Clinical and Molecular Characterization of Achromatopsia Patients: A Longitudinal Study
Abstract
:1. Introduction
2. Results
2.1. Patient Selection
2.2. Ophthalmological Assessment of the ACHM Patients
2.3. Retinal Structure in ACHM Patients
2.4. Retinal Function in the ACHM Patients
2.5. Genetic Analysis of ACHM Patients
2.6. Genotype-Phenotype Correlation Analysis
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Patients Inclusion Criteria
4.3. Ophthalmological Examination
4.4. Target Enrichment and Next-Generation Sequencing
4.5. Variant Interpretation and Validation
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACHM | Achromatopsia |
AF | Autofluorescence |
BCVA | Best corrected visual acuity |
CRT | Central retinal thickness |
ERG | Electroretinogram |
FAF | Fundus autofluorescence |
HGMD | Human Gene Mutation Database |
LOVD | Leiden Open Variation Database |
MP | Microperimentry |
MS | Macular sensitivity |
NGS | Next generation sequencing |
OCT | Optical coherence tomography |
RPE | Retinal pigment epithelium |
SNV | Single nucleotide variants |
References
- Sharpe, L.T.; Stockman, A.; Jagle, H. Opsin Genes, Cone Photopigments amd Colourblindness; Cambridge University Press: Cambridge, UK, 1999; pp. 3–52. [Google Scholar]
- Michaelides, M.; Hunt, D.M.; Moore, A.T. The cone dysfunction syndromes. Br. J. Ophthalmol. 2004, 88, 291–297. [Google Scholar] [CrossRef]
- Fahim, A.T.; Khan, N.W.; Zahid, S.; Schachar, I.H.; Branham, K.; Kohl, S.; Wissinger, B.; Elner, V.M.; Heckenlively, J.R.; Jayasundera, T. Diagnostic Fundus Autofluorescence Patterns in Achromatopsia. Am. J. Ophthalmol. 2013, 156, 1211–1219.e2. [Google Scholar] [CrossRef]
- Greenberg, J.P.; Sherman, J.; Zweifel, S.A.; Chen, R.W.S.; Duncker, T.; Kohl, S.; Baumann, B.; Wissinger, B.; Yannuzzi, L.A.; Tsang, S.H. Spectral-Domain Optical Coherence Tomography Staging and Autofluorescence Imaging in Achromatopsia. JAMA Ophthalmol. 2014, 132, 437–445. [Google Scholar] [CrossRef]
- Thiadens, A.; Somervuo, V.; Born, L.V.D.; Roosing, S.; Van Schooneveld, M.; Kuijpers, R.; Van Moll-Ramirez, N.; Cremers, F.; Hoyng, C.; Klaver, C.C.W. Progressive Loss of Cones in Achromatopsia: An Imaging Study Using Spectral-Domain Optical Coherence Tomography. Investig. Opthalmol. Vis. Sci. 2010, 51, 5952–5957. [Google Scholar] [CrossRef] [Green Version]
- Hirji, N.; Aboshiha, J.; Georgiou, M.; Bainbridge, J.; Michaelides, M. Achromatopsia: Clinical features, molecular genetics, animal models and therapeutic options. Ophthalmic Genet. 2018, 39, 149–157. [Google Scholar] [CrossRef]
- Simunovic, M.P.; Moore, A. The cone dystrophies. Eye 1998, 12, 553–565. [Google Scholar] [CrossRef] [Green Version]
- Andréasson, S.; Tornqvist, K. Electroretinograms in patients with achromatopsia. Acta Ophthalmol. 1991, 69, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Aboshiha, J.; Dubis, A.M.A.; Cowing, J.; Fahy, R.T.A.; Sundaram, V.; Bainbridge, J.W.; Ali, R.R.; Dubra, A.; Nardini, M.; Webster, A.R.; et al. A Prospective Longitudinal Study of Retinal Structure and Function in Achromatopsia. Investig. Opthalmol. Vis. Sci. 2014, 55, 5733–5743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pokorny, J.; Smith, V.C.; Pinckers, A.J.L.G.; Cozijnsen, M. Classification of complete and incomplete autosomal recessive achromatopsia. Graefe’s Arch. Clin. Exp. Ophthalmol. 1982, 219, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Ansar, M.; University of Washington Center for Mendelian Genomics; Santos-Cortez, R.L.P.; Saqib, M.A.N.; Zulfiqar, F.; Lee, K.; Ashraf, N.M.; Ullah, E.; Wang, X.; Sajid, S.; et al. Mutation of ATF6 causes autosomal recessive achromatopsia. Qual. Life Res. 2015, 134, 941–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, B.; Grau, T.; Dangel, S.; Hurd, R.; Jurklies, B.; Sener, E.C.; Andreasson, S.; Dollfus, H.; Baumann, B.; Bolz, S.; et al. A homologous genetic basis of the murine cpfl1 mutant and human achromatopsia linked to mutations in the PDE6C gene. Proc. Natl. Acad. Sci. USA 2009, 106, 19581–19586. [Google Scholar] [CrossRef] [Green Version]
- Kohl, S.; Baumann, B.; Broghammer, M.; Jägle, H.; Sieving, P.; Kellner, U.; Spegal, R.; Anastasi, M.; Zrenner, E.; Sharpe, L.T.; et al. Mutations in the CNGB3 gene encoding the beta-subunit of the cone photoreceptor cGMP-gated channel are responsible for achromatopsia (ACHM3) linked to chromosome 8q21. Hum. Mol. Genet. 2000, 9, 2107–2116. [Google Scholar] [CrossRef]
- Kohl, S.; Baumann, B.; Rosenberg, T.; Kellner, U.; Lorenz, B.; Vadalà, M.; Jacobson, S.G.; Wissinger, B. Mutations in the Cone Photoreceptor G-Protein α-Subunit Gene GNAT2 in Patients with Achromatopsia. Am. J. Hum. Genet. 2002, 71, 422–425. [Google Scholar] [CrossRef] [Green Version]
- Kohl, S.; Coppieters, F.; Meire, F.; Schaich, S.; Roosing, S.; Brennenstuhl, C.; Bolz, S.; Van Genderen, M.M.; Riemslag, F.C.; Lukowski, R.; et al. A Nonsense Mutation in PDE6H Causes Autosomal-Recessive Incomplete Achromatopsia. Am. J. Hum. Genet. 2012, 91, 527–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohl, S.; Marx, T.; Giddings, I.; Jägle, H.; Jacobson, S.G.; Apfelstedt-Sylla, E.; Zrenner, E.; Sharpe, L.T.; Wissinger, B. Total colourblindness is caused by mutations in the gene encoding the alpha-subunit of the cone photoreceptor cGMP-gated cation channel. Nat. Genet. 1998, 19, 257–259. [Google Scholar] [CrossRef] [PubMed]
- Kohl, S.; Zobor, D.; Chiang, W.-C.; Weisschuh, N.; Staller, J.; Menendez, I.G.; Chang, S.; Beck, S.C.; Garrido, M.G.; Sothilingam, V.; et al. Mutations in the unfolded protein response regulator ATF6 cause the cone dysfunction disorder achromatopsia. Nat. Genet. 2015, 47, 757–765. [Google Scholar] [CrossRef] [Green Version]
- Felden, J.; Baumann, B.; Ali, M.; Audo, I.; Ayuso, C.; Bocquet, B.; Casteels, I.; Garcia-Sandoval, B.; Jacobson, S.G.; Jurklies, B.; et al. Mutation spectrum and clinical investigation of achromatopsia patients with mutations in the GNAT2 gene. Hum. Mutat. 2019, 40, 1145–1155. [Google Scholar] [CrossRef] [PubMed]
- Weisschuh, N.; Stingl, K.; Audo, I.; Biskup, S.; Bocquet, B.; Branham, K.; Burstedt, M.S.; De Baere, E.; De Vries, M.J.; Golovleva, I.; et al. Mutations in the gene PDE6C encoding the catalytic subunit of the cone photoreceptor phosphodiesterase in patients with achromatopsia. Hum. Mutat. 2018, 39, 1366–1371. [Google Scholar] [CrossRef]
- Fischer, M.D.; Michalakis, S.; Wilhelm, B.; Zobor, D.; Muehlfriedel, R.; Kohl, S.; Weisschuh, N.; Ochakovski, A.; Klein, R.; Schoen, C.; et al. Safety and Vision Outcomes of Subretinal Gene Therapy Targeting Cone Photoreceptors in Achromatopsia: A Nonrandomized Controlled Trial. JAMA Ophthalmol. 2020, 138, 643–651. [Google Scholar] [CrossRef]
- Thompson, D.A.; Iannaccone, A.; Ali, R.R.; Arshavsky, V.Y.; Audo, I.; Bainbridge, J.W.B.; Besirli, C.G.; Birch, D.G.; Branham, K.E.; Cideciyan, A.V.; et al. Advancing Clinical Trials for Inherited Retinal Diseases: Recommendations from the Second Monaciano Symposium. Transl. Vis. Sci. Technol. 2020, 9, 2. [Google Scholar] [CrossRef]
- Hirji, N.; Georgiou, M.; Kalitzeos, A.; Bainbridge, J.W.; Kumaran, N.; Aboshiha, J.; Carroll, J.; Michaelides, M. Longitudinal Assessment of Retinal Structure in Achromatopsia Patients With Long-Term Follow-up. Investig. Opthalmol. Vis. Sci. 2018, 59, 5735–5744. [Google Scholar] [CrossRef] [Green Version]
- Sundaram, V.; Wilde, C.; Aboshiha, J.; Cowing, J.; Han, C.; Langlo, C.S.; Chana, R.; Davidson, A.E.; Sergouniotis, P.I.; Bainbridge, J.W.; et al. Retinal structure and function in achromatopsia: Implications for gene therapy. Ophthalmology 2014, 121, 234–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgiou, M.; Singh, N.; Kane, T.; Zaman, S.; Hirji, N.; Aboshiha, J.; Kumaran, N.; Kalitzeos, A.; Carroll, J.; Weleber, R.G.; et al. Long-Term Investigation of Retinal Function in Patients with Achromatopsia. Investig. Opthalmol. Vis. Sci. 2020, 61, 38. [Google Scholar] [CrossRef]
- Langlo, C.S.; Patterson, E.J.; Higgins, B.P.; Summerfelt, P.; Razeen, M.M.; Erker, L.R.; Parker, M.; Collison, F.T.; Fishman, G.A.; Kay, C.N.; et al. Residual Foveal Cone Structure in CNGB3-Associated Achromatopsia. Investig. Opthalmol. Vis. Sci. 2016, 57, 3984–3995. [Google Scholar] [CrossRef] [Green Version]
- Georgiou, M.; Robson, A.G.; Singh, N.; Pontikos, N.; Kane, T.; Hirji, N.; Ripamonti, C.; Rotsos, T.; Dubra, A.; Kalitzeos, A.; et al. Deep Phenotyping of PDE6C-Associated Achromatopsia. Investig. Opthalmol. Vis. Sci. 2019, 60, 5112–5123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, M.G.; McLean, R.J.; Kohl, S.; Sheth, V.; Gottlob, I. Early signs of longitudinal progressive cone photoreceptor degeneration in achromatopsia. Br. J. Ophthalmol. 2012, 96, 1232–1236. [Google Scholar] [CrossRef]
- Wissinger, B.; Gamer, D.; Jägle, H.; Giorda, R.; Marx, T.; Mayer, S.; Tippmann, S.; Broghammer, M.; Jurklies, B.; Rosenberg, T.; et al. CNGA3 Mutations in Hereditary Cone Photoreceptor Disorders. Am. J. Hum. Genet. 2001, 69, 722–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundin, O.H.; Yang, J.-M.; Li, Y.; Zhu, D.; Hurd, J.N.; Mitchell, T.N.; Silva, E.D.; Maumenee, I.H. Genetic basis of total colourblindness among the Pingelapese islanders. Nat. Genet. 2000, 25, 289–293. [Google Scholar] [CrossRef]
- Di Iorio, V.; Karali, M.; Brunetti-Pierri, R.; Filippelli, M.; Di Fruscio, G.; Pizzo, M.; Mutarelli, M.; Nigro, V.; Testa, F.; Banfi, S.; et al. Clinical and Genetic Evaluation of a Cohort of Pediatric Patients with Severe Inherited Retinal Dystrophies. Genes 2017, 8, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiadens, A.A.H.J.; Slingerland, N.W.R.; Roosing, S.; Van Schooneveld, M.J.; Van Lith-Verhoeven, J.J.C.; Van Moll-Ramirez, N.; Born, L.I.V.D.; Hoyng, C.B.; Cremers, F.P.; Klaver, C.C.W. Genetic Etiology and Clinical Consequences of Complete and Incomplete Achromatopsia. Ophthalmology 2009, 116, 1984–1989.e1. [Google Scholar] [CrossRef]
- Genead, M.A.; Fishman, G.A.; Rha, J.; Dubis, A.M.; Bonci, D.M.O.; Dubra, A.; Stone, E.M.; Neitz, M.; Carroll, J. Photoreceptor Structure and Function in Patients with Congenital Achromatopsia. Investig. Opthalmol. Vis. Sci. 2011, 52, 7298–7308. [Google Scholar] [CrossRef]
- Khan, N.W.; Wissinger, B.; Kohl, S.; Sieving, P.A. CNGB3Achromatopsia with Progressive Loss of Residual Cone Function and Impaired Rod-Mediated Function. Investig. Opthalmol. Vis. Sci. 2007, 48, 3864–3871. [Google Scholar] [CrossRef] [Green Version]
- Kohl, S.; Varsanyi, B.; Antunes, G.A.; Baumann, B.; Hoyng, C.B.; Jägle, H.; Rosenberg, T.; Kellner, U.; Lorenz, B.; Salati, R.; et al. CNGB3 mutations account for 50% of all cases with autosomal recessive achromatopsia. Eur. J. Hum. Genet. 2004, 13, 302–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisschuh, N.; Sturm, M.; Baumann, B.; Audo, I.; Ayuso, C.; Bocquet, B.; Branham, K.; Brooks, B.P.; Catalá-Mora, J.; Giorda, R.; et al. Deep-intronic variants in CNGB3 cause achromatopsia by pseudoexon activation. Hum. Mutat. 2020, 41, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.K.; Van Cauwenbergh, C.; Rother, C.; Baumann, B.; Reuter, P.; De Baere, E.; Wissinger, B.; Kohl, S.; ACHM Study Group. CNGB3 mutation spectrum including copy number variations in 552 achromatopsia patients. Hum. Mutat. 2017, 38, 1579–1591. [Google Scholar] [CrossRef]
- Van Schil, K.; CNV Study Group; Naessens, S.; Van De Sompele, S.; Carron, M.; Aslanidis, A.; Van Cauwenbergh, C.; Mayer, A.K.; Van Heetvelde, M.; Bauwens, M.; et al. Mapping the genomic landscape of inherited retinal disease genes prioritizes genes prone to coding and noncoding copy-number variations. Genet. Med. 2017, 20, 202–213. [Google Scholar] [CrossRef] [Green Version]
- Georgiou, M.; Singh, N.; Kane, T.; Robson, A.G.; Kalitzeos, A.; Hirji, N.; Webster, A.R.; Dubra, A.; Carroll, J.; Michaelides, M. Photoreceptor Structure in GNAT2-Associated Achromatopsia. Investig. Opthalmol. Vis. Sci. 2020, 61, 40. [Google Scholar] [CrossRef] [Green Version]
- Kohl, S.; Jägle, H.; Wissinger, B.; Zobor, D. Achromatopsia. In GeneReviews®; Pagon, R.A., Ardinger, H.H., Wallace, S.E., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Di Iorio, V.; Karali, M.; Melillo, P.; Testa, F.; Brunetti-Pierri, R.; Musacchia, F.; Condroyer, C.; Neidhardt, J.; Audo, I.; Zeitz, C.; et al. Spectrum of Disease Severity in Patients With X-Linked Retinitis Pigmentosa Due to RPGR Mutations. Investig. Opthalmol. Vis. Sci. 2020, 61, 36. [Google Scholar] [CrossRef]
- Marmor, M.F.; Fulton, A.B.; Holder, G.E.; Miyake, Y.; Brigell, M.; Bach, M.; for the International Society for Clinical Electrophysiology of Vision. ISCEV Standard for full-field clinical electroretinography (2008 update). Doc. Ophthalmol. 2008, 118, 69–77. [Google Scholar] [CrossRef] [Green Version]
- McCulloch, D.L.; Marmor, M.F.; Brigell, M.G.; Hamilton, R.; Holder, G.E.; Tzekov, R.; Bach, M. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc. Ophthalmol. 2015, 130, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Musacchia, F.; Ciolfi, A.; Mutarelli, M.; Bruselles, A.; Castello, R.; Pinelli, M.; Basu, S.; Banfi, S.; Casari, G.; Tartaglia, M.; et al. VarGenius executes cohort-level DNA-seq variant calling and annotation and allows to manage the resulting data through a PostgreSQL database. BMC Bioinform. 2018, 19, 477. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput se-quencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 2010, 467, 1061–1073. [Google Scholar] [CrossRef] [Green Version]
- Stenson, P.D.; Mort, M.; Ball, E.V.; Shaw, K.; Phillips, A.D.; Cooper, D.N. The Human Gene Mutation Database: Building a comprehensive mutation repository for clinical and mo-lecular genetics, diagnostic testing and personalized genomic medicine. Hum. Genet. 2014, 133, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Hoover, J.; et al. ClinVar: Public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016, 44, D862–D868. [Google Scholar] [CrossRef] [Green Version]
- Goode, D.L.; Cooper, G.M.; Schmutz, J.; Dickson, M.; Gonzales, E.; Tsai, M.; Karra, K.; Davydov, E.; Batzoglou, S.; Myers, R.M.; et al. Evolutionary constraint facilitates interpretation of genetic variation in resequenced human genomes. Genome Res. 2010, 20, 301–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting Functional Effect of Human Missense Mutations Using PolyPhen. Curr. Protoc. Hum. Genet. 2013, 76, 7.20.1–7.20.41. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Henikoff, S.; Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 2009, 4, 1073–1081. [Google Scholar] [CrossRef]
- Liu, X.; Jian, X.; Boerwinkle, E. dbNSFP: A lightweight database of human nonsynonymous SNPs and their functional predictions. Hum. Mutat. 2011, 32, 894–899. [Google Scholar] [CrossRef]
- Schwarz, J.M.; Rödelsperger, C.; Schuelke, M.; Seelow, D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods 2010, 7, 575–576. [Google Scholar] [CrossRef]
- Kong, X.; Strauss, R.W.; Michaelides, M.; Cideciyan, A.V.; Sahel, J.-A.; Muñoz, B.; West, S.; Scholl, H.P.; Wolfson, Y.; Bittencourt, M.; et al. Visual Acuity Loss and Associated Risk Factors in the Retrospective Progression of Stargardt Disease Study (ProgStar Report No. 2). Ophthalmology 2016, 123, 1887–1897. [Google Scholar] [CrossRef]
- Testa, F.; Melillo, P.; Bonnet, C.; Marcelli, V.; De Benedictis, A.; Colucci, R.; Gallo, B.; Kurtenbach, A.; Rossi, S.; Marciano, E.; et al. Clinical presentation and disease course of usher syndrome because of mutations in myo7a or ush2a. Retina 2017, 37, 1581–1590. [Google Scholar] [CrossRef]
- Glynn, R.J.; Rosner, B. Regression methods when the eye is the unit of analysis. Ophthalmic Epidemiol. 2012, 19, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Csaky, K.G.; Richman, E.A.; Iii, F.L.F.; Ferris, F.L. Report from the NEI/FDA Ophthalmic Clinical Trial Design and Endpoints Symposium. Investig. Opthalmol. Vis. Sci. 2008, 49, 479–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ID | Age (yrs) | ACHM Subtype | Cong. Nystag. * | Color Vision Test | BCVA † (RE-LE) | OCT Grade (RE-LE) | CRT $ (RE-LE) | Foveal Hypo-Plasia | FAF Pattern | MS $ (RE-LE) | Fixation Stability (RE-LE) | Dark-Adapted 0.01 ERG | Light-Adapted 3.0 ERG | Light-Adapted 30 Hz ERG | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P1 | 7 | INC | No | CB (I) | 0.70 | 0.70 | 1 | 1 | 219 | 232 | Yes | n/a | 18.3 | 18.7 | RS | RS | Normal | Reduced | Reduced |
P2 | 9 | INC | Yes | CB (F) | 0.70 | 1.00 | 1 | 1 | 265 | 274 | No | Reduced AF, subtle perifoveal hyper-AF | 19.6 | 19.7 | UN | RS | Normal | Reduced | Reduced |
P3 | 29 | COM | Yes | CB (F) | 1.00 | 1.00 | 2 | 2 | 163 | 171 | No | n/a | 13.2 | 13.9 | RS | RS | Normal | Undetectable | Undetectable |
P4 | 18 | COM | Yes | CB (F) | 1.00 | 1.00 | 3 | 4 | 167 | 189 | No | Widespread reduced AF | 9.8 | 17.6 | S | S | Normal | Undetectable | Undetectable |
P5 | 19 | COM | Yes | CB (I) | 0.70 | 0.70 | 1 | 1 | 267 | 253 | No | n/a | 12.6 | 15.4 | RS | RS | Normal | Undetectable | Undetectable |
P6 | 32 | COM | Yes | CB (F) | 1.00 | 1.00 | 4 | 4 | 239 | 228 | No | Foveal and parafoveal hyper-AF | 10 | 9.7 | RS | RS | Normal | Undetectable | Undetectable |
P7 | 59 | COM | Yes | CB (F) | 1.00 | 1.00 | 4 | 4 | 187 | 233 | No | Reduced AF, subtle perifoveal hyper-AF | 10 | 10 | UN | RS | Normal | Undetectable | Undetectable |
P8 | 26 | INC | Yes | CB (F) | 0.70 | 0.70 | 2 | 2 | 235 | 221 | Yes | Widespread reduced AF | 16.1 | 17.8 | UN | RS | Normal | Reduced | Reduced |
P9 | 8 | INC | Yes | CB (I) | 1.00 | 1.00 | 1 | 1 | 271 | 267 | No | Widespread reduced AF | 17 | 17.8 | UN | RS | Normal | Reduced | Reduced |
P10 | 46 | COM | Yes | CB (F) | 1.30 | 1.30 | 5 | 5 | 125 | 115 | No | Absent AF at center, hyper-AF ring | 9.7 | 9.3 | RS | RS | Normal | Undetectable | Undetectable |
P11 | 10 | COM | Yes | CB (F) | 1.00 | 0.70 | 2 | 2 | 244 | 238 | No | n/a | 16.8 | 16.5 | UN | RS | Normal | Undetectable | Reduced |
P12 | 4 | INC | Yes | CB (F) | 1.00 | 1.00 | 2 | 2 | 227 | 217 | No | n/a | 18.5 | 18.3 | RS | UN | Normal | Reduced | Reduced |
P13 | 7 | COM | Yes | CB (I) | 1.00 | 1.00 | 1 | 1 | 304 | 196 | No | Foveal and parafoveal hyper-AF | 9.3 | 8.5 | RS | UN | Normal | Undetectable | Reduced |
P14 | 5 | COM | Yes | CB (I) | 1.00 | 1.00 | 1 | 1 | 258 | 230 | No | n/a | 14.4 | 15 | UN | UN | Normal | Undetectable | Reduced |
P15 | 2 | INC | Yes | CB (I) | 0.40 | 0.40 | 1 | 1 | 260 | 166 | No | Normal | 19.6 | 19.7 | RS | RS | Normal | Reduced | Reduced |
P16 | 15 | COM | Yes | CB (F) | 0.70 | 0.70 | 4 | 4 | 196 | 218 | No | Foveal and parafoveal hyper-AF | 14.5 | 14 | UN | UN | Normal | Undetectable | Reduced |
P17 | 7 | COM | Yes | CB (I) | 1.30 | 1.30 | 1 | 1 | 229 | 184 | No | n/a | n/a | n/a | n/a | n/a | Normal | Undetectable | Reduced |
P18 | 15 | COM | Yes | CB (I) | 1.00 | 1.00 | 2 | 2 | 183 | 206 | No | Normal | 13.5 | 13.2 | RS | RS | Normal | Undetectable | Reduced |
P19 | 15 | INC | No | Deu, Tri (F) | 0.15 | 0.30 | 3 | 3 | 182 | 187 | No | Foveal and parafoveal hyper-AF | 19.4 | 18.7 | S | RS | Normal | Undetectable | Reduced |
P20 | 31 | COM | Yes | CB (F) | 1.00 | 1.00 | 1 | 1 | 220 | 207 | No | Normal | n/a | n/a | n/a | n/a | Normal | Undetectable | Undetectable |
P21 | 16 | COM | Yes | CB (F) | 0.70 | 0.70 | 2 | 4 | 271 | 259 | Yes | Reduced AF, subtle perifoveal hyper-AF | n/a | n/a | n/a | n/a | Normal | Undetectable | Reduced |
ID | Family | Gene | Zygosity | RefSeq | Allele 1 | Allele 2 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Nucleotide | Protein | Reference | Nucleotide | Protein | Reference | |||||
P1 | F1 | CNGA3 | Hom. | NM_001298 | c.1114C>T | p.Pro372Ser | [28] | c.1114C>T | p.Pro372Ser | [28] |
P2 | F2 | CNGA3 | Hom. | NM_001298 | c.1641C>A | p.Phe547Leu | [16] | c.1641C>A | p.Phe547Leu | [16] |
P3 | F3 | CNGA3 | Hom. | NM_001298 | c.1641C>A | p.Phe547Leu | [16] | c.1641C>A | p.Phe547Leu | [16] |
P4 | F4 | CNGA3 | Hom. | NM_001298 | c.1162G>A | p.(Gly388Ser) | This study | c.1162G>A | p.(Gly388Ser) | This study |
P5 | F5 | CNGA3 | C. Het. | NM_001298 | c.667C>T | p.Arg223Trp | [28] | c.1060T>C | p.Ser341Pro | [28] |
P6 | F6 | CNGA3 | Hom. | NM_001298 | c.847C>T | p.Arg283Trp | [16] | c.847C>T | p.Arg283Trp | [16] |
P7 | F6 | CNGA3 | Hom. | NM_001298 | c.847C>T | p.Arg283Trp | [16] | c.847C>T | p.Arg283Trp | [16] |
P8 | F7 | CNGB3 | Hom. | NM_019098 | c.1148delC | p.(Thr383Ilefs*13) | [29] | c.1148delC | p.(Thr383Ilefs*13) | [29] |
P9 | F8 | CNGB3 | Hom. | NM_019098 | c.1148delC | p.(Thr383Ilefs*13) | [29] | c.1148delC | p.(Thr383Ilefs*13) | [29] |
P10 | F9 | CNGB3 | Hom. | NM_019098 | c.1148delC | p.(Thr383Ilefs*13) | [29] | c.1148delC | p.(Thr383Ilefs*13) | [29] |
P11 | F10 | CNGB3 | C. Het. | NM_019098 | c.1148delC | p.(Thr383Ilefs*13) | [29] | c.970A>G | p.(Arg324Gly) | [30] |
P12 | F10 | CNGB3 | C. Het. | NM_019098 | c.1148delC | p.(Thr383Ilefs*13) | [29] | c.970A>G | p.(Arg324Gly) | [30] |
P13 | F11 | GNAT2 | Hom. | NM_005272 | c.832dup | p.(Ile278Asnfs*14) | This study | c.832dup | p.(Ile278Asnfs*14) | This study |
P14 | F11 | GNAT2 | Hom. | NM_005272 | c.832dup | p.(Ile278Asnfs*14) | This study | c.832dup | p.(Ile278Asnfs*14) | This study |
P15 | F12 | GNAT2 | Hom. | NM_005272 | c.619G>A | p.(Glu207Lys) | This study | c.619G>A | p.(Glu207Lys) | This study |
P16 | F13 | PDE6C | Hom. | NM_006204 | c.2017G>T | p.(Asp673Tyr) | [30] | c.2017G>T | p.(Asp673Tyr) | [30] |
P17 | F14 | CNGB3 ? | Het. | NM_019098 | c.1055G>A | p.(Arg352Lys) | This study | n.d. | n.d. | n.d. |
P18 | F15 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Gene | RefSeq | Nucleotide | Protein | In Silico Pathogenicity Analysis | ||
---|---|---|---|---|---|---|
MutationTaster † | PolyPhen-2 ‡ | Cadd13 # | ||||
CNGA3 | NM_001298 | c.1162G>A | p.(Gly388Ser) | Disease causing | Prob. damaging | 26.1 |
CNGB3 | NM_019098 | c.1055G>A | p.(Arg352Lys) | Disease causing | Prob. damaging | 37.0 |
GNAT2 | NM_005272 | c.619G>A * | p.(Glu207Lys) | Disease causing | Prob. damaging | 29.4 |
Parameters | CNGA3 | CNGB3 | GNAT2 | p | |||
---|---|---|---|---|---|---|---|
(Seven Patients) | (Five Patients) | (Three Patients) | |||||
Age (years) | 24.7 ± 6.7 | 18.7 ± 7.7 | 4.64 ± 1.6 | 0.238 | |||
Age at diagnosis (years) | 5.4 ± 2.8 | 11.2 ± 18.4 | 4.6 ± 1.5 | 0.609 | |||
Detectable light-adapted 3.0 ERG | 2 (28.6%) | 3 (60.0%) | 1 (33.3%) | 0.530 | |||
(n, %) | |||||||
Detectable flicker ERG (n, %) | 2 (28.6%) | 4 (80.0%) | 3 (100%) | 0.057 | |||
Right eye | Left eye | Right eye | Left eye | Right eye | Left eye | p | |
BCVA (logMAR) | 0.87 ± 0.06 | 0.91 ± 0.06 | 1.00 ± 0.10 | 0.93 ± 0.11 | 0.80 ± 0.20 | 0.80 ± 0.2 | 0.493 |
CRT (µm) | 215.3 ± 16.6 | 225.7 ± 13.4 | 220.4 ± 25 | 211.6 ± 25.7 | 274 ± 15 | 197.3 ± 18.5 | 0.803 |
MS (dB) | 13.4 ± 1.5 | 15 ± 1.5 | 15.6 ± 1.5 | 15.9 ± 1.7 | 14.4 ± 3 | 14.4 ± 3.2 | 0.371 |
Dark-adapted 0.01 ERG | 136.9 ± 11.9 | 159.9 ± 21.1 | 151.3 ± 24.2 | 140.4 ± 27.6 | 145 ± 27 | 143.5 ± 23.5 | 0.515 |
(b-wave amplitude, µV) | |||||||
Light adapted 3.0 ERG | 5.7 ± 3.7 | 9.4 ± 8.3 | 12 ± 8.7 | 14.3 ± 11.3 | 22.6 | 24.0 | 0.793 |
(b-wave amplitude, µV) | |||||||
30 Hz Flicker ERG | 3.9 ± 2.8 | 3.3 ± 2.1 | 3.7 ± 3.2 | 4.5 ± 3.4 | 5 ± 0.9 | 5.1 ± 0.5 | 0.103 |
(N1-P1, µV) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brunetti-Pierri, R.; Karali, M.; Melillo, P.; Di Iorio, V.; De Benedictis, A.; Iaccarino, G.; Testa, F.; Banfi, S.; Simonelli, F. Clinical and Molecular Characterization of Achromatopsia Patients: A Longitudinal Study. Int. J. Mol. Sci. 2021, 22, 1681. https://doi.org/10.3390/ijms22041681
Brunetti-Pierri R, Karali M, Melillo P, Di Iorio V, De Benedictis A, Iaccarino G, Testa F, Banfi S, Simonelli F. Clinical and Molecular Characterization of Achromatopsia Patients: A Longitudinal Study. International Journal of Molecular Sciences. 2021; 22(4):1681. https://doi.org/10.3390/ijms22041681
Chicago/Turabian StyleBrunetti-Pierri, Raffaella, Marianthi Karali, Paolo Melillo, Valentina Di Iorio, Antonella De Benedictis, Gennarfrancesco Iaccarino, Francesco Testa, Sandro Banfi, and Francesca Simonelli. 2021. "Clinical and Molecular Characterization of Achromatopsia Patients: A Longitudinal Study" International Journal of Molecular Sciences 22, no. 4: 1681. https://doi.org/10.3390/ijms22041681
APA StyleBrunetti-Pierri, R., Karali, M., Melillo, P., Di Iorio, V., De Benedictis, A., Iaccarino, G., Testa, F., Banfi, S., & Simonelli, F. (2021). Clinical and Molecular Characterization of Achromatopsia Patients: A Longitudinal Study. International Journal of Molecular Sciences, 22(4), 1681. https://doi.org/10.3390/ijms22041681