In Vivo Transcutaneous Monitoring of Hemoglobin Derivatives Using a Red-Green-Blue Camera-Based Spectral Imaging Technique
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Reconstruction of Spectral Image by Wiener Estimation Method
4.2. Estimation of Chromophores Based on Multiple Regression Analysis
4.3. Imaging System
4.4. Animal Experiments
4.5. Statistical Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Baernstein, A.; Smith, K.; Elmore, J. Singing the blues: Is it really cyanosis? Resp. Care 2008, 53, 1081–1084. [Google Scholar]
- Stephen, W.A.; Gladimir, V.G.B. On the dysfunctional hemoglobins and cyanosis connection: Practical implications for the clinical detection and differentiation of methemoglobinemia and sulfhemoglobinemia. Biomed. Opt. Express 2018, 9, 3284–3305. [Google Scholar] [CrossRef]
- Casey, G. Oxygen transport and the use of pulse oxymetry. Nurs. Stand. 2001, 15, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Baranoski, G.V.G.; Van Leeuwen, S.R.; Chen, T.F. Elucidating the biophysical processes responsible for the chromatic attributes of peripheral cyanosis. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Korea, 11 July 2017; pp. 90–95. [Google Scholar]
- McMullen, S.M.; Patrick, W. Cyanosis. Am. J. Med. 2013, 126, 210–212. [Google Scholar] [CrossRef] [PubMed]
- Haymond, S.; Cariappa, R.; Eby, C.S.; Scott, M.G. Laboratory Assessment of Oxygenation in Methemoglobinemia. Clin. Chem. 2005, 51, 434–444. [Google Scholar] [CrossRef]
- Lundsgaard, C.; Slyke, D.V. Cyanosis. In Medicine Monographs; The Rockfeller Institute for Medical Research, Wlliams & Wilkins Company: Philadelphia, PA, USA, 1923; pp. 1–80. [Google Scholar]
- Camp, N.E. Methemoglobinemia. J. Emerg. Nurs. 2007, 33, 172–174. [Google Scholar] [CrossRef]
- Bradberry, S. Methaemoglobinaemia. Medicine 2012, 40, 59–60. [Google Scholar] [CrossRef]
- Prahl, S.A. Tabulated Molar Extinction Coefficient for Hemoglobin in Water. 1999. Available online: http://omlc.ogi.edu/spectra/hemoglobin/summary.html (accessed on 20 December 2020).
- Zijlstra, W.; Buursma, A. Spectrophotometry of Hemoglobin: Absorption Spectra of Bovine Oxyhemoglobin, Deoxyhemoglobin, Carboxyhemoglobin, and Methemoglobin. Comp. Biochem. Physiol. 1997, 118, 743–749. [Google Scholar] [CrossRef]
- Jacques, S.L.; Glickman, R.D.; Schwartz, J.A. Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium. Proc. SPIE 1996, 2681, 468–477. [Google Scholar] [CrossRef]
- Baranoski, G.V.G.; Chen, T.F.; Kimmel, B.W.; Miranda, E.; Yim, D. On the noninvasive optical monitoring and differentiation of methemoglobinemia and sulfhemoglobinemia. J. Biomed. Opt. 2012, 17, 0970051–09700514. [Google Scholar] [CrossRef] [Green Version]
- Kohn, M.C.; Melnick, R.L.; Ye, F.; Portier, C.J. Pharmacokinetics of Sodium Nitrite-Induced Methemoglobinemia in the Rat. Drug Metab. Dispos. 2002, 30, 676–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groeper, K.; Katcher, K.; Tobias, J.D. Anesthetic Management of a Patient with Methemoglobinemia. South. Med J. 2003, 96, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Umbreit, J. Methemoglobin—It’s not just blue: A concise review. Am. J. Hematol. 2007, 82, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Bradberry, S. Methaemoglobinaemia: Complications of poisoning. Medicine 2016, 44, 91–92. [Google Scholar] [CrossRef]
- Percy, M.J.; McFerran, N.V.; Lappin, T.R. Disorders of oxidised haemoglobin. Blood Rev. 2005, 19, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Da-Silva, S.S.; Sajan, I.S.; Underwood, J.P. Congenital Methemoglobinemia: A Rare Cause of Cyanosis in the Newborn—A Case Report. Pediatrics 2003, 112, e158–e161. [Google Scholar] [CrossRef] [Green Version]
- Kern, K.; Langevin, P.B.; Dunn, B.M. Methemoglobinemia after topical anesthesia with lidocaine and benzocaine for a difficult intubation. J. Clin. Anesth. 2000, 12, 167–172. [Google Scholar] [CrossRef]
- Singh, R.K.; Kambe, J.C.; Andrews, L.K.; Russell, J.C. Benzocaine-Induced Methemoglobinemia Accompanying Adult Respiratory Distress Syndrome and Sepsis Syndrome: Case Report. J. Trauma 2001, 50, 1153–1157. [Google Scholar] [CrossRef]
- Udeh, C.; Bittikofer, J.; Sum-Ping, S. Severe methemoglobinemia on reexposure to benzocaine. J. Clin. Anesth. 2001, 13, 128–130. [Google Scholar] [CrossRef]
- Tang, A.S.O.; Yeo, S.T.; Teh, Y.C.; Kho, W.M.; Chew, L.P.; Muniandy, P. The mystery of ‘saturation gap’: A case of dapsone-induced methaemoglobinemia in a pregnant mother with leprosy. Oxf. Med. Case Rep. 2019, 2019, omy111. [Google Scholar] [CrossRef] [Green Version]
- Harvey, M.; Cave, G.; Chanwai, G. Fatal methaemoglobinaemia induced by self-poisoning with sodium nitrite. Emerg. Med. Australas. 2010, 22, 463–465. [Google Scholar] [CrossRef]
- World Health Organization. Nitrate and Nitrite in Drinking-Water; WHO/FWC/WSH/16.52; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Rehman, H.U. Methemoglobinemia. West. J. Med. 2001, 175, 193–196. [Google Scholar] [CrossRef]
- Ginimuge, P.R.; Jyothi, S. Methylene Blue: Revisited. J. Anaesthesiol. Clin. Pharmacol. 2010, 26, 517–520. [Google Scholar]
- Patnaik, S.; Natarajan, M.; James, E.; Ebenezer, K. Methylene blue unresponsive methemoglobinemia. Indian J. Crit. Care Med. 2014, 18, 253–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortazzo, J.A.; Lichtman, A.D. Methemoglobinemia: A Review and Recommendations for Management. J. Cardiothorac. Vasc. Anesth. 2014, 28, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
- Giangreco, G.J.; Campbell, D.; Cowan, M.J. A 32-Year-Old Female with AIDS, Pneumocystis jiroveci Pneumonia, and Methemoglobinemia. Case Rep. Crit. Care 2013, 2013, 1–5. [Google Scholar] [CrossRef]
- Chan, E.D.; Chan, M.M.; Chan, M.M. Pulse oximetry: Understanding its basic principles facilitates appreciation of its limitations. Respir. Med. 2013, 107, 789–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirlangitis, J.J.; Middaugh, R.E.; Zablocki, A.; Rodriquez, F. False indication of arterial oxygen desaturation and me-themoglobinemia following injection of methylene blue in urological surgery. Mil. Med. 1990, 155, 260–262. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; El-Abaddi, N.; Duke, A.; Cerussi, A.E.; Brenner, M.; Tromberg, B.J. Noninvasive in vivo monitoring of methemoglobin formation and reduction with broadband diffuse optical spectroscopy. J. Appl. Physiol. 2006, 100, 615–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fishkin, J.B.; So, P.T.C.; Cerussi, A.E.; Fantini, S.; Franceschini, M.A.; Gratton, E. Frequency-domain method for measuring spectral properties in multiple-scattering media: Methemoglobin absorption spectrum in a tissuelike phantom. Appl. Opt. 1995, 34, 1143–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saager, R.B.; Rowland, R.A.; Baldado, M.L.; Kennedy, G.T.; Bernal, N.P.; Ponticorvo, A.; Christy, R.J.; Durkin, A.J. Impact of hemoglobin breakdown products in the spectral analysis of burn wounds using spatial frequency domain spectroscopy. J. Biomed. Opt. 2019, 24, 020501. [Google Scholar] [CrossRef] [PubMed]
- Leung, G.; Duta, D.; Perry, J.; Leonardi, L.; Fish, J.; Cross, K. Rapid tissue viability evaluation using methemoglobin as a biomarker in burns. Int. J. Burn. Trauma 2018, 8, 126–134. [Google Scholar]
- Tang, M.; Zhou, Y.; Zhang, R.; Wang, L.V. Noninvasive photoacoustic microscopy of methemoglobin in vivo. J. Biomed. Opt. 2015, 20, 036007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aizawa, K.; Sato, S.; Saitoh, D.; Ashida, H.; Obara, M. In vivoPhotoacoustic Spectroscopic Imaging of Hemoglobin Derivatives in Thermally Damaged Tissue. Jpn. J. Appl. Phys. 2009, 48, 062302. [Google Scholar] [CrossRef]
- Harrison, D.K.; Evans, S.D.; Abbot, N.C.; Beck, J.S.; Mccollum, P.T. Spectrophotometric measurements of haemoglobin saturation and concentration in skin during the tuberculin reaction in normal human subjects. Clin. Phys. Physiol. Meas. 1992, 13, 349–363. [Google Scholar] [CrossRef] [PubMed]
- Zonios, G.; Bykowski, J.; Kollias, N. Skin Melanin, Hemoglobin, and Light Scattering Properties can be Quantitatively Assessed In Vivo Using Diffuse Reflectance Spectroscopy. J. Investig. Dermatol. 2001, 117, 1452–1457. [Google Scholar] [CrossRef] [Green Version]
- Nishidate, I.; Aizu, Y.; Mishina, H. Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation. J. Biomed. Opt. 2004, 9, 700–710. [Google Scholar] [CrossRef]
- Stratonnikov, A.A.; Loschenov, V.B. Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra. J. Biomed. Opt. 2001, 6, 457–467. [Google Scholar] [CrossRef]
- Nishidate, I.; Wiswadarma, A.; Hase, Y.; Tanaka, N.; Maeda, T.; Niizeki, K.; Aizu, Y. Noninvasive spectral imaging of skin chromophores based on multiple regression analysis aided by Monte Carlo simulation. Opt. Lett. 2011, 36, 3239–3241. [Google Scholar] [CrossRef]
- Sowa, M.G.; Payette, J.R.; Hewko, M.; Mantsch, H.H. Visible-Near Infrared Multispectral Imaging of the Rat Dorsal Skin Flap. J. Biomed. Opt. 1999, 4, 474–481. [Google Scholar] [CrossRef]
- Dunn, A.K.; Devor, A.; Bolay, H.; Andermann, M.L.; Moskowitz, M.A.; Dale, A.M.; Boas, D.A. Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation. Opt. Lett. 2003, 28, 28–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardeberg, J.Y. Acquisition and Reproduction of Color Images: Colorimetric and Multispectral Approaches. Ph.D. Thesis, Ecole Nationale Superieure des Telecommunications, Paris, France, 1999. [Google Scholar]
- Hardeberg, J.Y.; Schmitt, F.; Brettel, H. Multispectral color image capture using liquid crystal tunable filter. Opt. Eng. 2002, 41, 2532–2549. [Google Scholar] [CrossRef]
- Cheung, V.; Westland, S.; Li, C.; Hardeberg, J.; Connah, D. Characterization of trichromatic color cameras by using a new multispectral imaging technique. J. Opt. Soc. Am. 2005, 22, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.-L.; Xin, J. Spectral characterization of a color scanner based on optimized adaptive estimation. J. Opt. Soc. Am. 2006, 23, 1566–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, H.-L.; Xin, J.; Shao, S.-J. Improved reflectance reconstruction for multispectral imaging by combining different techniques. Opt. Express 2007, 15, 5531–5536. [Google Scholar] [CrossRef] [Green Version]
- König, F. Reconstruction of Natural Spectra from Color Sensor Using Nonlinear Estimation Methods. In Is and T Annual Con-ference; The Society for Imaging Science and Technology: Cambridge, MA, USA, 1997; pp. 454–457. [Google Scholar]
- Stigell, P.; Miyata, K.; Hauta-Kasari, M. Wiener estimation method in estimating of spectral reflectance from RGB images. Pattern Recognit. Image Anal. 2007, 17, 233–242. [Google Scholar] [CrossRef]
- Murakami, Y.; Fukura, K.; Yamaguchi, M.; Ohyama, N. Color reproduction from low-SNR multispectral images using spatio-spectral Wiener estimation. Opt. Express 2008, 16, 4106–4120. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, Q. Modified Wiener estimation of diffuse reflectance spectra from RGB values by the synthesis of new colors for tissue measurements. J. Biomed. Opt. 2012, 17, 0305011–0305013. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.-L.; Cai, P.-Q.; Shao, S.-J.; Xin, J.H. Reflectance reconstruction for multispectral imaging by adaptive Wiener estimation. Opt. Express 2007, 15, 15545–15554. [Google Scholar] [CrossRef] [Green Version]
- Nishidate, I.; Maeda, T.; Niizeki, K.; Aizu, Y. Estimation of Melanin and Hemoglobin Using Spectral Reflectance Images Reconstructed from a Digital RGB Image by the Wiener Estimation Method. Sensors 2013, 13, 7902–7915. [Google Scholar] [CrossRef] [Green Version]
- Imaizumi, K.; Tyuma, I.; Imai, K.; Kosaka, H.; Ueda, Y. In vivo studies on methemoglobin formation by sodium nitrite. Int. Arch. Occup. Environ. Health 1980, 45, 97–104. [Google Scholar] [CrossRef]
- FDA Drug Safety Communication: FDA Continues to Receive Reports of a Rare, but Serious and Potentially Fatal Adverse Effect with the Use of Benzocaine Sprays for Medical Procedures. April 2011. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-continues-receive-reports-rare-serious-and-potentially-fatal (accessed on 20 November 2020).
- Kohl, M.; Lindauer, U.; Royl, G.; Kühl, M.; Gold, L.; Villringer, A.; Dirnagl, U. Physical model for the spectroscopic analysis of cortical intrinsic optical signals. Phys. Med. Biol. 2000, 45, 3749–3764. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.; Shin, H.K.; Boas, D.A.; Hyman, B.T.; Moskowitz, M.A.; Ayata, C.; Dunn, A.K. Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia. J. Biomed. Opt. 2008, 13, 044007. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Andrés, J.; Romero, J. Colorimetric and spectroradiometric characteristics of narrow-field-of-view clear skylight in Granada, Spain. J. Opt. Soc. Am. 2001, A18, 412–420. [Google Scholar] [CrossRef]
Goodness-of-Fit Coefficient (GFC) | ||||||
---|---|---|---|---|---|---|
Rat | Mean | ±SD | Max | Min | Number of Spectra | Accuracy |
#1 | 0.9990 | 0.0006 | 0.9999 | 0.9972 | 339 | Good |
#2 | 0.9996 | 0.0002 | 0.9999 | 0.9998 | 359 | Good |
#3 | 0.9999 | 0.0001 | 0.9999 | 0.9995 | 363 | Excellent |
#4 | 0.9993 | 0.0003 | 0.9999 | 0.9982 | 358 | Good |
Goodness-of-Fit Coefficient (GFC) | ||||||
---|---|---|---|---|---|---|
Rat | Mean | ±SD | Max | Min | Number of Spectra | Accuracy |
#5 | 0.9991 | 0.0002 | 0.9996 | 0.9984 | 191 | Good |
#6 | 0.9983 | 0.0003 | 0.9990 | 0.9976 | 191 | Colorimetrically accurate |
#7 | 0.9981 | 0.0004 | 0.9992 | 0.9969 | 191 | Colorimetrically accurate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khatun, F.; Aizu, Y.; Nishidate, I. In Vivo Transcutaneous Monitoring of Hemoglobin Derivatives Using a Red-Green-Blue Camera-Based Spectral Imaging Technique. Int. J. Mol. Sci. 2021, 22, 1528. https://doi.org/10.3390/ijms22041528
Khatun F, Aizu Y, Nishidate I. In Vivo Transcutaneous Monitoring of Hemoglobin Derivatives Using a Red-Green-Blue Camera-Based Spectral Imaging Technique. International Journal of Molecular Sciences. 2021; 22(4):1528. https://doi.org/10.3390/ijms22041528
Chicago/Turabian StyleKhatun, Fahima, Yoshihisa Aizu, and Izumi Nishidate. 2021. "In Vivo Transcutaneous Monitoring of Hemoglobin Derivatives Using a Red-Green-Blue Camera-Based Spectral Imaging Technique" International Journal of Molecular Sciences 22, no. 4: 1528. https://doi.org/10.3390/ijms22041528
APA StyleKhatun, F., Aizu, Y., & Nishidate, I. (2021). In Vivo Transcutaneous Monitoring of Hemoglobin Derivatives Using a Red-Green-Blue Camera-Based Spectral Imaging Technique. International Journal of Molecular Sciences, 22(4), 1528. https://doi.org/10.3390/ijms22041528