Current Understandings on Magnesium Deficiency and Future Outlooks for Sustainable Agriculture
Abstract
:1. Introduction
2. Causes of Mg Deficiency and Symptoms in Plants
3. Changes Induced by Mg Deficiency in Plants
3.1. Plant Growth and Biomass Allocation
3.2. Photosynthetic Activity
3.3. Chlorophyll Degradation
3.4. Photosynthates Partitioning from Source to Sink
3.5. Ultrastructure Alteration and Oxidative Damage
4. Mg Uptake and Transport in Plants
4.1. Identification, Characterization, and Physiological Significance of Mg2+ Transporters Gene Families
4.2. Mg Uptake, Distribution, and Homeostasis in Plants
4.2.1. Mg Transporters Involved in Xylem Loading
4.2.2. Chloroplast Localized Mg Transporters
4.2.3. Tonoplast Localized Mg Transporters
4.3. Factors Influencing Mg Homeostasis
5. Mg Stresses Signaling in Plants
6. Effects of Mg on Other Nutrients Uptake Behavior
7. Strategies to Enhance the Mg Use Efficiency in Plants
8. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gransee, A.; Führs, H. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 2013, 368, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Cakmak, I.; Yazici, A.M. Magnesium: A Forgotten element in crop. production. Better Crop. 2010, 94, 23–25. [Google Scholar]
- Jansson, S. The light-harvesting chlorophyll ab-binding proteins. Biochim. Biophys. Acta Bioenerg. 1994, 1184, 1–19. [Google Scholar] [CrossRef]
- Mayland, H.; Greene, L.W.; Robinson, D.L.; Wilkinson, S.R. Grass tetany: A review of Mg in the soil-plant-animal continuum. In Proceedings of the 25th Annual Pacific Northwest Animal Nutrition Conference, Vancouver, BC, Canada, 6–8 November 1990; pp. 29–41. [Google Scholar]
- Rissler, H.M.; Collakova, E.; DellaPenna, D.; Whelan, J.; Pogson, B.F. Chlorophyll biosynthesis. Expression of a second chI gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis. Plant Physiol. 2002, 128, 770–779. [Google Scholar] [CrossRef] [PubMed]
- Hannaway, D.; Bush, L.P.; Leggett, J.E. Plant Nutrition: Magnesium and Hypomagnesemia in Animals; University of Kentucky, College of Agriculture, Agricultural Experiment Station: Lexington, KY, USA, 1980. [Google Scholar]
- Fischer, E.; Lohaus, G.; Heineke, D.; Heldt, H.W. Magnesium deficiency results in accumulation of carbohydrates and amino acids in source and sink leaves of spinach. Physiol. Plant. 1998, 102, 16–20. [Google Scholar] [CrossRef]
- Merbach, W.H. Marschner, Mineral nutrition in higher plants, Academic Press, London, Orlando… (1986), 674 Seiten, 186 Abb., 257 Tabellen, Preis: $89,50; £49,95, ISBN: 0-12-473540-1. Zent. Mikrobiol. 1988, 143, 538. [Google Scholar] [CrossRef]
- Noah, J.W.; Wollenzien, P. Dependence of the 16S rRNA Decoding Region Structure on Mg2+, Subunit Association, and Temperature. Biochemistry 1998, 37, 15442–15448. [Google Scholar] [CrossRef] [PubMed]
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, I.S.; White, P. Functions of macronutrients. In Marscher’s Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 135–190. [Google Scholar]
- Hermans, C.; Bourgis, F.; Faucher, M.; Strasser, R.J.; Delrot, S.; Verbruggen, N. Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves. Planta 2005, 220, 541–549. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press, Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Aitken, R.; Dickson, T.; Hailes, K.J.; Moody, P.W. Response of field-grown maize to applied magnesium in acidic soils in north-eastern Australia. Aust. J. Agric. Res. 1999, 50, 191–198. [Google Scholar] [CrossRef]
- Senbayram, M.; Gransee, A.; Wahle, V.; Thiel, H. Role of magnesium fertilisers in agriculture: Plant–soil continuum. Crop Pasture Sci. 2016, 66, 1219–1229. [Google Scholar] [CrossRef]
- Maguire, M.E.; Cowan, J.A. Magnesium Chemistry and Biochemistry. Biometals 2002, 15, 203–210. [Google Scholar] [CrossRef]
- Verbruggen, N.; Hermans, C. Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil 2013, 368, 87–99. [Google Scholar] [CrossRef]
- Yang, G.-H.; Yang, L.-T.; Jiang, H.-X.; Li, Y.; Wang, P.; Chen, L.-S. Physiological impacts of magnesium-deficiency in Citrus seedlings: Photosynthesis, antioxidant system and carbohydrates. Trees 2012, 26, 1237–1250. [Google Scholar] [CrossRef]
- Szabolc, I. International Seminar on Soil Environment and fertility Management in Intensive Agriculture (SEFMIA). Agrokémia És Talajt. 1978, 27, 245–252. [Google Scholar]
- Farhat, N.; Sassi, H.; Zorrig, W.; Abdelly, C.; Barhoumi, Z.; Smaou, A.; Rabhi, M. Is excessive Ca the main factor responsible for Mg deficiency in Sulla carnosa on calcareous soils? J. Soils Sediments 2015, 15, 1483–1490. [Google Scholar] [CrossRef]
- Mayland, H.; Wilkinson, S. Soil factors affecting magnesium availability in plant-animal systems: A review. J. Anim. Sci. 1989, 67, 3437–3444. [Google Scholar] [CrossRef] [Green Version]
- Cakmak, I.; Kirkby, E.A. Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol. Plant. 2008, 133, 692–704. [Google Scholar] [CrossRef]
- Farhat, N.; Rabhi, M.; Krol, M.; Barhoumi, Z.; Ivanov, A.G.; McCarthy, A.; Abdelly, C.; Smaoui, A.; Hüner, N.P.A. Starch and sugar accumulation in Sulla carnosa leaves upon Mg2+ starvation. Acta Physiol. Plant. 2014, 36, 2157–2165. [Google Scholar] [CrossRef]
- Ding, Y.; Luo, W.; Xu, G. Characterisation of magnesium nutrition and interaction of magnesium and potassium in rice. Ann. Appl. Biol. 2006, 149, 111–123. [Google Scholar] [CrossRef]
- Hermans, C.; Johnson, G.N.; Strasser, R.J.; Verbruggen, N. Physiological characterisation of magnesium deficiency in sugar beet: Acclimation to low magnesium differentially affects photosystems I and II. Planta 2004, 220, 344–355. [Google Scholar] [CrossRef] [Green Version]
- Hermans, C.; Verbruggen, N. Physiological characterization of Mg deficiency in Arabidopsis thaliana. J. Exp. Bot. 2005, 56, 2153–2161. [Google Scholar] [CrossRef] [Green Version]
- Hermans, C.; Vuylsteke, M.; Coppens, F.; Craciun, A.; Inzé, D.; Verbruggen, N. Early transcriptomic changes induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock gene expression in roots and the triggering of abscisic acid-responsive genes. New Phytol. 2010, 187, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Hermans, C.; Vuylsteke, M.; Coppens, F.; Cristescu, S.M.; Harren, F.J.M.; Inzé, D.; Verbruggen, N. Systems analysis of the responses to long-term magnesium deficiency and restoration in Arabidopsis thaliana. New Phytol. 2010, 187, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Bouma, D.; Dowling, E.; Wahjoedi, H. Some effects of potassium and magnesium on the growth of subterranean clover (Trifolium subterraneum). Ann. Bot. 1979, 43, 529–538. [Google Scholar] [CrossRef]
- Riga, P.; Anza, M.; Garbisu, C. Suitability of the antioxidative system as marker of magnesium deficiency in Capsicum annuum L. plants under controlled conditions. Plant Growth Regul. 2005, 46, 51–59. [Google Scholar] [CrossRef]
- Sun, O.J.; Payn, T.W. Magnesium nutrition and photosynthesis in Pinus radiata: Clonal variation and influence of potassium. Tree Physiol. 1999, 19, 535–540. [Google Scholar] [CrossRef]
- Cakmak, I.; Hengeler, C.; Marschner, H. Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J. Exp. Bot. 1994, 45, 1245–1250. [Google Scholar] [CrossRef]
- Cakmak, I.; Hengeler, C.; Marschner, H. Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J. Exp. Bot. 1994, 45, 1251–1257. [Google Scholar] [CrossRef]
- Ridolfi, M.; Garrec, J.-P. Consequences of an excess Al and a deficiency in Ca and Mg for stomatal functioning and net carbon assimilation of beech leaves. Ann. Sci. 2000, 57, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Farhat, N.; Ivanov, A.G.; Krol, M.; Rabhi, M.; Smaoui, A.; Abdelly, C.; Hüner, N.P.A. Preferential damaging effects of limited magnesium bioavailability on photosystem I in Sulla carnosa plants. Planta 2015, 241, 1189–1206. [Google Scholar] [CrossRef]
- Laing, W.; Greer, D.; Sun, O.; Beets, P.; Lowe, A.; Payn, T. Physiological impacts of Mg deficiency in Pinus radiata: Growth and photosynthesis. New Phytol. 2000, 146, 47–57. [Google Scholar] [CrossRef]
- Liang, C.; Xiao, W.; Hao, H.; Xiaoqing, L.; Chao, L.; Lei, Z.; Fashui, H. Effects of Mg2+ on spectral characteristics and photosynthetic functions of spinach photosystem II. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 15, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Sun, O.J.; Gielen, G.J.H.P.; Sands, R.; Smith, C.T.; Thorn, A.J. Growth, Mg nutrition and photosynthetic activity in Pinus radiata: Evidence that NaCl addition counteracts the impact of low Mg supply. Trees 2001, 15, 335–340. [Google Scholar] [CrossRef]
- Hariadi, Y.; Shabala, S. Screening broad beans (Vicia faba) for magnesium deficiency. II. Photosynthetic performance and leaf bioelectrical responses. Funct. Plant Biol. 2004, 31, 539–549. [Google Scholar] [CrossRef]
- Lasa, B.; Frechilla, S.; Aleu, M.; González-Moro, B.; Lamsfus, C.; Aparicio-Tejo, P.M. Effects of low and high levels of magnesium on the response of sunflower plants grown with ammonium and nitrate. Plant Soil 2000, 225, 167–174. [Google Scholar] [CrossRef]
- Balakrishnan, K.; Rajendran, C.; Kulandaivelu, G. Differential responses of iron, magnesium, and zinc deficiency on pigment composition, nutrient content, and photosynthetic activity in tropical fruit crops. Photosynthetica 2000, 38, 477–479. [Google Scholar] [CrossRef]
- Ceppi, M.G.; Oukarroum, A.; Çiçek, N.; Strasser, R.J.; Schansker, G. The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: A study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. Physiol. Plant. 2012, 144, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Lavon, R.; Salomon, R.; Goldschmidt, E.E. Effect of potassium, magnesium, and calcium deficiencies on nitrogen constituents and chloroplast components in Citrus leaves. J. Am. Soc. Hortic. Sci. 1999, 124, 158–162. [Google Scholar] [CrossRef] [Green Version]
- Hörtensteiner, S. Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci. 2009, 14, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; An, K.; Liao, Y.; Zhou, X.; Cao, Y.; Zhao, H.; Ge, X.; Kuai, B. Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol. 2007, 144, 1429–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Q.; Guo, Y.; Kuai, B. Isolation and characterization of a chlorophyll degradation regulatory gene from tall fescue. Plant Cell Rep. 2011, 30, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Tommasini, R.; Vogt, E.; Fromenteau, M.; Hörtensteiner, S.; Matile, P.; Amrhein, N.; Martinoia, E. An ABC-transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity. Plant J. 1998, 13, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Boxler-Baldoma, C.; Lütz, C.; Heumann, H.-G.; Siefermann-Harms, D. Structural changes in the vascular bundles of light-exposed and shaded spruce needles suffering from Mg deficiency and ozone pollution. J. Plant Physiol. 2006, 163, 195–205. [Google Scholar] [CrossRef]
- Hermans, C.; Hammond, J.P.; White, P.J.; Verbruggen, V. How do deficiencies of essential mineral elements alter biomass allocation. Trends Plant Sci. 2006, 11, 610–617. [Google Scholar] [CrossRef]
- Igamberdiev, A.U.; Kleczkowski, L.A. Implications of adenylate kinase-governed equilibrium of adenylates on contents of free magnesium in plant cells and compartments. Biochem. J. 2001, 360, 225–231. [Google Scholar] [CrossRef]
- Puech, L.; Mehne-Jakobs, B. Histology of magnesium-deficient Norway spruce needles influenced by nitrogen source. Tree Physiol. 1997, 17, 301–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wingler, A.; Brownhill, E.; Pourtau, N. Mechanisms of the light-dependent induction of cell death in tobacco plants with delayed senescence. J. Exp. Bot. 2005, 56, 2897–2905. [Google Scholar] [CrossRef]
- Scandalios, J. Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med Biol. Res. 2005, 38, 995–1014. [Google Scholar] [CrossRef]
- Tewari, R.K.; Kumar, P.; Sharma, P.N. Magnesium deficiency induced oxidative stress and antioxidant responses in mulberry plants. Sci. Hortic. 2006, 108, 7–14. [Google Scholar] [CrossRef]
- Cai, Y.-T.; Zhang, H.; Qi, Y.P.; Ye, X.; Huang, Z.-R.; Guo, J.-X.; Chen, L.-S.; Yang, L.-T. Responses of reactive oxygen species and methylglyoxal metabolisms to magnesium-deficiency differ greatly among the roots, upper and lower leaves of Citrus sinensis. BMC Plant Biol. 2019, 19, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, D.M.; Brandão, I.R.; Alves, J.D.; Santos, M.O.; Souza, K.R.D.; Silveiri, H.R.O. Physiological and biochemical impacts of magnesium-deficiency in two cultivars of coffee. Plant Soil 2014, 382, 133–150. [Google Scholar] [CrossRef]
- Candan, N.; Tarhan, L. Relationship among chlorophyll-carotenoid content, antioxidant enzyme activities and lipid peroxidation levels by Mg2+ deficiency in the Mentha pulegium leaves. Plant Physiol. Biochem. 2003, 41, 35–40. [Google Scholar] [CrossRef]
- Tewari, R.K.; Kumar, P.; Tewari, N.; Srivastava, S.; Sharma, P.N. Macronutrient deficiencies and differential antioxidant responses-influence on the activity and expression of superoxide dismutase in maize. Plant Sci. 2004, 166, 687–694. [Google Scholar] [CrossRef]
- Yu-Chuan, D.; Chang, C.R.; Luo, W.; Wu, Y.-S.; Ren, X.-L.; Wang, P.; Xu, G.-H. High potassium aggravates the oxidative stress induced by magnesium deficiency in rice leaves. Pedosphere 2008, 18, 316–327. [Google Scholar]
- Cakmak, I.; Marschner, H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 1992, 98, 1222–1227. [Google Scholar] [CrossRef] [Green Version]
- Ishijima, S.; Uchibori, A.; Takagi, H.; Maki, R.; Ohnishi, M. Light-induced increase in free Mg2+ concentration in spinach chloroplasts: Measurement of free Mg2+ by using a fluorescent probe and necessity of stromal alkalinization. Arch. Biochem. Biophys. 2003, 412, 126–132. [Google Scholar] [CrossRef]
- Gout, E.; Rébeillé, F.; Douce, R.; Bligny, R. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: Unravelling the role of Mg2+ in cell respiration. Proc. Natl. Acad. Sci. USA 2014, 111, E4560–E4567. [Google Scholar] [CrossRef] [Green Version]
- Moomaw, A.S.; Maguire, M.E. The unique nature of Mg2+ channels. Physiology 2008, 23, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Gardner, R.C. Genes for magnesium transport. Curr. Opin. Plant Biol. 2003, 6, 263–267. [Google Scholar] [CrossRef]
- Graschopf, A.; Stadler, J.A.; Hoellerer, M.K.; Eder, S.; Sieghardt, M.; Kohlwein, S.D.; Schweyen, R.S. The yeast plasma membrane protein Alr1 controls Mg2+ homeostasis and is subject to Mg2+-dependent control of its synthesis and degradation. J. Biol. Chem. 2001, 276, 16216–16222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Tutone, A.F.; Drummond, R.S.M.; Gardner, R.C.; Luan, S. A novel family of magnesium transport genes in Arabidopsis. Plant Cell 2001, 13, 2761–2775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregan, J.; Kolisek, M.; Schweyen, R.J. Mitochondrial Mg2+ homeostasis is critical for group II intron splicing in vivo. Genes Dev. 2001, 15, 2229–2237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sponder, G.; Svidová, S.; Khan, M.B.; Kolisek, M.; Schweyen, R.J.; Carugo, O.; Djinović-Carugo, K. The GMN motif determines ion selectivity in the yeast magnesium channel Mrs2p. Metallomics 2013, 5, 745–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisat, N.P.; Pandey, A.; MacDiarmid, C.W. MNR2 regulates intracellular magnesium storage in Saccharomyces cerevisiae. Genetics 2009, 183, 873–884. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Du, H.; Huang, K.; Chen, X.; Liu, T.; Gao, S.; Liu, H.; Tang, Q.; Rong, T.; Zhang, S. Identification, and functional and expression analyses of the CorA/MRS2/MGT-type magnesium transporter family in maize. Plant Cell Physiol. 2016, 57, 1153–1168. [Google Scholar] [CrossRef] [Green Version]
- Long, A.; Zhnag, J.; Yang, L.-T.; Ye, X.; Lai, N.-W.; Tan, L.-L.; Lin, D.; Chen, L.-S. Effects of low pH on photosynthesis, related physiological parameters, and nutrient profiles of citrus. Front. Plant Sci. 2017, 8, 185. [Google Scholar] [CrossRef] [Green Version]
- Schock, I.; Gregan, J.; Steinhauser, S.; Schweyen, R.; Brennicke, A.; Knoop, V. A member of a novel Arabidopsis thaliana gene family of candidate Mg2+ ion transporters complements a yeast mitochondrial group II intron-splicing mutant. Plant J. 2000, 24, 489–501. [Google Scholar] [CrossRef]
- Gebert, M.; Meschenmoser, K.; Svidova, S.; Weghuber, J.; Schweyen, R.; Eifler, K.; Lenz, H.; Weyand, K.; Knoop, V. A root-expressed magnesium transporter of the MRS2/MGT gene family in Arabidopsis thaliana allows for growth in low-Mg2+ environments. Plant Cell 2009, 21, 4018–4030. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.C.; Peng, W.T.; Li, J.; Liao, H. Functional dissection and transport mechanism of magnesium in plants. Semin. Cell Dev. Biology 2018, 74, 142–152. [Google Scholar] [CrossRef]
- Waters, B.M. Moving magnesium in plant cells. New Phytol. 2011, 190, 510–513. [Google Scholar] [CrossRef] [Green Version]
- Bose, J.; Babourina, O.; Rengel, Z. Role of magnesium in alleviation of aluminium toxicity in plants. J. Exp. Bot. 2011, 62, 2251–2264. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.C.; Yamaji, N.; Horie, T.; Che, J.; Li, J.; Gynheung, A.; Ma, J.F. A magnesium transporter OsMGT1 plays a critical role in salt tolerance in rice. Plant Physiol. 2017, 174, 1837–1849. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.F.; Wang, B.; Lou, Y.; Han, W.-H.; Lu, J.-Y.; Li, D.-D.; Li, L.-G.; Zhu, J.; Yang, Z.N. Magnesium transporter 5 plays an important role in Mg transport for male gametophyte development in Arabidopsis. Plant J. 2015, 84, 925–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, M.G.; Outlaw, W.H.; Lowry, O.H. Enzymic assay of 10−7 to 10−14 moles of sucrose in plant tissues. Plant Physiol. 1977, 60, 379–383. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.L.; Szegedy, M.A.; Kucharski, L.M.; Walker, C.; Weit, R.M.; Redpath, A.; Kaczmarek, M.T.; Maguire, M.E. The CorA Mg2+ Transport Protein of Salmonella typhimurium Mutagenesis of conserved residues in the third membrane domain identifies a Mg2+ pore. J. Biol. Chem. 1998, 273, 28663–28669. [Google Scholar] [CrossRef] [Green Version]
- Townsend, D.E.; Esenwine, A.J.; George, J., III; Bross, D.; Maguire, M.E.; Smith, R.L. Cloning of the MgtE Mg2+ transporter from Providencia stuartii and the distribution of MgtE in gram-negative and gram-positive bacteria. J. Bacteriol. 1995, 177, 5350–5354. [Google Scholar] [CrossRef] [Green Version]
- Maguire, M.E. MgtA and MgtB: Prokaryotic P-type ATPases that mediate Mg2+ influx. J. Bioenerg. Biomembr. 1992, 24, 319–328. [Google Scholar]
- Tao, T.; Snavely, M.D.; Farr, S.G.; Maguire, M.E. Magnesium transport in Salmonella typhimurium: MgtA encodes a P-type ATPase and is regulated by Mg2+ in a manner similar to that of the MgtB P-type ATPase. J. Bacteriol. 1995, 177, 2654–2662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snavely, M.; Florer, J.B.; Miller, C.G.; Maguire, M.E. Magnesium transport in Salmonella typhimurium: 28Mg2+ transport by the CorA, MgtA, and MgtB systems. J. Bacteriol. 1989, 171, 4761–4766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snavely, M.; Miller, C.; Maguire, M. The MgtB Mg2+ transport locus of Salmonella typhimurium encodes a P-type ATPase. J. Biol. Chem. 1991, 266, 815–823. [Google Scholar] [CrossRef]
- Smith, R.L.; Thompson, L.J.; Maguire, M.E. Cloning and characterization of MgtE, a putative new class of Mg2+ transporter from Bacillus firmus OF4. J. Bacteriol. 1995, 177, 1233–1238. [Google Scholar] [CrossRef] [Green Version]
- Chamnongpol, S.; Groisman, E.A. Mg2+ homeostasis and avoidance of metal toxicity. Mol. Microbiol. 2002, 44, 561–571. [Google Scholar] [CrossRef]
- Dann, C.E., III; Wakeman, C.A.; Sieling, C.L.; Baker, S.C.; Irnov, I.; Winkler, W.C. Structure and mechanism of a metal-sensing regulatory RNA. Cell 2007, 130, 878–892. [Google Scholar] [CrossRef] [Green Version]
- Li, L.-G.; Sokolov, L.N.; Yang, Y.-H.; Li, D.-P.; Ting, J.; Pandy, G.K.; Luan, S. A mitochondrial magnesium transporter functions in Arabidopsis pollen development. Mol. Plant 2008, 1, 675–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Li, L.G.; Liu, Z.H.; Yuan, Y.J.; Guo, L.L.; Mao, D.D.; Tian, L.F.; Chen, L.B.; Luan, S.; Li, D.P. Magnesium transporter AtMGT9 is essential for pollen development in Arabidopsis. Cell Res. 2009, 19, 887. [Google Scholar] [CrossRef]
- Kobayashi, N.; Iwata, N.; Saito, T. Application of 28Mg for characterization of Mg uptake in rice seedling under different pH conditions. J. Radio Anal. Nucl. Chem. 2013, 296, 531–534. [Google Scholar] [CrossRef]
- Tanoi, K.; Kobayashi, N.I.; Saito, T.; Iwata, N.; Kamada, R.; Iwata, R.; Suzuki, H.; Hirose, A.; Ohmae, Y.; Sugita, R.; et al. Effects of magnesium deficiency on magnesium uptake activity of rice root, evaluated using 28Mg as a tracer. Plant Soil 2014, 384, 69–77. [Google Scholar] [CrossRef]
- Mao, D.; Chen, J.; Tian, L.; Liu, Z.; Yang, L.; Tang, R.; Li, J.; Lu, C.; Yang, Y.; Shi, J.; et al. Arabidopsis transporter MGT6 mediates magnesium uptake and is required for growth under magnesium limitation. Plant Cell 2014, 26, 2234–2248. [Google Scholar] [CrossRef] [Green Version]
- Shaul, O.; Hilgemann, D.W.; Janice, A.E.; Montagu, M.V.; Inzé, D.; Galili, D. Cloning and characterization of a novel Mg2+/H+ exchanger. Embo J. 1999, 18, 3973–3980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaji, N.; Ma, J.F. The node, a hub for mineral nutrient distribution in graminaceous plants. Trends Plant Sci. 2014, 19, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Drummond, R.; Tutone, A.; Li, Y.C.; Gardner, R.C. A putative magnesium transporter AtMRS2–11 is localized to the plant chloroplast envelope membrane system. Plant Sci. 2006, 170, 78–89. [Google Scholar] [CrossRef]
- Marschner, P.; Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: Berlin, Germeny, 1995. [Google Scholar]
- Shaul, O. Magnesium transport and function in plants: The tip of the iceberg. Biometals 2002, 15, 307–321. [Google Scholar] [CrossRef]
- Han, S.; Chen, L.-S.; Jiang, H.-X.; Smith, B.-R.; Yang, L.-T.; Xie, C.-Y. Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. J. Plant Physiol. 2008, 165, 1331–1341. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Circ. Calif. Agric. Exp. Stn. 1950, 347, 23–32. [Google Scholar]
- Lenz, H.; Dombinov, V.; Dreistein, J.; Reinhard, R.M.; Gebert, M.; Knoop, V. Magnesium deficiency phenotypes upon multiple knockout of Arabidopsis thaliana MRS2 clade B genes can be ameliorated by concomitantly reduced calcium supply. Plant Cell Physiol. 2013, 54, 1118–1131. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, N.I.; Saito, T.; Iwata, N.; Ohmae, Y.; Iwata, R.; Tanoi, K.; Nakanishi, T.M. Leaf senescence in rice due to magnesium deficiency mediated defect in transpiration rate before sugar accumulation and chlorosis. Physiol. Plant. 2013, 148, 490–501. [Google Scholar] [CrossRef] [PubMed]
- Guo, W. Magnesium homeostasis mechanisms and magnesium use efficiency in plants. In Plant Macronutrient Use Efficiency, Molecular and Genomic Perspectives in Crop Plants; Academic Press: Cambridge, MA, USA, 2017; pp. 197–213. [Google Scholar]
- David-Assael, O.; Irina, B.; Shoshani-Knaani, N.; Helen, S.; Mizrachy-Dagri, T.; Jianxin, C.; Emil, B.; Shaul, O. AtMHX is an auxin and ABA-regulated transporter whose expression pattern suggests a role in metal homeostasis in tissues with photosynthetic potential. Funct. Plant Biol. 2006, 33, 661–672. [Google Scholar] [CrossRef] [PubMed]
- David-Assael, O.; Saul, H.; Saul, V.; Mizrachy-Dagri, T.; Berezin, I.; Brook, E.; Shaul, O. Expression of AtMHX, an Arabidopsis vacuolar metal transporter, is repressed by the 5′ untranslated region of its gene. J. Exp. Bot. 2005, 56, 1039–1047. [Google Scholar] [CrossRef] [Green Version]
- Akua, T.; Berezin, I.; Shaul, O. The leader intron of AtMHX can elicit, in the absence of splicing, low-level intron-mediated enhancement that depends on the internal intron sequence. BMC Plant Biol. 2010, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haydon, M.J.; Román, Á.; Arshad, W. Nutrient homeostasis within the plant circadian network. Front. Plant Sci. 2015, 6, 299. [Google Scholar] [CrossRef] [Green Version]
- Werner, T.; Nehnevajova, E.; Kollmer, I.; Novak, O.; Strnad, M.; Kramer, U.; Schmulling, T. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 2010, 22, 3905–3920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, Y.; Chai, R.; Liu, L.; Jin, G.; Liu, M.; Tang, C.; Zhang, Y. Magnesium availability regulates the development of root hairs in Arabidopsis thaliana (L.) Heynh. Plant Cell Environ. 2014, 37, 2795–2813. [Google Scholar] [CrossRef] [PubMed]
- Malvi, U.R. Interaction of micronutrients with major nutrients with special reference to potassium. Karnataka J. Agric. Sci. 2011, 24, 106–109. [Google Scholar]
- Bergmann, W. Colour Atlas: Nutritional Disorders of Plants Development, Visual and Analytical Diagnosis; Fischer Verlag: Jena, Germany, 1992. [Google Scholar]
- Farhat, N.; Rabhi, M.; Falleh, H. Interactive effects of excessive potassium and Mg deficiency on safflower. Acta Physiol. Plant. 2013, 35, 2737–2745. [Google Scholar] [CrossRef]
- Britto, D.T.; Kronzucker, H.J. Cellular mechanisms of potassium transport in plants. Physiol. Plant. 2008, 133, 637–650. [Google Scholar] [CrossRef]
- Schimansky, C. The influence of certain experimental parameters on the flux characteristics of Mg-28 in the case of barley seedlings in hydroculture experiments. Landwirtsch. Forsch. 1981, 34, 154–163. [Google Scholar]
- Kleiber, T.; Golcz, A.; Krzesiński, W. Effect of magnesium nutrition of onion (Allium cepa L.). Part I. Yielding and nutrient status. Ecol. Chem. Eng. S 2012, 19, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Han, M.-Q.; Lin, F.; Ten, Y.; Lin, J.; Zhu, D.-H.; Guo, P.; Weng, Y.-B.; Chen, L.-S. Soil chemical properties, ‘Guanximiyou’ pummelo leaf mineral nutrient status and fruit quality in the southern region of Fujian province, China. J. Soil Sci. Plant Nutr. 2015, 15, 615–628. [Google Scholar] [CrossRef] [Green Version]
- Moss, G.; Higgins, M. Magnesium influences on the fruit quality of sweet orange (Citrus sinensis L. Osbeck). Plant Soil 1974, 41, 103–112. [Google Scholar] [CrossRef]
- Ye, X.; Chen, X.-F.; Deng, C.-L.; Yang, L.-T.; Lai, N.-W.; Guo, J.-X.; Chen, L.-S. Magnesium-Deficiency Effects on Pigments, Photosynthesis and Photosynthetic Electron Transport of Leaves, and Nutrients of Leaf Blades and Veins in Citrus sinensis Seedlings. Plants 2019, 8, 389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Löhnis, M.P. Effect of magnesium and calcium supply on the uptake of manganese by various crop plants. Plant Soil 1960, 12, 339–376. [Google Scholar] [CrossRef]
- Bedi, A.; Sekhon, G. Effect of potassium and magnesium application to soils on the dry-matter yield and cation composition of maize. J. Agric. Sci. 1977, 88, 753–758. [Google Scholar] [CrossRef]
- Mikkelsen, R. Soil and fertilizer magnesium. Better Crop. 2010, 94, 26–28. [Google Scholar]
- Van der Pol, F.; Traore, B. Soil nutrient depletion by agricultural production in Southern Mali. Fertil. Res. 1993, 36, 79–90. [Google Scholar]
- Wang, Z.; Mahmood, H.U.; Faisal, N.; Liangquan, W.; Fusuo, Z.; Xuexian, L. Magnesium Fertilization Improves Crop Yield in Most Production Systems: A Meta-Analysis. Front. Plant Sci. 2020, 10, 1727. [Google Scholar] [CrossRef] [Green Version]
- Mohebbi, S.; Mahler, R. The effect of soil pH on wheat and lentils grown on an agriculturally acidified northern Idaho soil under greenhouse conditions. Commun. Soil Sci. Plant Anal. 1989, 20, 359–381. [Google Scholar] [CrossRef]
- Guo, J.; Vogt, R.D.; Zhang, X.; Zhang, Y.; Seip, H.M.; Tang, H. Ca-H-Al exchanges and aluminium mobility in two Chinese acidic forest soils: A batch experiment. Environ. Geol. 2004, 45, 1148–1153. [Google Scholar] [CrossRef]
- Zhu, M.; Jiang, X.; Ji, G. Experimental investigation on aluminum release from haplic acrisols in southeastern China. Appl. Geochem. 2004, 19, 981–990. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Thanh, K.D.; Thanh, V.T.; Mui, K.D.; Curtis, J.D.; Phuc, V.L.; Quyen, T.K. High soil Mn and Al, as well as low leaf P concentration, may explain for low natural rubber productivity on a tropical acid soil in Vietnam. J. Plant Nutr. 2018, 41, 903–914. [Google Scholar] [CrossRef]
- Hermans, C.; Simon, J.C.; Jiugeng, C.; Qiying, X.; Verbruggena, N. An update on magnesium homeostasis mechanisms in plants. Metallomics 2013, 5, 1170–1183. [Google Scholar] [CrossRef]
- Lafond, J. Fertilisation calcique et magnésienne dans la production du bleuet nain sauvage au Québec. Can. J. Soil Sci. 2014, 94, 67–76. [Google Scholar] [CrossRef]
- Lixian, Y.; Zhou, X.; Peng, Z.; Chen, W. Nutritional characteristics and K and Mg fertilizer combination in Baxi banana. Plant Nutr. Fertitizer Sci. 2005, 11, 116–121. [Google Scholar]
- Chen, H.-b.; Fan, X.-l. Effects of magnesium remobilization and allocation on banana plant growth. J. Plant Nutr. 2018, 41, 1312–1320. [Google Scholar] [CrossRef]
- Nasreen, S.; Ahmed, R.; Ullah, M.A.; Hoque, M.A. Effect of N, P, K, and Mg application on yield and fruit quality of Mandarin (Citrus reticulata). Bangladesh J. Agric. Res. 2013, 38, 425–433. [Google Scholar] [CrossRef]
- Li, G.-l.; Yao, L.-X.; Zhou, X.-C.; Zhang, Y.-C.; Tu, S.-H. Effect of combination of K and Mg on Shatian pumelo. Soil Fertil. Sci. China 2007, 2, 61–63. [Google Scholar]
- Lin, X.-J.; Li, Y.; Li, Q.; Wang, F.; Chunmei, H. Effects of applying sulphate-potassium magnesium on yield and quality of pakchoi, tea and watermelon. Soils Fertil. 2005, 5, 21–25. [Google Scholar]
- Cao, J. Calcium and Magnesium Nutrients Diagnosis Index in Soil and Effect of Fertilizing Calcium and Magnesium on the Growth of Chinese Cabbage. Chin. J. Soil Sci. 2008, 39, 110–113. [Google Scholar]
- Harris, K.; Vanajah, T.; Puvanitha, S. Effect of foliar application of Boron and Magnesium on growth and yield of green chilli (Capsicum annum L.). Agrieast J. Agric. Sci. 2018, 12, 26–33. [Google Scholar] [CrossRef]
- Poberezny, J.; Wszelaczynska, E.; Keutgen, A.J. Yield and chemical content of carrot storage roots depending on foliar fertilization with magnesium and duration of storage. J. Elem. 2012, 17, 479–494. [Google Scholar] [CrossRef]
- Bolton, J.; Penny, A. The effects of potassium and magnesium fertilizers on yield and composition of successive crops of ryegrass, clover, sugar beet, potatoes, kale and barley on sandy soil at Woburn. J. Agric. Sci. 1968, 70, 303–311. [Google Scholar] [CrossRef]
- Laxminarayana, K.; Susan, J.K.; Ravindran, C.S.; Naskar, S.K. Effect of lime, inorganic, and organic sources on soil fertility, yield, quality, and nutrient uptake of sweet potato in alfisols. Commun. Soil Sci. Plant Anal. 2011, 42, 2515–2525. [Google Scholar] [CrossRef]
- Zengin, M.; Gökmen, F.; Gezgin, S.; Cakmak, I. Effects of different fertilizers with potassium and magnesium on the yield and quality of potato. Asian J. Chem. 2008, 20, 663. [Google Scholar]
- Huang, J.-C.; Peng, Z.; Yu, J.; Lin, Z.; Wu, X.; Yang, L. The effect of different magnesium fertilizer rates on the yield and quality of winter potatoes. Guangdong Agric. Sci. 2014, 41, 74–76. [Google Scholar]
- Orlovius, K.; McHoul, J. Effect of two magnesium fertilizers on leaf magnesium concentration, yield, and quality of potato and sugar beet. J. Plant Nutr. 2015, 38, 2044–2054. [Google Scholar] [CrossRef]
- Fajemilehin, S.; Babayemi, O.; Fagbuaro, S. Effect of anhydrous magnesium sulphate fertilizer and cutting frequency on yield and chemical composition of Panicum maximum. Afr. J. Biotechnol. 2008, 7, 907–911. [Google Scholar]
- Ruan, J.; Guan, Y.; Wu, X. Status of Mg availability and the effects of Mg application in tea fields of Red Soil area in China. Sci. Agric. Sin. 2002, 35, 815–820. [Google Scholar]
- Ceylan, Y.; Kutman, U.B.; Mengutay, M.; Cakmak, I. Magnesium applications to growth medium and foliage affect the starch distribution, increase the grain size and improve the seed germination in wheat. Plant Soil 2016, 406, 145–156. [Google Scholar] [CrossRef]
- Ertiftik, H.; Zengin, M. Response of maize for grain to potassium and magnesium fertilizers in soils with high lime contents. J. Plant Nutr. 2017, 40, 93–103. [Google Scholar] [CrossRef]
- Zeng, Z.; Liao, Q.; Wu, Y.; Li, X. Effects of magnesium fertilizer on agronomic characters and yield of rice. Mod. Agric. Sci. Technol. 2012, 20, 28–30. [Google Scholar]
- He, T.; Wei, J.; Huang, H. Effect of magnesium fertilizer on yield and quality of sugarcane. J. South Agric. 1997, 4, 175–177. [Google Scholar]
- Ertiftik, H.; Zengin, M. Response of sunflower to potassium and magnesium fertilizers in calcerous soils in central Anatolia of Turkey. J. Plant Nutr. 2016, 39, 1734–1744. [Google Scholar] [CrossRef]
- Cwalina-Ambroziak, B.; Wierzbowska, J.; Damszel, M.; Bowszys, T. The effect of mineral fertilization on achenes yield and fungal communities isolated from the stems of milk thistle Silybum marianum (L.) Gaertner. Acta Sci. Pol. Hortorum. Cultus 2012, 11, 157–168. [Google Scholar]
- Azizi, K.; Yagobhi, M.; Hidary, S.; Chaechi, R.M.; Roham, R. Effects of different methods of magnesium sulphate application on qualitative and quantitative yield of lentil (Lens culinaris Medik.) cultivars under Khorramabad climatic conditions of Iran. Res. Crop. 2011, 12, 103–111. [Google Scholar]
- Huazhang, X.; Zhou, Y.; Fan, Q.; Zhong, Y. The Effect of Spray Magnesium Fertilizer to Peanut Planted in Krasnozem. Chin. Agric. Sci. Bull. 2003, 19, 161–165. [Google Scholar]
- Yan, S.; Pentao, L. Effect of Magnesium to Output. qualities and some physiological Indices of Flued-tobacco. J. Yunnan Agric. Univ. 1992, 7, 129–134. [Google Scholar]
- Xu, Q.; Chen, A.; Dai, P.; Zheng, G.; Chen, Z. Effects of Rational Application of Magnesium Fertilizers on Growth, Yield and Quality of Flue-cured Tobacco. Chin. Tob. Sci. 2011, 32, 33–37. [Google Scholar]
- Li, Y.-Z.; Jiang, Z.-H.; Yang, Z.-X.; Luo, P.-T. Effects of Magnesium Supply on main economic characters in Flue-Cured Tobacco. J. Southwest Agric. Univ. 2002, 24, 200–202. [Google Scholar]
- Deng, W.; Luo, K.; Li, D.; Zheng, X.; Wei, X.; Smith, W.; Thammina, C.; Lu, L.; Li, Y.; Pei, Y. Overexpression of an Arabidopsis magnesium transport gene, AtMGT1, in Nicotiana benthamiana confers Al tolerance. J. Exp. Bot. 2006, 57, 4235–4243. [Google Scholar] [CrossRef] [Green Version]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Jezek, M.; Geilfus, C.M.; Bayer, A.; Mühling, K.H. Photosynthetic capacity, nutrient status, and growth of maize (Zea mays L.) upon MgSO4 leaf-application. Front. Plant Sci. 2015, 5, 781. [Google Scholar] [CrossRef] [Green Version]
- Broadley, M.R.; Hammond, J.P.; King, G.J.; Bowen, H.C.; Hayden, R.; Spracklen, W.P.; Ó Lochlainn, S.; White, P.J. Biofortifying Brassica with calcium (Ca) and magnesium (Mg). UC Davis: Department of Plant Sciences. 2009. Available online: https://escholarship.org/uc/item/9936g2vv (accessed on 28 January 2021).
- Kashinath, B.L.; Murthy, A.G.; Senthivel, T.; Pitchai, G.J.; Sadashiva, A.T. Effect of applied magnesium on yield and quality of tomato in Alfisols of Karnataka. J. Hortic. Sci. 2013, 8, 55–59. [Google Scholar]
- Babaeian, M.; Esmaeilian, Y.; Tavassoli, A.; Asgharzade, A. Efficacy of different iron, zinc and magnesium fertilizers on yield and yield components of barley. Afr. J. Microbiol. Res. 2012, 6, 5754–5756. [Google Scholar]
- Özenç, N.; Özenç, D.B. Effect of magnesium fertilization on some plant nutrient interactions and nut quality properties in Turkish hazelnut (Corylus avellana L.). Sci. Res. Essays 2015, 10, 465–470. [Google Scholar]
- Broadley, M.R.; Hammond, J.P.; King, G.J.; Astley, D.; Bowen, H.C.; Meacham, M.C.; Mead, A.; Pink, D.A.C.; Teakle, G.R.; Hayden, R.M.; et al. Shoot calcium and magnesium concentrations differ between subtaxa, are highly heritable, and associate with potentially pleiotropic loci in Brassica oleracea. Plant Physiol. 2008, 146, 1707–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, E.B.; Robert, G.C.; Harrison, S.P. Serpentine Geoecology of Western North America: Geology, Soils, and Vegetation; Oxofrd University Press: New York, NY, USA, 2007. [Google Scholar]
- Turner, T.L.; Elizabeth, C.; Eric, J.; Tina, T.H.; Sergey, V.N. Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat. Genet. 2010, 42, 260–263. [Google Scholar] [CrossRef] [PubMed]
Agronomic Biofortification-Fertilization | |||||
---|---|---|---|---|---|
Crops | Fertilizer Used | Plant Parts Used | Improvement in Mg and Other Nutrient Concentration | Improvement in Yield/Biomass | References |
Blueberry | MgSO4 | Leaves, Fruits | ✓ | ✓ | [128] |
Banana | MgSO4 | Leaves | ✓ | Not examined | [129,130] |
Citrus | NPK + MgSO4 | Leaves, Fruits | ✓ | ✓ | [131] |
Pumelo | MgSO4 | Leaves, Fruit | ✓ | ✓ | [132] |
Watermelon | Sulfate-Potassium-Magnesium | Fruit | ✓ | ✓ | [133] |
Cabbage | MgSO4 | Fruit | ✓ | Not examined | [134] |
Capsicum annum L. | H3BO3 + MgSO4.7H2O | Leaves, Stem, Flower, Fruit | ✓ | ✓ | [135] |
Carrot | MgO | Roots | ✓ | ✓ | [136] |
Kale | MgSO4 | Shoot | ✓ | ✓ | [137] |
Potato | MgSO4, Calcined Magnesite, Kieserite | Tuber | ✓ | ✓ | [137,138,139,140,141] |
Sugarbeet | MgSO4, Calcined Magnesite, Kieserite | Fruits/Roots | ✓ | ✓ | [137,141] |
Onion | MgSO4.7H2O | Leaves, Bulbs | ✓ | ✓ | [114] |
Panicum maximum | MgSO4.7H2O | Shoot | ✓ | ✓ | [142] |
Pakchoi | Sulfate-Potassium-Magnesium | Leaves | ✓ | ✓ | [133] |
Oolong Tea | MgSO4 | Leaves | ✓ | ✓ | [143] |
Wheat | MgSO4.7H2O | Leaves, Stem, Husk | ✓ | ✓ | [144] |
Barley | MgSO4, Calcined Magnesite, Kieserite | Aerial parts of the plant | ✓ | ✓ | [137] |
Maize | K2O + MgO | Shoot, Grain | ✓ | ✓ | [145] |
Rice | MgSO4 | Leaves, Grain | ✓ | ✓ | [146] |
Sugarcane | MgSO4 | Leaves, Stem | ✓ | ✓ | [147] |
Sunflower | K2O + MgO | Leaves, Seeds/Grain, Stem | ✓ | ✓ | [148] |
Silybum marianum (L.) | MgSO4, MgSO4 + Boron | Flowers | ✓ | ✓ | [149] |
Lentil | MgSO4 | Seeds | ✓ | ✓ | [150] |
Peanut | MgSO4 | Leaves, Fruit | ✓ | ✓ | [151] |
Tobacco | MgSO4 | Leaves | ✓ | ✓ | [152,153,154] |
Agronomic Biofortification—Mycorrhizal Fungai (Glomus versiforme) | |||||
Citrus | MgSO4 | Leaves, Roots | ✓ | Not examined | [30] |
Agronomic Biofortification-Grafting | |||||
Watermelon | MgSO4 | Leaves, Roots, Stem | ✓ | Not examined | [31] |
Genetic Biofortification | |||||
Tobacco | MgSO4 | Leaves, Roots | ✓ | Not examined | [155] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaudhry, A.H.; Nayab, S.; Hussain, S.B.; Ali, M.; Pan, Z. Current Understandings on Magnesium Deficiency and Future Outlooks for Sustainable Agriculture. Int. J. Mol. Sci. 2021, 22, 1819. https://doi.org/10.3390/ijms22041819
Chaudhry AH, Nayab S, Hussain SB, Ali M, Pan Z. Current Understandings on Magnesium Deficiency and Future Outlooks for Sustainable Agriculture. International Journal of Molecular Sciences. 2021; 22(4):1819. https://doi.org/10.3390/ijms22041819
Chicago/Turabian StyleChaudhry, Ahmad Hassan, Shafa Nayab, Syed Bilal Hussain, Muqarrab Ali, and Zhiyong Pan. 2021. "Current Understandings on Magnesium Deficiency and Future Outlooks for Sustainable Agriculture" International Journal of Molecular Sciences 22, no. 4: 1819. https://doi.org/10.3390/ijms22041819
APA StyleChaudhry, A. H., Nayab, S., Hussain, S. B., Ali, M., & Pan, Z. (2021). Current Understandings on Magnesium Deficiency and Future Outlooks for Sustainable Agriculture. International Journal of Molecular Sciences, 22(4), 1819. https://doi.org/10.3390/ijms22041819