Cirrhotic Liver of Liver Transplant Recipients Accumulate Silver and Co-Accumulate Copper
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of Metal Concentrations in Human Livers and GGTP in Serum
2.2. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AgNPs | silver nanoparticles |
PSC | Primary Sclerosing Cholangitis |
WB | Wilson’s disease |
HBV | Hepatitis B |
HCV | Hepatitis C |
GGTP | Gamma-glutamyltranspeptidase |
ICP-MS | Inductively Coupled Plasma Mass Spectrometry |
Ctr1 | Copper transporter 1 |
Ctr2 | Copper transporter 2 |
NLPR3 | NOD-, LRR- and pyrin domain-containing protein 3 |
References
- Liao, C.; Li, Y.; Tjong, S.C. Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci. 2019, 20, 449. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Rahman, M.M.; Lee, S.M.; Kim, J.M.; Park, K.; Kang, J.H.; Seo, Y.R. Assessment of in vivo genotoxicity of citrate-coated silver nanoparticles via transcriptomic analysis of rabbit liver tissue. Int. J. Nanomed. 2019, 14, 393–405. [Google Scholar] [CrossRef] [Green Version]
- Polívková, M.; Hubáček, T.; Staszek, M.; Švorčík, V.; Siegel, J. Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology. Int. J. Mol. Sci. 2017, 18, 419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corona-Gomez, J.; Chen, X.; Yang, Q. Effect of Nanoparticle Incorporation and Surface Coating on Mechanical Properties of Bone Scaffolds: A Brief Review. J. Funct. Biomater. 2016, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Stocco, J.G.; Hoers, H.; Pott, F.S.; Crozeta, K.; Barbosa, D.A.; Meier, M.J. Second-Generation central venous catheter in the prevention of bloodstream infection: A systematic review. Rev. Lat. Am. Enfermagem. 2016, 24, e2722. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Zhang, K.; Zhang, N.; Melo, M.A.S.; Weir, M.D.; Zhou, X.D.; Bai, Y.X.; Reynolds, M.A.; Xu, H.H.K. Developing a New Generation of Antimicrobial and Bioactive Dental Resins. J. Dent. Res. 2017, 96, 855–863. [Google Scholar] [CrossRef]
- Akhmetova, A.; Saliev, T.; Allan, I.U.; Illsley, M.J.; Nurgozhin, T.; Mikhalovsky, S.A. Comprehensive Review of Topical Odor-Controlling Treatment Options for Chronic Wounds. J. Wound Ostomy Cont. Nurs. 2016, 43, 598–609. [Google Scholar] [CrossRef] [Green Version]
- Barros, C.H.N.; Fulaz, S.; Stanisic, D.; Tasic, L. Biogenic Nanosilver against Multidrug-Resistant Bacteria (MDRB). Antibiotics 2018, 7, 69. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yan, A.; Liu, Z.; Yang, X.; Xu, Z.; Wang, Y.; Wang, R.; Koohi-Moghadam, M.; Hu, L.; Xia, W.; et al. Deciphering molecular mechanism of silver by integrated omic approaches enables enhancing its antimicrobial efficacy in E. coli. PLoS Biol. 2019, 17, e3000292. [Google Scholar] [CrossRef] [Green Version]
- Veronesi, G.; Aude-Garcia, C.; Kieffer, I.; Gallon, T.; Delangle, P.; Herlin-Boime, N.; Rabilloud, T.; Carrière, M. Exposure-dependent Ag+ release from silver nanoparticles and its complexation in AgS2 sites in primary murine macrophages. Nanoscale 2015, 7, 7323–7330. [Google Scholar] [CrossRef]
- Veronesi, G.; Deniaud, A.; Gallon, T.; Jouneau, P.H.; Villanova, J.; Delangle, P.; Carrière, M.; Kieffer, I.; Charbonnier, P.; Mintz, E.; et al. Visualization, quantification and coordination of Ag+ ions released from silver nanoparticles in hepatocytes. Nanoscale 2016, 8, 17012–17021. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, T.; Li, P.; Huang, W.; Tang, J.; Wang, P.; Liu, J.; Yuan, Q.; Bai, R.; Li, B.; et al. Use of Synchrotron Radiation-Analytical Techniques To Reveal Chemical Origin of Silver-Nanoparticle Cytotoxicity. ACS Nano 2015, 9, 6532–6547. [Google Scholar] [CrossRef]
- Jiang, X.; Miclaus, T.; Wang, L.; Foldbjerg, R.; Sutherland, D.S.; Autrup, H.; Chen, C.; Beer, C. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: Implication for cytotoxicity. Nanotoxicology 2015, 9, 181–189. [Google Scholar] [CrossRef]
- Adams, N.W.H.; Kramer, J.R. Potentiometric Determination of Silver Thiolate Formation Constants Using a Ag2S Electrode. Aquat. Geochem. 1999, 5, 1–11. [Google Scholar] [CrossRef]
- Kluska, K.; Peris-Díaz, M.D.; Płonka, D.; Moysa, A.; Dadlez, M.; Deniaud, A.; Bal, W.; Krężel, A. Formation of highly stable multinuclear Ag(I)-sulfur clusters in zinc fingers disrupts their structure and function. Chem. Commun. 2020, 56, 1329–1332. [Google Scholar] [CrossRef] [Green Version]
- Marchioni, M.; Jouneau, P.-H.; Chevallet, M.; Michaud-Soret, I.; Deniaud, A. Silver nanoparticle fate in mammals: Bridging in vitro and in vivo studies. Coord. Chem. Rev. 2018, 364, 118–136. [Google Scholar] [CrossRef]
- Wu, T.; Tang, M. The inflammatory response to silver and titanium dioxide nanoparticles in the central nervous system. Nanomedicine 2018, 13, 233–249. [Google Scholar] [CrossRef]
- Yang, L.; Kuang, H.; Zhang, W.; Aguilar, Z.P.; Wei, H.; Xu, H. Comparisons of the biodistribution and toxicological examinations after repeated intravenous administration of silver and gold nanoparticles in mice. Sci. Rep. 2017, 7, 3303. [Google Scholar] [CrossRef] [PubMed]
- Weldon, B.A.; Faustman, E.M.; Oberdörster, G.; Workman, T.; Griffith, W.C.; Kneuer, C.; Yu, I.J. Occupational exposure limit for silver nanoparticles: Considerations on the derivation of a general health-based value. Nanotoxicology 2016, 10, 945–956. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 19 August 2019).
- Brune, D.; Nordberg, G.; Wester, P.O. Distribution of 23 elements in the kidney, liver and lungs of workers from a smeltery and refinery in North Sweden exposed to a number of elements and of a control group. Sci. Total Environ. 1980, 16, 13–35. [Google Scholar] [CrossRef]
- Pickston, L.; Lewin, J.F.; Drysdale, J.M.; Smith, J.M.; Bruce, J. Determination of Potentially Toxic Metals in Human Livers in New Zealand. J. Anal. Toxicol. 1983, 7, 2–6. [Google Scholar] [CrossRef]
- Wan, A.T.; Conyers, R.A.J.; Coombs, C.J.; Masterton, J.P. Determination of Silver in Blood, Urine, and Tissues of Volunteers and Burn Patients. Clin. Chem. 1991, 37, 1683–1687. [Google Scholar]
- Şahin, M.; Karayakar, F.; Erdogan, K.E.; Bas, F.; Colak, T. Liver tissue trace element levels in HepB patients and the relationship of these elements with histological injury in the liver and with clinical parameters. J. Trace Elements Med. Biol. 2018, 45, 70–77. [Google Scholar] [CrossRef]
- Drasch, D.; Gath, H.J.; Heissler, E.; Schupp, I.; Roider, G. Silver Concentrations in Human Tissues. Their Dependence on Dental Amalgam and Other Factors. J. Trace Elements Med. Biol. 1995, 9, 82–88. [Google Scholar] [CrossRef]
- Brouillard, C.; Bursztejn, A.C.; Latarche, C.; Cuny, J.F.; Truchetet, F.; Goullé, J.P.; Schmutz, J.L. Silver absorption and toxicity evaluation of silver wound dressings in 40 patients with chronic wounds. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 2295–2299. [Google Scholar] [CrossRef]
- Wang, X.Q.; Kempf, M.; Mott, J.; Chang, H.E.; Francis, R.; Liu, P.Y.; Cuttle, L.; Olszowy, H.; Kravchuk, O.; Mill, J.; et al. Silver absorption on burns after the application of Acticoat: Data from pediatric patients and a porcine burn model. J. Burn Care Res. 2009, 30, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Bergin, I.L.; Wilding, L.A.; Morishita, M.; Walacavage, K.; Ault, A.P.; Axson, J.L.; Stark, D.I.; Hashway, S.A.; Capracotta, S.S.; Leroueil, P.R.; et al. Effects of particle size and coating on toxicologic parameters, fecal elimination kinetics and tissue distribution of acutely ingested silver nanoparticles in a mouse model. Nanotoxicology 2016, 10, 352–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dziendzikowska, K.; Gromadzka-Ostrowska, J.; Lankoff, A.; Oczkowski, M.; Krawczynska, A.; Chwastowska, J.; Sadowska-Bratek, M.; Chajduk, E.; Wojewodzka, M.; Dusinska, M.; et al. Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. J. Appl. Toxicol. 2012, 32, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Loeschner, K.; Hadrup, N.; Qvortrup, K.; Larsen, A.; Gao, X.; Vogel, U.; Mortensen, A.; Lam, H.R.; Larsen, E.H. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol. 2011, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Recordati, C.; De Maglie, M.; Bianchessi, S.; Argentiere, S.; Cella, C.; Mattiello, S.; Cubadda, F.; Aureli, F.; D’Amato, M.; Raggi, A.; et al. Tissue distribution and acute toxicity of silver after single intravenous administration in mice: Nano-specific and size-dependent effects. Part Fibre Toxicol. 2016, 13, 12. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Park, E.J.; Chun, I.K.; Choi, K.; Lee, S.H.; Yoon, J.; Lee, B.C. Bioavailability and toxicokinetics of citrate-coated silver nanoparticles in rats. Arch. Pharm. Res. 2011, 34, 153–158. [Google Scholar] [CrossRef]
- Van der Zande, M.; Vandebriel, R.J.; Van Doren, E.; Kramer, E.; Herrera Rivera, Z.; Serrano-Rojero, C.S.; Gremmer, E.R.; Mast, J.; Peters, R.J.; Hollman, P.C.; et al. Distribution, Elimination, and Toxicity of Silver Nanoparticles and Silver Ions in Rats after 28-Day Oral Exposure. ACS Nano 2012, 6, 7427–7442. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, S.; Huang, Y.; Zhang, T.; Liu, X.; Hu, Y.; Zhang, Z.; Tang, M. Acute toxic effects and gender-related biokinetics of silver nanoparticles following an intravenous injection in mice. J. Appl. Toxicol. 2012, 32, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Meacham, K.A.; Cortés, M.P.; Wiggins, E.M.; Maass, A.; Latorre, M.; Ralle, M.; Burkhead, J.L. Altered zinc balance in the Atp7b−/− mouse reveals a mechanism of copper toxicity in Wilson disease. Metallomics 2018, 10, 1595–1606. [Google Scholar] [CrossRef] [PubMed]
- Polishchuk, E.V.; Merolla, A.; Lichtmannegger, J.; Romano, A.; Indrieri, A.; Ilyechova, E.Y.; Concilli, M.; De Cegli, R.; Crispino, R.; Mariniello, M.; et al. Activation of Autophagy, Observed in Liver Tissues From Patients With Wilson Disease and From ATP7B-Deficient Animals, Protects Hepatocytes From Copper-Induced Apoptosis. Gastroenterology 2019, 156, 1173–1189.e5. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Wu, B.; Li, X.; Jin, X.; Zhang, F.; Jiang, C.; Xu, W.; Li, H.; Wang, H. The Resveratrol Alleviates the Hepatic Toxicity of CuSO4 in the Rat. Biol. Trace Elem. Res. 2019, 187, 464–471. [Google Scholar] [CrossRef]
- Lee, J.; Peña, M.M.O.; Nose, Y.; Thiele, D.J. Biochemical Characterization of the Human Copper Transporter Ctr1. J. Biol. Chem. 2002, 277, 4380–4387. [Google Scholar] [CrossRef] [Green Version]
- Bertinato, J.; Cheung, L.; Hoque, R.; Plouffe, L.J. Ctr1 transports silver into mammalian cells. J. Trace Elem. Med. Biol. 2010, 24, 178–184. [Google Scholar] [CrossRef]
- Ibricevic, A.; Brody, S.L.; Youngs, W.J.; Cannon, C.L. ATP7B detoxifies silver in ciliated airway epithelial cells. Toxicol. Appl. Pharmacol. 2010, 243, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Tadini-Buoninsegni, F.; Smeazzetto, S. Mechanisms of charge transfer in human copper ATPases ATP7A and ATP7B. UBMB Life 2017, 69, 218–225. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Wang, J.; Pu, C.; Qiao, L.; Jiang, C. Wilson’s Disease: A Comprehensive Review of the Molecular Mechanisms. Int. J. Mol. Sci. 2015, 16, 6419–6431. [Google Scholar] [CrossRef] [PubMed]
- Brzoska, K.; Meczynska-Wielgosz, S.; Stepkowski, T.M.; Kruszewski, M. Adaptation of HepG2 cells to silver nanoparticles-induced stress is based on the pro-proliferative and anti-apoptotic changes in gene expression. Mutagenesis 2015, 30, 431–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neto, F.F.; da Silva, L.C.; Liebel, S.; Voigt, C.L.; Oliveira Ribeiro, C.A. Responses of human hepatoma HepG2 cells to silver nanoparticles and polycyclic aromatic hydrocarbons. Toxicol. Mech. Methods 2018, 28, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Braeuning, A.; Oberemm, A.; Görte, J.; Böhmert, L.; Juling, S.; Lampen, A. Comparative proteomic analysis of silver nanoparticle effects in human liver and intestinal cells. J. Appl. Toxicol. 2017, 1–11. [Google Scholar] [CrossRef]
- Puchkova, L.V.; Broggini, M.; Polishchuk, E.V.; Ilyechova, E.Y.; Polishchuk, R.S. Silver Ions as a Tool for Understanding Different Aspects of Copper Metabolism. Nutrients 2019, 11, 1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corti, A.; Belcastro, E.; Dominici, S.; Maellaro, E.; Pompella, A. The dark side of gamma-glutamyltransferase (GGT): Pathogenic effects of an ‘antioxidant’ enzyme. Free Rad. Biol. Med. 2020, 160, 807–819. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.R.; Zheng, J.; Tang, X.; Goering, P.L. Silver Nanoparticle-Induced Autophagic-Lysosomal Disruption and NLRP3-Inflammasome Activation in HepG2 Cells Is Size-Dependent. Toxicol. Sci. 2016, 150, 473–487. [Google Scholar] [CrossRef]
- Kouame, K.; Peter, A.I.; Akang, E.N.; Adana, M.; Moodley, R.; Naidu, E.C.; Azu, O.O. Effect of long-term administration of Cinnamomum cassia silver nanoparticles on organs (kidneys and liver) of Sprague-Dawley rats. Turk. J. Biol. 2018, 42, 498–505. [Google Scholar] [CrossRef]
- Tardillo-Suarez, V.; Karepina, E.; Gallet, B.; Cottet-Rousselle, C.; Chevallet, M.; Charbonnier, P.; Moriscot, C.; Michaud-Soret, I.; Bal, W.; Fuchs, A.; et al. Nuclear Translocation of Silver ions and Hepatocyte Nuclear Receptor Impairment upon Exposure to Silver Nanoparticles. Environ. Sci. Nano 2020, 7, 1373–1387. [Google Scholar] [CrossRef] [Green Version]
Groups | ρ (p-Value) | ||
---|---|---|---|
Recipients | Donors | All | |
Ag vs. Cu | 0.67 (1.5 × 10−6) | 0.53 (0.004) | 0.69 (2 × 10−11) |
Ag vs. GGTP | 0.37 (0.03) | −0.04 (0.85) | 0.55 (4 × 10−5) |
Cu vs. GGTP | 0.12 (0.66) | 0.20 (0.26) | 0.38 (0.007) |
Ag vs. age Undetectable Ag omitted | −0.16 (0.31) | 0.61 (0.17) | −0.13 (0.38) |
Ag vs. gender Undetectable Ag omitted Wilcoxon stat. (p) | W = 222 (0.35) | 6 (1) | 292 (0.60) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poznański, J.; Sołdacki, D.; Czarkowska-Pączek, B.; Bonna, A.; Kornasiewicz, O.; Krawczyk, M.; Bal, W.; Pączek, L. Cirrhotic Liver of Liver Transplant Recipients Accumulate Silver and Co-Accumulate Copper. Int. J. Mol. Sci. 2021, 22, 1782. https://doi.org/10.3390/ijms22041782
Poznański J, Sołdacki D, Czarkowska-Pączek B, Bonna A, Kornasiewicz O, Krawczyk M, Bal W, Pączek L. Cirrhotic Liver of Liver Transplant Recipients Accumulate Silver and Co-Accumulate Copper. International Journal of Molecular Sciences. 2021; 22(4):1782. https://doi.org/10.3390/ijms22041782
Chicago/Turabian StylePoznański, Jarosław, Dariusz Sołdacki, Bożena Czarkowska-Pączek, Arkadiusz Bonna, Oskar Kornasiewicz, Marek Krawczyk, Wojciech Bal, and Leszek Pączek. 2021. "Cirrhotic Liver of Liver Transplant Recipients Accumulate Silver and Co-Accumulate Copper" International Journal of Molecular Sciences 22, no. 4: 1782. https://doi.org/10.3390/ijms22041782
APA StylePoznański, J., Sołdacki, D., Czarkowska-Pączek, B., Bonna, A., Kornasiewicz, O., Krawczyk, M., Bal, W., & Pączek, L. (2021). Cirrhotic Liver of Liver Transplant Recipients Accumulate Silver and Co-Accumulate Copper. International Journal of Molecular Sciences, 22(4), 1782. https://doi.org/10.3390/ijms22041782