Steatotic Livers Are More Susceptible to Ischemia Reperfusion Damage after Transplantation and Show Increased γδ T Cell Infiltration
Abstract
:1. Introduction
2. Results
2.1. Recipient Characteristics
2.2. Donor Characteristics
2.3. Distribution of Patients
2.4. Patient Survival
2.5. Clinical Outcome
2.6. Cellular Mechanisms
2.6.1. Histological Examination of Infiltrating T cells
2.6.2. Gene Expression Analysis
3. Discussion
4. Materials and Methods
4.1. Patients and Biopsy Samples
4.2. Blood Samples
4.3. (Immuno)histochemistry (IHC)
4.4. Real-time PCR (RT-PCR)
4.5. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DRI | Donor risk index |
IRI | Ischemia reperfusion injury |
LTx | Liver transplantation |
RT-PCR | Real time polymerase chain reaction |
GPT | Glutamic-pyruvic transaminase |
References
- Teoh, N.C.; Farrell, G.C. Hepatic ischemia reperfusion injury: Pathogenic mechanisms and basis for hepatoprotection. J. Gastroenterol. Hepatol. 2003, 18, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Pereyra, L.H.; Simmons, R.L.; Najarian, J.S. Protection of the ischemic liver by donor pretreatment before transplantation. Am. J. Surg. 1975, 129, 513–517. [Google Scholar] [CrossRef]
- Busuttil, R.W.; Tanaka, K. The utility of marginal donors in liver transplantation. Liver Transpl. 2003, 9, 651–663. [Google Scholar] [CrossRef] [Green Version]
- Emond, J.C.; Whitington, P.F.; Thistlethwaite, J.R.; Cherqui, D.; Alonso, E.A.; Woodle, I.S.; Vogelbach, P.; Busse-Henry, S.M.; Zucker, A.R.; Broelsch, C.E.; et al. Transplantation of two patients with one liver. Analysis of a preliminary experience with ‘split-liver’ grafting. Ann. Surg. 1990, 212, 14–22. [Google Scholar] [CrossRef]
- Broelsch, C.E.; Whitington, P.F.; Emond, J.C.; Heffron, T.G.; Thistlethwaite, J.R.; Stevens, L.; Piper, J.; Whitington, S.H.; Lichtor, J.L. Liver transplantation in children from living related donors. Surgical techniques and results. Ann. Surg. 1991, 214, 428–437, discussion 437–439. [Google Scholar] [CrossRef]
- Ericzon, B.G.; Larsson, M.; Wilczek, H.E. Domino liver transplantation: Risks and benefits. Transpl. Proc. 2008, 40, 1130–1131. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.; Kotsch, K.; Francuski, M.; Reutzel-Selke, A.; Mantouvalou, L.; Klemz, R.; Kuecuek, O.; Jonas, S.; Wesslau, C.; Ulrich, F.; et al. Brain death activates donor organs and is associated with a worse I/R injury after liver transplantation. Am. J. Transpl. 2007, 7, 1584–1593. [Google Scholar] [CrossRef]
- Barshes, N.R.; Horwitz, I.B.; Franzini, L.; Vierling, J.M.; Goss, J.A. Waitlist mortality decreases with increased use of extended criteria donor liver grafts at adult liver transplant centers. Am. J. Transpl. 2007, 7, 1265–1270. [Google Scholar] [CrossRef] [PubMed]
- Eurotransplant International Foundation. Eurotransplant Manual; Version 4.0; Eurotransplant Foundation: Leiden, The Netherlands, 2014; p. 50. [Google Scholar]
- Blok, J.J.; Braat, A.E.; Adam, R.; Burroughs, A.K.; Putter, H.; Kooreman, N.G.; Rahmel, A.O.; Porte, R.J.; Rogiers, X.; Ringers, J. Validation of the donor risk index in orthotopic liver transplantation within the Eurotransplant region. Liver Transpl. 2012, 18, 112–119. [Google Scholar] [CrossRef]
- Zhai, Y.; Busuttil, R.W.; Kupiec-Weglinski, J.W. Liver ischemia and reperfusion injury: New insights into mechanisms of innate-adaptive immune-mediated tissue inflammation. Am. J. Transpl. 2011, 11, 1563–1569. [Google Scholar] [CrossRef]
- DeLeve, L.D. Glutathione defense in non-parenchymal cells. Semin. Liver Dis. 1998, 18, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Huet, P.M.; Nagaoka, M.R.; Desbiens, G.; Tarrab, E.; Brault, A.; Bralet, M.P.; Bilodeau, M. Sinusoidal endothelial cell and hepatocyte death following cold ischemia-warm reperfusion of the rat liver. Hepatology 2004, 39, 1110–1119. [Google Scholar] [CrossRef] [PubMed]
- Upadhya, G.A.; Strasberg, S.M. Glutathione, lactobionate, and histidine: Cryptic inhibitors of matrix metalloproteinases contained in University of Wisconsin and histidine/tryptophan/ketoglutarate liver preservation solutions. Hepatology 2000, 31, 1115–1122. [Google Scholar] [CrossRef]
- Ikeda, T.; Yanaga, K.; Kishikawa, K.; Kakizoe, S.; Shimada, M.; Sugimachi, K. Ischemic injury in liver transplantation: Difference in injury sites between warm and cold ischemia in rats. Hepatology 1992, 16, 454–461. [Google Scholar] [CrossRef]
- Chen, G.Y.; Nunez, G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol. 2010, 10, 826–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggenhofer, E.; Rovira, J.; Sabet-Baktach, M.; Groell, A.; Scherer, M.N.; Dahlke, M.H.; Farkas, S.A.; Loss, M.; Koehl, G.E.; Lang, S.A.; et al. Unconventional RORgammat+ T cells drive hepatic ischemia reperfusion injury. J. Immunol. 2013, 191, 480–487. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Goodrich, N.P.; Bragg-Gresham, J.L.; Dykstra, D.M.; Punch, J.D.; DebRoy, M.A.; Greenstein, S.M.; Merion, R.M. Characteristics associated with liver graft failure: The concept of a donor risk index. Am. J. Transpl. 2006, 6, 783–790. [Google Scholar] [CrossRef] [Green Version]
- Briceno, J.; Marchal, T.; Padillo, J.; Solorzano, G.; Pera, C. Influence of marginal donors on liver preservation injury. Transplantation 2002, 74, 522–526. [Google Scholar] [CrossRef]
- Rull, R.; Vidal, O.; Momblan, D.; Gonzalez, F.X.; Lopez-Boado, M.A.; Fuster, J.; Grande, L.; Bruguera, M.; Cabrer, K.; Garcia-Valdecasas, J.C. Evaluation of potential liver donors: Limits imposed by donor variables in liver transplantation. Liver Transpl. 2003, 9, 389–393. [Google Scholar] [CrossRef] [Green Version]
- Gaffey, M.J.; Boyd, J.C.; Traweek, S.T.; Ali, M.A.; Rezeig, M.; Caldwell, S.H.; Iezzoni, J.C.; McCullough, C.; Stevenson, W.C.; Khuroo, S.; et al. Predictive value of intraoperative biopsies and liver function tests for preservation injury in orthotopic liver transplantation. Hepatology 1997, 25, 184–189. [Google Scholar] [CrossRef]
- Kakizoe, S.; Yanaga, K.; Starzl, T.E.; Demetris, A.J. Evaluation of protocol before transplantation and after reperfusion biopsies from human orthotopic liver allografts: Considerations of preservation and early immunological injury. Hepatology 1990, 11, 932–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marino, I.R.; Doyle, H.R.; Aldrighetti, L.; Doria, C.; McMichael, J.; Gayowski, T.; Fung, J.J.; Tzakis, A.G.; Starzl, T.E. Effect of donor age and sex on the outcome of liver transplantation. Hepatology 1995, 22, 1754–1762. [Google Scholar]
- Alves, R.C.; Fonseca, E.A.; Mattos, C.A.; Abdalla, S.; Goncalves, J.E.; Waisberg, J. Predictive factors of early graft loss in living donor liver transplantation. Arq. Gastroenterol. 2012, 49, 157–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinella, M.E.; Alonso, E.; Rao, S.; Whitington, P.; Fryer, J.; Abecassis, M.; Superina, R.; Flamm, S.L.; Blei, A.T. Body mass index as a predictor of hepatic steatosis in living liver donors. Liver Transpl. 2001, 7, 409–414. [Google Scholar] [CrossRef]
- Steggerda, J.A.; Bloom, M.B.; Noureddin, M.; Brennan, T.V.; Todo, T.; Nissen, N.N.; Klein, A.S.; Kim, I.K. Higher thresholds for the utilization of steatotic allografts in liver transplantation: Analysis from a U.S. national database. PLoS ONE 2020, 15, e0230995. [Google Scholar]
- Steggerda, J.A.; Kim, I.K.; Todo, T.; Malinoski, D.; Klein, A.S.; Bloom, M.B. Liver Transplant Survival Index for Patients with Model for End-Stage Liver Disease Score >/= 35: Modeling Risk and Adjusting Expectations in the Share 35 Era. J. Am. Coll. Surg. 2019, 228, 437–450.e8. [Google Scholar] [CrossRef]
- Salvalaggio, P.R.; Felga, G.E.; Afonso, R.C.; Ferraz-Neto, B.H. Early allograft dysfunction and liver transplant outcomes: A single center retrospective study. Transpl. Proc. 2012, 44, 2449–2451. [Google Scholar] [CrossRef]
- Spitzer, A.L.; Lao, O.B.; Dick, A.A.; Bakthavatsalam, R.; Halldorson, J.B.; Yeh, M.M.; Upton, M.P.; Reyes, J.D.; Perkins, J.D. The biopsied donor liver: Incorporating macrosteatosis into high-risk donor assessment. Liver Transpl. 2010, 16, 874–884. [Google Scholar] [CrossRef]
- Jassem, W.; Koo, D.D.; Cerundolo, L.; Rela, M.; Heaton, N.D.; Fuggle, S.V. Leukocyte infiltration and inflammatory antigen expression in cadaveric and living-donor livers before transplant. Transplantation 2003, 75, 2001–2007. [Google Scholar] [CrossRef]
- Cowley, S.C.; Meierovics, A.I.; Frelinger, J.A.; Iwakura, Y.; Elkins, K.L. Lung CD4-CD8- double-negative T cells are prominent producers of IL-17A and IFN-gamma during primary respiratory murine infection with Francisella tularensis live vaccine strain. J. Immunol. 2010, 184, 5791–5801. [Google Scholar] [CrossRef] [Green Version]
- Kono, H.; Fujii, H.; Ogiku, M.; Hosomura, N.; Amemiya, H.; Tsuchiya, M.; Hara, M. Role of IL-17A in neutrophil recruitment and hepatic injury after warm ischemia-reperfusion mice. J. Immunol. 2011, 187, 4818–4825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, Y.H.; Xia, N.; Zhou, S.F.; Tang, T.T.; Yan, X.X.; Lv, B.J.; Nie, S.F.; Wang, J.; Iwakura, Y.; Xiao, H.; et al. Interleukin-17A contributes to myocardial ischemia/reperfusion injury by regulating cardiomyocyte apoptosis and neutrophil infiltration. J. Am. Coll. Cardiol. 2012, 59, 420–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shichita, T.; Sugiyama, Y.; Ooboshi, H.; Sugimori, H.; Nakagawa, R.; Takada, I.; Iwaki, T.; Okada, Y.; Iida, M.; Cua, D.J.; et al. Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat. Med. 2009, 15, 946–950. [Google Scholar] [CrossRef] [PubMed]
- Gocze, I.; Ehehalt, K.; Zeman, F.; Riquelme, P.; Pfister, K.; Graf, B.M.; Bein, T.; Geissler, E.K.; Kasprzak, P.; Schlitt, H.J.; et al. Postoperative cellular stress in the kidney is associated with an early systemic gammadelta T-cell immune cell response. Crit. Care 2018, 22, 168. [Google Scholar] [CrossRef] [Green Version]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
Mean ± SD (n) | ||||
---|---|---|---|---|
Total | No-IRI Group | IRI Group | p | |
Age (years) | 50.11 ± 12.55 (46) | 46.47 ± 14.82 (18) | 52.24 ± 10.71 (28) | 0.214 |
Male (%) | 71.74 (33) | 64.71 (11) | 75.86 (22) | 0.505 |
Female (%) | 28.26 (13) | 35.29 (6) | 24.14 (7) | 0.971 |
BM (kg/m2) | 28.90 ± 8.227 (46) | 27.91 ± 9.001 (18) | 29.48 ± 7.844 (28) | 0.275 |
Dialysis pre LTx (%) | 36.96 | 17.65 | 48.28 | 0.038 |
Cold ischemic time (h) | 8.747 ± 2.397 (46) | 8.734 ± 3.057 (18) | 8.754 ± 1.990 (28) | 0.982 |
Warm ischemic time (h) | 0.824 ± 0.177 (46) | 0.836 ± 0.186 (18) | 0.818 ± 0.175 (28) | 0.756 |
Total ischemic time (h) | 9.571 ± 2.397 (46) | 9.570 ± 3.035 (18) | 9.572 ± 2.008 (28) | 0.998 |
Mean ± SD (n) | ||||
---|---|---|---|---|
Total | No-IRI Group | IRI Group | p | |
Male (%) | 50.00 (23) | 29.41 (5) | 62.07 (18) | 0.032 |
Gender Mismatch, total (%) | 43.48 (20) | 47.06 (8) | 41.38 (12) | 0.708 |
Gender Mismatch, ♂ → ♀ (%) | 21.74 (5) | 20.00 (1) | 22.22 (4) | 1.000 |
Gender Mismatch, ♀ → ♂ (%) | 65.22 (15) | 58.33 (7) | 72.73 (8) | 0.667 |
Noradrenaline (µg/kg/min) | 0.218 ± 0.409 (39) | 0.306 ± 0.532 (16) | 0.156 ± 0.292 (23) | 0.055 |
Blood transfusion (Number of bags) | 1.780 ± 4.599 (46) | 1.650 ± 4.636 (17) | 1.860 ± 4.658 (29) | 0.903 |
Corticoide therapy (%) | 45.65 (21) | 47.06 (8) | 44.83 (13) | 0.883 |
Custodiol®-Perfusion solution (%) | 89.13 (41) | 94.12 (16) | 86.21 (25) | 0.637 |
UW-Perfusion solution (%) | 10.87 (5) | 5.882 (1) | 13.79 (4) | 0.637 |
Aortic perfusion volume (L) | 12.25 ± 17.96 (46) | 13.94 ± 22.25 (17) | 11.26 ± 15.26 (29) | 0.675 |
Portal perfusion volume (L) | 3.800 ± 1.643 (5) | 2.000 (1) | 4.250 ± 1.500 (4) | - |
DRI | 1.400 ± 0.289 (44) | 1.388 ± 0.321 (16) | 1.407 ± 0.275 (28) | 0.833 |
Mean ± SD (n) | ||||
---|---|---|---|---|
Total | No-IRI Group | IRI Group | p | |
Age (Years) | 47.91 ± 15.15 (46) | 47.12 ± 13.86 (17) | 48.38 ± 16.08 (29) | 0.546 |
ICU Stay (days) | 4.337 ± 7.314 (46) | 2.459 ± 2.311 (17) | 5.437 ± 8.918 (29) | 0.122 |
BMI (kg/m2) | 25.42 ± 4.484 (46) | 24.05 ± 4.386 (17) | 26.23 ± 4.414 (29) | 0.045 |
Steatosis >40% (%) | 19.57 (9) | - (0) | 31.03 (9) | 0.017 |
Serum-GPT (U/L) | 52.54 ± 67.11 (46) | 46.00 ± 39.12 (17) | 56.38 ± 79.52 (29) | 0.750 |
Serum-GOT (U/L) | 66.93 ± 96.79 (45) | 78.94 ± 111.0 (17) | 59.64 ± 88.46 (28) | 0.582 |
Serum bilirubin (mg/dL) | 11.90 ± 7.722 (46) | 11.49 ± 8.314 (17) | 12.14 ± 7.494 (29) | 0.793 |
Serum sodium (mmol/L) | 147.5 ± 6.080 (46) | 145.0 ± 5.232 (17) | 148.9 ± 6.152 (29) | 0.033 |
Group Classification (%) | 1 | 2 | ||
n-IRI | IRI | n-M | M | |
39.96 (17) | 63.04 (29) | 45.65 (21) | 54.35 (25) | |
3 | ||||
n-IRI and n-M | n-IRI and M | IRI and n-M | IRI and M | |
19.57 (9) | 17.39 (8) | 26.09 (12) | 36.96 (17) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eggenhofer, E.; Groell, A.; Junger, H.; Kasi, A.; Kroemer, A.; Geissler, E.K.; Schlitt, H.J.; Scherer, M.N. Steatotic Livers Are More Susceptible to Ischemia Reperfusion Damage after Transplantation and Show Increased γδ T Cell Infiltration. Int. J. Mol. Sci. 2021, 22, 2036. https://doi.org/10.3390/ijms22042036
Eggenhofer E, Groell A, Junger H, Kasi A, Kroemer A, Geissler EK, Schlitt HJ, Scherer MN. Steatotic Livers Are More Susceptible to Ischemia Reperfusion Damage after Transplantation and Show Increased γδ T Cell Infiltration. International Journal of Molecular Sciences. 2021; 22(4):2036. https://doi.org/10.3390/ijms22042036
Chicago/Turabian StyleEggenhofer, Elke, Anja Groell, Henrik Junger, Amoon Kasi, Alexander Kroemer, Edward K. Geissler, Hans J. Schlitt, and Marcus N. Scherer. 2021. "Steatotic Livers Are More Susceptible to Ischemia Reperfusion Damage after Transplantation and Show Increased γδ T Cell Infiltration" International Journal of Molecular Sciences 22, no. 4: 2036. https://doi.org/10.3390/ijms22042036
APA StyleEggenhofer, E., Groell, A., Junger, H., Kasi, A., Kroemer, A., Geissler, E. K., Schlitt, H. J., & Scherer, M. N. (2021). Steatotic Livers Are More Susceptible to Ischemia Reperfusion Damage after Transplantation and Show Increased γδ T Cell Infiltration. International Journal of Molecular Sciences, 22(4), 2036. https://doi.org/10.3390/ijms22042036