Profiling of Steroid Metabolic Pathways in Human Plasma by GC-MS/MS Combined with Microwave-Assisted Derivatization for Diagnosis of Gastric Disorders
Abstract
:1. Introduction
2. Results and Discussion
2.1. SPE and Microwave-Assisted Derivatization (MAD) Procedure
2.2. GC-MS/MS-dMRM
2.3. Analysis of Human Plasma with CSG, IM, and Gastric Cancer
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Preparation of Human Plasma
3.3. Solid-Phase Extraction (SPE) Procedure
3.4. Microwave-Assisted Derivatization (MAD) Procedure
3.5. GC-MS/MS-MRM Conditions
3.6. Method Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanderson, J.T. The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicol. Sci. 2006, 94, 3–21. [Google Scholar] [CrossRef]
- Falkenstein, E.; Tillmann, H.C.; Christ, M.; Feuring, M.; Wehling, M. Multiple actions of steroid hormones-a focus on rapid, nongenomic effects. Pharm. Rev. 2000, 52, 513–556. [Google Scholar]
- Vasconcelos, A.R.; Cabral-Costa, J.V.; Mazucanti, C.H.; Scavone, C.; Kawamoto, E.M. The role of steroid hormones in the modulation of neuroinflammation by dietary interventions. Front. Endocrinol. 2016, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, M.H.; Chung, B.C. Bringing GC-MS Profiling of Steroids into Clinical Applications. Mass Spectrom. Rev. 2015, 34, 219–236. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.-C.; Huang, S.-F.; Lee, Y.-M.; Lai, H.-C.; Cheng, B.-H.; Cheng, W.-C.; Ho, J.Y.-P.; Jeng, L.-B.; Wen-Lung, M. Cholesterol import and steroidogenesis are biosignatures for gastric cancer patient survival. Oncotarget 2017, 8, 692–704. [Google Scholar] [CrossRef] [Green Version]
- Frycz, B.A.; Murawa, D.; Borejsza-Wysocki, M.; Spychala, A.; Marciniak, R.; Murawa, P.; Drews, M.; Jagodziński, P.P. mRNA expression of steroidogenic enzymes, steroid hormone receptors and their coregulators in gastric cancer. Oncol. Lett. 2017, 13, 3369–3378. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhou, H.; Ye, L.; Zhan, B. Overexpression of SULT2B1b Promotes Angiogenesis in Human Gastric Cancer. Cell Physiol. Biochem. 2016, 38, 1040–1054. [Google Scholar] [CrossRef]
- Korenaga, D.; Orita, H.; Okuyama, T.; Kinoshita, J.; Maekawa, S.; Ikeda, T.; Sugimachi, K. Sex Hormone-Receptor-Negative Tumors Have a Higher Proliferative Activity than Sex Hormone-Receptor-Positive Tumors in Human Adenocarcinomas of the Gastrointestinal Tract. Surg. Today 1998, 28, 1007–1014. [Google Scholar] [CrossRef]
- Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 2007, 26, 51–78. [Google Scholar] [CrossRef] [PubMed]
- Hsing, A.W.; Stanczyk, F.Z.; Bélanger, A.; Schroeder, P.; Chang, L.; Falk, R.T.; Fears, T.R. Reproducibility of serum sex steroid assays in men by RIA and mass spectrometry. Cancer Epidemiol. Biomark. Prev. 2007, 16, 1004–1008. [Google Scholar] [CrossRef] [Green Version]
- Stanczyk, F.Z.; Clarke, N.J. Advantages and challenges of mass spectrometry assays for steroid hormones. J. Steroid Biochem. Mol. Biol. 2010, 121, 491–495. [Google Scholar] [CrossRef]
- Teubel, J.; Wüst, B.; Schipke, C.G.; Peters, O.; Parr, M.K. Methods in endogenous steroid profiling—A comparison of gas chromatography mass spectrometry (GC–MS) with supercritical fluid chromatography tandem mass spectrometry (SFC-MS/MS). J. Chromatogr. A 2018, 1554, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Storbeck, K.-H.; McNamara, K.M. The importance of mass spectrometry in unravelling steroid action in breast cancer. Curr. Opin. Endocr. Metab. Res. 2020, 15, 57–62. [Google Scholar] [CrossRef]
- Matysik, S.; Schmitz, G. Determination of steroid hormones in human plasma by GC-triple quadrupole MS. Steroids 2015, 99, 151–154. [Google Scholar] [CrossRef]
- Caron, P.; Turcotte, V.; Guillemette, C. A chromatography/tandem mass spectrometry method for the simultaneous profiling of ten endogenous steroids, including progesterone, adrenal precursors, androgens and estrogens, using low serum volume. Steroids 2015, 104, 16–24. [Google Scholar] [CrossRef]
- Son, H.-H.; Moon, J.-Y.; Seo, H.S.; Kin, H.H.; Chung, B.C.; Choi, M.H. High-temperature GC-MS-based serum cholesterol signatures may reveal sex differences in vasospastic angina. J. Lipid Res. 2014, 55, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Moon, J.-Y.; Sasano, H.; Choi, M.H.; Park, M.J. Body fat mass is associated with ratio of steroid metabolites reflecting 17,20-lyase activity in prepubertal girls. J. Clin. Endocrinol. Metab. 2016, 101, 4653–4660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kannenberg, F.; Fobker, M.; Schulte, E.; Pierściński, G.; Kelsch, R.; Zitzmann, M.; Nofer, J.-R.; Schüring, A.N. The Simultaneous measurement of serum testosterone and 5α-dihydrotestosterone by gas chromatography–mass spectrometry (GC–MS). Clin. Chim. Acta 2018, 476, 15–24. [Google Scholar] [CrossRef]
- Moon, J.-Y.; Lee, H.S.; Kim, J.H.; Lee, J.H.; Choi, M.H. Supported liquid extraction coupled to gas chromatography-selective mass spectrometric scan modes for serum steroid profiling. Anal. Chim. Acta 2018, 1037, 281–292. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhang, K.; Lin, Y. Microwave-accelerated derivatization for the simultaneous gas chromatographic-mass spectrometric analysis of natural and synthetic estrogenic steroids. J. Chromatogr. A 2007, 1148, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.A.; Colosi, D.M.; Mora-Montero, D.C.; Garrett, T.J.; Yost, R.A. Enhancement of chemical derivatization of steroids by gas chromatography/mass spectrometry (GC/MS). J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 3237–3242. [Google Scholar] [CrossRef]
- Moon, J.Y.; Jung, H.J.; Moon, M.H.; Chung, B.C.; Choi, M.H. Heat-Map Visualization of Gas Chromatography-Mass Spectrometry Based Quantitative Signatures on Steroid Metabolism. J. Am. Soc. Mass Spectrom. 2009, 20, 1626–1637. [Google Scholar] [CrossRef] [Green Version]
- Arlt, W.; Biehl, M.; Taylor, A.E.; Hahner, S.; Libé, R.; Hughes, B.A.; Schneider, P.; Smith, D.J.; Stiekema, H.; Krone, N.; et al. Urine steroid metabolomics as a biomarker tool for detecting malignancy in adrenal tumors. J. Clin. Endocrinol. Metab. 2011, 96, 3775–3784. [Google Scholar] [CrossRef]
- Stanczyk, F.Z.; Mathews, B.W.; Sherman, M.E. Relationships of sex steroid hormone levels in benign and cancerous breast tissue and blood: A critical appraisal of current science. Steroids 2015, 99, 91–102. [Google Scholar] [CrossRef]
- van Nuland, M.; Venekamp, N.; Wouters, W.M.E.; van Rossum, H.H.; Rosing, H.; Beijnen, J.H. LC–MS/MS assay for the quantification of testosterone, dihydrotestosterone, androstenedione, cortisol and prednisone in plasma from castrated prostate cancer patients treated with abiraterone acetate or enzalutamide. J. Pharm. Biomed. Anal. 2019, 170, 161–168. [Google Scholar] [CrossRef]
- Laszlo, C.F.; Paz Montoya, J.; Shamseddin, M.; De Martino, F.; Beguin, A.; Nellen, R.; Bruce, S.J.; Moniatte, M.; Henry, H.; Brisken, C. A high resolution LC–MS targeted method for the concomitant analysis of 11 contraceptive progestins and 4 steroids. J. Pharm. Biomed. Anal. 2019, 175, 112756. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Kim, J.H.; Moon, S.J.; Shim, J.; Kim, H.I.; Choi, M.H. Selective LC-MRM/SIM-MS based profiling of adrenal steroids reveals metabolic signatures of 17α-hydroxylase deficiency. J. Steroid Biochem. Mol. Biol. 2020, 198. [Google Scholar] [CrossRef] [PubMed]
- Koren, L.; Ng, E.S.M.; Soma, K.K.; Wynne-Edwards, K.E. Sample preparation and liquid chromatography-tandem mass spectrometry for multiple steroids in mammalian and avian circulation. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Lee, N.; Hong, Y.; Chung, B.C.; Choi, M.H. Simultaneous analysis of free and sulfated steroids by liquid chromatography/mass spectrometry with selective mass spectrometric scan modes and polarity switching. Anal. Chem. 2016, 88, 11624–11630. [Google Scholar] [CrossRef] [PubMed]
- Robles, J.; Marcos, J.; Renau, N.; Garrostas, L.; Segura, J.; Ventura, R.; Barceló, B.; Barceló, A.; Pozo, O.J. Quantifying endogenous androgens, estrogens, pregnenolone and progesterone metabolites in human urine by gas chromatography tandem mass spectrometry. Talanta 2017, 169, 20–29. [Google Scholar] [CrossRef]
- Casals, G.; Marcos, J.; Pozo, O.J.; Alcaraz, J.; Martínez de Osaba, M.J.; Jiménez, W. Microwave-assisted derivatization: Application to steroid profiling by gas chromatography/mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 960, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, C.; Gabriel, S.; Grant, E.H.; Halstead, S.J.; Mingos, D.M.P. Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev. 1998, 27, 213–223. [Google Scholar] [CrossRef]
- Mcdonald, J.G.; Matthew, S.; Auchus, R.J. Steroid Profiling by Gas Chromatography—Mass Spectrometry and High Performance Liquid Chromatography—Mass Spectrometry for Adrenal Diseases. Horm. Cancer 2011, 324–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Yin, Y. Strategies for large-scale targeted metabolomics quantification by liquid chromatography-mass spectrometry. Analyst 2016, 141, 6362–6373. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Kong, H.; Lu, X.; Li, Y.; Yin, P.; Zeng, Z.; Xu, G. Pseudotargeted Metabolomics Method and Its Application in Serum Biomarker Discovery for Hepatocellular Carcinoma Based on Ultra High-Performance Liquid Chromatography/Triple Quadrupole Mass Spectrometry. Anal. Chem. 2013, 85, 8326–8333. [Google Scholar] [CrossRef]
- Ohtani, M.; García, A.; Rogers, A.B.; Ge, Z.; Taylor, N.S.; Xu, S.; Watanabe, K.; Marini, R.P.; Whary, M.T.; Wang, T.C.; et al. Protective role of 17β-estradiol against the development of Helicobacter pylori-induced gastric cancer in INS-GAS mice. Carcinogenesis 2007, 28, 2597–2604. [Google Scholar] [CrossRef] [Green Version]
- Sheh, A.; Ge, Z.; Parry, N.M.A.; Muthupalani, S.; Rager, J.E.; Raczynski, A.R.; Mobley, M.W.; McCabe, A.F.; Fry, R.C.; Wang, T.C.; et al. 17β-estradiol and tamoxifen prevent gastric cancer by modulating leukocyte recruitment and oncogenic pathways in helicobacter Pylori-infected INS-GAS male mice. Cancer Prev. Res. 2011, 4, 1426–1435. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.J.; Kuo, F.C.; Wang, C.L.; Kuo, C.H.; Wang, S.S.W.; Chen, C.Y.; Huang, Y.B.; Cheng, K.H.; Yokoyama, K.K.; Chen, C.L.; et al. Suppression of IL-8-Src signalling axis by 17β-estradiol inhibits human mesenchymal stem cells-mediated gastric cancer invasion. J. Cell. Mol. Med. 2016, 20, 962–972. [Google Scholar] [CrossRef]
- Lee, W.; Um, J.; Hwang, B.; Lee, Y.C.; Chung, B.C.; Hong, J. Assessing the progression of gastric cancer via profiling of histamine, histidine, and bile acids in gastric juice using LC-MS/MS. J. Steroid Biochem. Mol. Biol. 2020, 197, 105539. [Google Scholar] [CrossRef]
- Frycz, B.A.; Murawa, D.; Wysocki-Borejsza, M.; Marciniak, R.; Murawa, P.; Drews, M.; Jagodziński, P.P. Expression of 17β-hydroxysteroid dehydrogenase type 1 in gastric cancer. Biomed. Pharm. 2013, 67, 651–657. [Google Scholar] [CrossRef]
- Frycz, B.A.; Murawa, D.; Borejsza-Wysocki, M.; Marciniak, R.; Murawa, P.; Drews, M.; Jagodziński, P.P. Expression of 17β-hydroxysteroid dehydrogenase type 2 is associated with some clinicopathological features in gastric cancer. Biomed. Pharm. 2015, 70, 24–27. [Google Scholar] [CrossRef] [PubMed]
Number | Name | CSG (ng/mL) | IM (ng/mL) | GC (ng/mL) | p-Values * |
---|---|---|---|---|---|
1 | DHEAS | 200.031 ± 228.170 | 186.637 ± 145.415 | 144.972 ± 167.46 | 0.2108 |
2 | AN | 0.800 ± 0.01 | 0.800 ± 0.006 | 0.803 ± 0.014 | 0.9960 |
3 | DHEA | 0.568 ± 0.019 | 0.565 ± 0.015 | 0.562 ± 0.012 | 0.4073 |
4 | A-diol | 0.535 ± 0.062 | 0.554 ± 0.103 | 0.587 ± 0.340 | 0.6514 |
5 | 7α-OH-DHEA | 0.414 ± 0.045 | 0.542 ± 0.163 | 0.442 ± 0.067 | 0.9361 |
6 | E1 | 0.937 ± 0.002 | 0.937 ± 0.001 | 0.937 ± 0.001 | 0.7711 |
7 | DHT | 0.224 ± 0.003 | 0.225 ± 0.002 | 0.224 ± 0.004 | 0.1146 |
8 | A-dione | 0.216 ± 0.014 | 0.214 ± 0.005 | 0.214 ± 0.006 | 0.2579 |
9 | E2 | 1.533 ± 0.005 | 1.531 ± 0.002 | 1.532 ± 0.002 | 0.0397 |
10 | T | 0.312 ± 0.010 | 0.313 ± 0.008 | 0.317 ± 0.025 | 0.1522 |
11 | PREG | 1.688 ± 1.896 | 1.228 ± 0.671 | 1.034 ± 0.232 | 0.2030 |
12 | E3 | 0.306 ± 0.00048 | 0.306 ± 0.00026 | 0.306 ± 0.0004 | 0.9436 |
13 | PROG | 1.677 ± 1.511 | 40.625 ± 125.020 | 1.628 ± 1.845 | 0.9954 |
14 | 17α-OH-PREG | 0.348 ± 0.256 | 0.228 ± 0.053 | 0.269 ± 0.131 | 0.6539 |
15 | 17α-OH-PROG | 2.344 ± 2.768 | 0.228 ± 0.053 | 1.284 ± 1.450 | 0.9679 |
16 | 7α-OH-CHOL | 0.680 ± 0.492 | 0.591 ± 0.046 | 0.634 ± 0.348 | 0.3760 |
17 | CHOL | 0.088 ± 0.010 | 0.085 ± 0.008 | 0.082 ± 0.012 | 0.4055 |
18 | 21-DF | <LOQ | 0.030 ± 0.001 | 0.031 ± 0.002 | 0.2637 |
19 | E | 35.925 ± 47.760 | 10.399 ± 9.193 | 42.649 ± 58.608 | 0.1724 |
20 | F | 29.913 ± 50.956 | 13.460 ± 11.376 | 34.821 ± 41.423 | 0.2630 |
Enzymes 1 | p-Values 2 | p-Values 3 | ||
---|---|---|---|---|
CSG:IM | CSG:Gastric Cancer | IM:Gastric Cancer | ||
CYP7A1 (7α-OH-CHOL/CHOL) | 0.9611 | 0.7737 | 0.9627 | 0.8322 |
CYP11A1 (PREG/CHOL) | 0.6121 | 0.3109 | 0.0596 | 0.583 |
HSD3B1 (PROG/PREG) | 0.3408 | 0.2037 | 0.2042 | 0.8167 |
CYP17A1 (17α-OH-PROG/PROG) | 0.3094 | 0.2937 | 0.9204 | 0.1100 |
CYP17A1 (17α-OH-PREG/PREG) | 0.8078 | 0.8394 | 0.5061 | 0.8357 |
CYP11B1, CYP21A2 (F/17α-OH-PROG) | 0.0854 | 0.6451 | 0.1457 | 0.0370 |
HSD11B1,2 (E/F) | 0.1599 | 0.0936 | 0.4948 | 0.1074 |
CYP11B1 (21-DF/17α-OH-PREG) | 0.0463 | 0.606 | 0.0546 | 0.0393 |
CYP17A1 (DHEA/17α-OH-PREG) | 0.7316 | 0.5730 | 0.7642 | 0.4568 |
CYP7A1 (7α-OH-DHEA/DHEA) | 0.8481 | 0.8250 | 0.8051 | 0.5179 |
SULT2A1, STS (DHEAS/DHEA) | 0.6698 | 0.7575 | 0.3868 | 0.6873 |
AKR1C4 (AN/DHEA) | 0.4075 | 0.2653 | 0.9348 | 0.2090 |
HSD17B (A-diol/DHEA) | 0.7932 | 0.5730 | 0.5789 | 0.8548 |
HSD3B (T/A-diol) | 0.4422 | 0.2936 | 0.3028 | 0.6170 |
SRD5A2 (DHT/T) | 0.2404 | 0.8683 | 0.2366 | 0.1213 |
HSD3B (A-dione/DHEA) | 0.7530 | 0.4282 | 0.5695 | 0.9903 |
CYP19A1 (E1/A-dione) | 0.6811 | 0.6584 | 0.7068 | 0.3864 |
CYP19A1 (E2/T) | 0.0871 | 0.0235 | 0.4608 | 0.1128 |
HSD17B (E3/E2) | 0.0290 | 0.0213 | 0.5300 | 0.0168 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.; Lee, H.; Kim, Y.L.; Lee, Y.C.; Chung, B.C.; Hong, J. Profiling of Steroid Metabolic Pathways in Human Plasma by GC-MS/MS Combined with Microwave-Assisted Derivatization for Diagnosis of Gastric Disorders. Int. J. Mol. Sci. 2021, 22, 1872. https://doi.org/10.3390/ijms22041872
Lee W, Lee H, Kim YL, Lee YC, Chung BC, Hong J. Profiling of Steroid Metabolic Pathways in Human Plasma by GC-MS/MS Combined with Microwave-Assisted Derivatization for Diagnosis of Gastric Disorders. International Journal of Molecular Sciences. 2021; 22(4):1872. https://doi.org/10.3390/ijms22041872
Chicago/Turabian StyleLee, Wonwoong, Hyunjung Lee, You Lee Kim, Yong Chan Lee, Bong Chul Chung, and Jongki Hong. 2021. "Profiling of Steroid Metabolic Pathways in Human Plasma by GC-MS/MS Combined with Microwave-Assisted Derivatization for Diagnosis of Gastric Disorders" International Journal of Molecular Sciences 22, no. 4: 1872. https://doi.org/10.3390/ijms22041872
APA StyleLee, W., Lee, H., Kim, Y. L., Lee, Y. C., Chung, B. C., & Hong, J. (2021). Profiling of Steroid Metabolic Pathways in Human Plasma by GC-MS/MS Combined with Microwave-Assisted Derivatization for Diagnosis of Gastric Disorders. International Journal of Molecular Sciences, 22(4), 1872. https://doi.org/10.3390/ijms22041872