraiou, L.; Droho, S.; Restrepo, C.E.; Lundfald, L.; Endo, T.; Setlak, J.; Jessell, T.M.; Kiehn, O.; et al. Genetic ablation of V2a ipsilateral interneurons disrupts left-right locomotor coordination in mammalian spinal cord. Neuron 2008, 60, 70–83. [Google Scholar] [CrossRef] [Green Version]
- Lundfald, L.; Restrepo, C.E.; Butt, S.J.; Peng, C.Y.; Droho, S.; Endo, T.; Zeilhofer, H.U.; Sharma, K.; Kiehn, O. Phenotype of V2-derived interneurons and their relationship to the axon guidance molecule EphA4 in the developing mouse spinal cord. Eur. J. Neurosci. 2007, 26, 2989–3002. [Google Scholar] [CrossRef]
- Alaynick, W.A.; Jessell, T.M.; Pfaff, S.L. SnapShot: Spinal cord development. Cell 2011, 146, 178. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Narayan, S.; Geiman, E.; Lanuza, G.M.; Velasquez, T.; Shanks, B.; Akay, T.; Dyck, J.; Pearson, K.; Gosgnach, S.; et al. V3 spinal neurons establish a robust and balanced locomotor rhythm during walking. Neuron 2008, 60, 84–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borowska, J.; Jones, C.T.; Zhang, H.; Blacklaws, J.; Goulding, M.; Zhang, Y. Functional subpopulations of V3 interneurons in the mature mouse spinal cord. J. Neurosci. 2013, 33, 18553–18565. [Google Scholar] [CrossRef] [PubMed]
- Borowska, J.; Jones, C.T.; Deska-Gauthier, D.; Zhang, Y. V3 interneuron subpopulations in the mouse spinal cord undergo distinctive postnatal maturation processes. Neuroscience 2015, 295, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Chopek, J.W.; Nascimento, F.; Beato, M.; Brownstone, R.M.; Zhang, Y. Sub-populations of Spinal V3 interneurons form focal modules of layered pre-motor microcircuits. Cell Rep. 2018, 25, 146–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnot, A.; Chub, N.; Pujala, A.; O’Donovan, M.J. Excitatory actions of ventral root stimulation during network activity generated by the disinhibited neonatal mouse spinal cord. J. Neurophysiol. 2009, 101, 2995–3011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falgairolle, M.; Puhl, J.G.; Pujala, A.; Liu, W.; O’Donovan, M.J. Motoneurons regulate the central pattern generator during drug-induced locomotor-like activity in the neonatal mouse. Elife 2017, 6, e26622. [Google Scholar] [CrossRef]
Neuronal Subset | Rhythmic Activity during Locomotion | Axonal Projection | INaP | Gap Junctions | Locomotor Phenotype When Population Is Missing |
---|---|---|---|---|---|
V0V | ? | contralateral | ? | ? | L/R alternation defects at high speed |
V2A | ? | ipsilateral to MNs and V0 cells | ? | Y | L/R alternation defects at high speed |
Shox2+ | Yes | ipsilateral to Shox2+ cells | ? | Y | Decrease in locomotor frequency |
V3VMED | minimal (c-fos) | ipsilateral to V3VMED, V3VLAT | ? | Y | Unbalanced rhythm. |
V3VLAT | Yes (c-fos) | ipsilateral/ contralateral MNs | ? | ? | |
V3D | Yes (c-fos) | ? | ? | ||
Hb9+ | Yes | ipsilateral to Hb9, and other interneurons as well as MNs. | Y | Y | Decrease in locomotor frequency |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rancic, V.; Gosgnach, S. Recent Insights into the Rhythmogenic Core of the Locomotor CPG. Int. J. Mol. Sci. 2021, 22, 1394. https://doi.org/10.3390/ijms22031394
Rancic V, Gosgnach S. Recent Insights into the Rhythmogenic Core of the Locomotor CPG. International Journal of Molecular Sciences. 2021; 22(3):1394. https://doi.org/10.3390/ijms22031394
Chicago/Turabian StyleRancic, Vladimir, and Simon Gosgnach. 2021. "Recent Insights into the Rhythmogenic Core of the Locomotor CPG" International Journal of Molecular Sciences 22, no. 3: 1394. https://doi.org/10.3390/ijms22031394
APA StyleRancic, V., & Gosgnach, S. (2021). Recent Insights into the Rhythmogenic Core of the Locomotor CPG. International Journal of Molecular Sciences, 22(3), 1394. https://doi.org/10.3390/ijms22031394