The Correlation of Mutations and Expressions of Genes within the PI3K/Akt/mTOR Pathway in Breast Cancer—A Preliminary Study
Abstract
:1. Introduction
2. Results
2.1. Results of the Mutation Analysis of Selected Genes
2.2. Results of the Expression Analysis of Selected Genes
2.2.1. The Expression Level of Studied Genes—Comparison between Our Results and Those Contained in the TCGA Database
2.2.2. The Expression Level of Studied Genes Depending on the Presence of Mutations
2.2.3. The Expression Level of the Studied Genes Depending on Clinical Parameters—Comparison between Our Results and Those Contained in the TCGA Database
2.2.4. The Correlation between the Expression Levels of Studied Genes—Comparison between Our Results and Those Contained in the TCGA Database
3. Discussion
4. Materials and Methods
4.1. Characteristics of the Studied Group
4.2. Analysis of the Mutations of Selected Genes within the PI3K/Akt Pathway
4.3. Analysis of the Expression Level of Selected Genes within the PI3K/Akt/mTOR Pathway
4.4. Analysis of the Data Present on the PI3K/Akt/mTOR Pathway in Breast Cancer Available on International Database TCGA
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stemke-Hale, K.; Gonzalez-Angulo, A.M.; Lluch, A.; Neve, R.M.; Kuo, W.L.; Davies, M.; Carey, M.; Hu, Z.; Guan, Y.; Sahin, A.; et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 2008, 68, 6084–6091. [Google Scholar] [CrossRef] [Green Version]
- Yap, T.A.; Garrett, M.D.; Walton, M.I.; Raynaud, F.; de Bono, J.S.; Workman, P. Targeting the PI3K-AKT-mTOR pathway: Progress, pitfalls, and promises. Curr. Opin Pharm. 2008, 8, 393–412. [Google Scholar] [CrossRef]
- McAuliffe, P.F.; Meric-Bernstam, F.; Mills, G.B.; Gonzalez-Angulo, A.M. Deciphering the Role of PI3K/Akt/mTOR Pathway in Breast Cancer Biology and Pathogenesis. Clin. Breast Cancer 2010, 10, S59–S65. [Google Scholar] [CrossRef]
- Deng, L.; Zhu, X.; Sun, Y.; Wang, J.; Zhong, X.; Li, J.; Hu, M.; Zheng, H. Prevalence and Prognostic Role of PIK3CA/AKT1 Mutations in Chinese Breast Cancer Patients. Cancer Res. Treat. 2019, 51, 128–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, H.J.; Crowe, P.; Yang, J.L. Current clinical regulation of PI3K/PTEN/Akt/mTOR signalling in treatment of human cancer. J. Cancer Res. Clin. Oncol. 2015, 141, 671–689. [Google Scholar] [CrossRef]
- Kenna, M.M.; McGarrigle, S.; Pidgeon, G.P. The next generation of PI3K-Akt-mTOR pathway inhibitors in breast cancer cohorts. Biochim. Biophys. Acta Rev. Cancer 2018, 1870, 185–197. [Google Scholar] [CrossRef]
- Cocco, S.; Leone, A.; Piezzo, M.; Caputo, R.; Di Lauro, V.; Di Rella, F.; Fusco, G.; Capozzi, M.; Gioia, G.D.; Budillon, A.; et al. Targeting Autophagy in Breast Cancer. Int. J. Mol. Sci. 2020, 21, 7836. [Google Scholar] [CrossRef] [PubMed]
- Klarenbeek, S.; van Miltenburg, M.H.; Jonkers, J. Genetically engineered mouse models of PI3K signaling in breast cancer. Mol. Oncol. 2013, 7, 146–164. [Google Scholar] [CrossRef]
- Cathomas, G. PIK3CA in Colorectal Cancer. Front. Oncol. 2014, 4, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Su, W.; Zhang, S.; Hu, Y.; Liu, J.; Zhang, X.; Bai, J.; Yuan, W.; Hu, L.; Cheng, T.; et al. Epidermal growth factor receptor and AKT1 gene copy numbers by multi-gene fluorescence in situ hybridization impact on prognosis in breast cancer. Cancer Sci. 2015, 106, 642–649. [Google Scholar] [CrossRef]
- Bregar, A.J.; Growdon, W.B. Emerging strategies for targeting PI3K in gynecologic cancer. Gynecol. Oncol. 2016, 140, 333–344. [Google Scholar] [CrossRef]
- Lambert, A.; Salleron, J.; Lion, M.; Rouyer, M.; Lozano, N.; Leroux, A.; Merlin, J.L.; Harlé, A. Comparison of Three Real-Time PCR Assays for the Detection of PIK3CA Somatic Mutations in Formalin-Fixed Paraffin Embedded Tissues of Patients with Breast Carcinomas. Pathol. Oncol. Res. 2019, 25, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Guo, X.; Chen, M.; Tang, L.; Jiang, H.; Day, J.X.; Xie, Y.; Peng, L.; Xu, X.; Li, J.; et al. Prevalence and spectrum of AKT1, PIK3CA, PTEN and TP53 somatic mutations in Chinese breast cancer patients. PLoS ONE 2018, 13, e0203495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, Y.; Park, Y.H.; Ahn, J.S.; Im, Y.H.; Nam, S.J.; Cho, S.Y.; Cho, E.Y. PIK3CA Mutations and Neoadjuvant Therapy Outcome in Patients with Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer: A Sequential Analysis. J. Breast Cancer 2018, 21, 382–390. [Google Scholar] [CrossRef]
- Myers, M.B.; McKim, K.L.; Banda, M.; George, N.I.; Parsons, B.L. Low-Frequency Mutational Heterogeneity of Invasive Ductal Carcinoma Subtypes: Information to Direct Precision Oncology. Int. J. Mol. Sci. 2019, 20, 1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustin, J.P.; Cosgrove, D.P.; Park, B.H. The PIK3CA gene as a mutated target for cancer therapy. Curr Cancer Drug Targets. 2008, 8, 733–740. [Google Scholar] [CrossRef] [Green Version]
- O’Regan, R.; Hawk, N.N. mTOR inhibition in breast cancer: Unraveling the complex mechanisms of mTOR signal transduction and its clinical implications in therapy. Expert Opin. Targets 2011, 15, 859–872. [Google Scholar] [CrossRef]
- Paplomata, E.; O’Regan, R. The PI3K/AKT/mTOR pathway in breast cancer: Targets, trials and biomarkers. Adv. Med. Oncol. 2014, 6, 154–166. [Google Scholar] [CrossRef] [Green Version]
- Mabuchi, S.; Kuroda, H.; Takahashi, R.; Sasano, T. The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecol. Oncol. 2015, 137, 173–179. [Google Scholar] [CrossRef]
- Barchiesi, G.; Mazzotta, M.; Krasniqi, E.; Pizzuti, L.; Marinelli, D.; Capomolla, E.; Sergi, D.; Amodio, A.; Natoli, C.; Gamucci, T.; et al. Neoadjuvant Endocrine Therapy in Breast Cancer: Current Knowledge and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 3528. [Google Scholar] [CrossRef]
- Sabine, V.S.; Crozier, C.; Brookes, C.L.; Drake, C.; Piper, T.; van de Velde, C.J.; Hasenburg, A.; Kieback, D.G.; Markopoulos, C.; Dirix, L.; et al. Mutational analysis of PI3K/AKT signaling pathway in tamoxifen exemestane adjuvant multinational pathology study. J. Clin. Oncol. 2014, 32, 2951–2958. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, T.; Yamamoto, Y.; Yamamoto-Ibusuki, M.; Inao, T.; Sueta, A.; Fujiwara, S.; Omoto, Y.; Iwase, H. Prognostic role of PIK3CA mutations of cell-free DNA in early-stage triple negative breast cancer. Cancer Sci. 2015, 106, 1582–1589. [Google Scholar] [CrossRef] [PubMed]
- Baselga, J.; Cortes, J.; Im, S.-A.; Clark, E.; Ross, G.; Kiermaier, A.; Swain, S.M. Biomarker analyses in CLEOPATRA: A phase III, placebo-controlled study of pertuzumab in human epidermal growth factor receptor 2-positive, first-line metastatic breast cancer. J. Clin. Oncol. 2014, 32, 3753–3761. [Google Scholar] [CrossRef]
- Xu, B.; Guan, Z.; Shen, Z.; Tong, Z.; Jiang, Z.; Yang, J.; DeSilvio, M.; Russo, M.; Leigh, M.; Ellis, C. Association of phosphatase and tensin homolog low and phosphatidylinositol 3-kinase catalytic subunit alpha gene mutations on outcome in human epidermal growth factor receptor 2-positive metastatic breast cancer patients treated with first-line lapatinib plus paclitaxel or paclitaxel alone. Breast Cancer Res. 2014, 16, 405. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Chen, J.; Zhong, X.R.; Luo, T.; Wang, Y.P.; Huang, H.F.; Yin, L.J.; Qiu, Y.; Bu, H.; Lv, Q.; et al. Correlation between activation of PI3K/AKT/mTOR pathway and prognosis of breast cancer in Chinese women. PLoS ONE 2015, 10, e0120511. [Google Scholar] [CrossRef] [Green Version]
- Jacot, W.; Mollevi, C.; Fina, F.; Lopez-Crapez, E.; Martin, P.M.; Colombo, P.E.; Bibeau, F.; Romieu, G.; Lamy, P.J. High EGFR protein expression and exon 9 PIK3CA mutations are independent prognostic factors in triple negative breast cancers. BMC Cancer 2015, 15, 986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leo, F.; Bartels, S.; Magel, L.; Framke, T.; Busche, G.; Jonigk, D.; Christgen, M.; Lehmann, U.; Kreipe, H. Prognostic factors in the myoepithelial-like spindle cell type of metaplastic breast cancer. Virchows Arch. 2016, 469, 191–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loibl, S.; von Minckwitz, G.; Schneeweiss, A.; Paepke, S.; Lehmann, A.; Rezai, M.; Zahm, D.M.; Sinn, P.; Khandan, F.; Eidtmann, H.; et al. PIK3CA mutations are associated with lower rates of pathologic complete response to anti-human epidermal growth factor receptor 2 (her2) therapy in primary HER2-overexpressing breast cancer. J. Clin. Oncol. 2014, 32, 3212–3220. [Google Scholar] [CrossRef]
- Majewski, I.J.; Nuciforo, P.; Mittempergher, L.; Bosma, A.J.; Eidtmann, H.; Holmes, E.; Sotiriou, C.; Fumagalli, D.; Jimenez, J.; Aura, C.; et al. PIK3CA mutations are associated with decreased benefit to neoadjuvant human epidermal growth factor receptor 2-targeted therapies in breast cancer. J. Clin. Oncol. 2015, 33, 1334–1339. [Google Scholar] [CrossRef] [Green Version]
- Papaxoinis, G.; Kotoula, V.; Alexopoulou, Z.; Kalogeras, K.T.; Zagouri, F.; Timotheadou, E.; Gogas, H.; Pentheroudakis, G.; Christodoulou, C.; Koutras, A.; et al. Significance of PIK3CA mutations in patients with early breast cancer treated with adjuvant chemotherapy: A Hellenic Cooperative Oncology Group (HeCOG) Study. PLoS ONE 2015, 10, e0140293. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Chen, J.; Liu, Y.; Ouyang, T.; Li, J.; Wang, T.; Fan, Z.; Fan, T.; Lin, B.; Xie, Y. Association of PIK3CA mutation status before and after neoadjuvant chemotherapy with response to chemotherapy in women with breast cancer. Clin. Cancer Res. 2015, 21, 4365–4372. [Google Scholar] [CrossRef] [Green Version]
- Engels, C.C.; Kiderlen, M.; Bastiaannet, E.; van Eijk, R.; Mooyaart, A.; Smit, V.T.; de Craen, A.J.M.; Kuppen, P.J.K.; Kroep, J.R.; de Velde, C.J.H.; et al. The clinical value of HER-2 overexpression and PIK3CA mutations in the older breast cancer population: A FOCUS study analysis. Breast Cancer Res. Treat. 2016, 156, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Lee, E.; Park, K.; Park, W.Y.; Jung, H.H.; Ahn, J.S.; Im, Y.H.; Park, Y.H. Clinical implications of genomic profiles in metastatic breast cancer with a focus on TP53 and PIK3CA, the most frequently mutated genes. Oncotarget 2017, 8, 27997–28007. [Google Scholar] [CrossRef] [Green Version]
- Ligresti, G.; Militello, L.; Steelman, L.S.; Cavallaro, A.; Basile, F.; Nicoletti, F.; Stivala, F.; McCubrey, J.A.; Libra, M. PIK3CA mutations in human solid tumors: Role in sensitivity to various therapeutic approaches. Cell Cycle 2009, 8, 1352–1358. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, C.; Wallin, J.J.; Sampath, D.; GuhaThakurta, D.; Savage, H.; Punnoose, E.A.; Guan, J.; Berry, L.; Prior, W.W.; Amler, L.C.; et al. Predictive biomarkers of sensitivity to the phosphatidylinositol 3′ kinase inhibitor GDC-0941 in breast cancer preclinical models. Clin. Cancer Res. 2010, 16, 3670–3683. [Google Scholar] [CrossRef] [Green Version]
- Cizkova, M.; Susini, A.; Vacher, S.; Cizeron-Clairac, G.; Andrieu, C.; Driouch, K.; Fourme, E.; Lidereau, R.; Bièche, I. PIK3CA mutation impact on survival in breast cancer patients and in ERα, PR and ERBB2-based subgroups. Breast Cancer Res. 2012, 14, R28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumont, A.G.; Dumont, S.N.; Trent, J.C. The favorable impact of PIK3CA mutations on survival: An analysis of 2587 patients with breast cancer. Chin. J. Cancer 2012, 31, 327–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toomey, S.; Eustace, A.J.; Fay, J.; Sheehan, K.M.; Carr, A.; Milewska, M.; Madden, S.F.; Teiserskiene, A.; Kay, E.W.; O’Donovan, N.; et al. Impact of somatic PI3K pathway and ERBB family mutations on pathological complete response (pCR) in HER2-positive breast cancer patients who received neoadjuvant HER2-targeted therapies. Breast Cancer Res. 2017, 19, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brugge, J.; Hung, M.C.; Mills, G.B. A new mutational AKTivation in the PI3K pathway. Cancer Cell. 2007, 12, 104–107. [Google Scholar] [CrossRef] [Green Version]
- Flatley, E.; Ang, D.; Warrick, A.; Beadling, C.; Corless, C.L.; Troxell, M.L. PIK3CA-AKT pathway mutations in micropapillary breast carcinoma. Hum. Pathol. 2013, 44, 1320–1327. [Google Scholar] [CrossRef]
- Mukohara, T. PI3K mutations in breast cancer: Prognostic and therapeutic implications. Breast Cancer 2015, 7, 111–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michelucci, A.; Di Cristofano, C.; Lami, A.; Collecchi, P.; Caligo, A.; Decarli, N.; Leopizzi, M.; Aretini, P.; Bertacca, G.; Porta, R.P.; et al. PIK3CA in breast carcinoma: A mutational analysis of sporadic and hereditary cases. Diagn Mol. Pathol. 2009, 18, 200–205. [Google Scholar] [CrossRef]
- Weisman, P.S.; Ng, C.K.; Brogi, E.; Eisenberg, R.E.; Won, H.H.; Piscuoglio, S.; De Filippo, M.R.; Ioris, R.; Akram, M.; Norton, L.; et al. Genetic alterations of triple negative breast cancer by targeted next-generation sequencing and correlation with tumor morphology. Mod. Pathol. 2016, 29, 476–488. [Google Scholar] [CrossRef] [Green Version]
- Jouali, F.; Marchoudi, N.; Talbi, S.; Bilal, B.; El Khasmi, M.; Rhaissi, H.; Fekkak, J. Detection of PIK3/AKT pathway in Moroccan population with triple negative breast cancer. BMC Cancer 2018, 18, 900. [Google Scholar] [CrossRef]
- Ishida, N.; Baba, M.; Hatanaka, Y.; Hagio, K.; Okada, H.; Hatanaka, K.C.; Togashi, K.; Matsuno, Y.; Yamashita, H. PIK3CA mutation, reduced AKT serine 473 phosphorylation, and increased ERα serine 167 phosphorylation are positive prognostic indicators in postmenopausal estrogen receptor-positive early breast cancer. Oncotarget 2018, 9, 17711–17724. [Google Scholar] [CrossRef] [Green Version]
- Mutee, A.; Kaur, G.; Moad, A.; Tan, M.; Muhammad, T. Immunohistochemical expression of mTOR protein in breast carcinoma tissues. Internet J. Lab. Med. 2009, 4, 1–11. [Google Scholar]
- Aleskandarany, M.A.; Rakha, E.A.; Ahmed, M.A.; Powe, D.G.; Paish, E.C.; Macmillan, R.D.; Ellis, I.O.; Green, A.R. PIK3CA expression in invasive breast cancer: A biomarker of poor prognosis. Breast Cancer Res. Treat. 2010, 122, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Loi, S.; Haibe-Kains, B.; Majjaj, S.; Lallemand, F.; Durbecq, V.; Larsimont, D.; Gonzalez-Angulo, A.M.; Pusztai, L.; Symmans, W.F.; Bardelli, A.; et al. PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer. Proc. Natl. Acad. Sci. USA 2010, 107, 10208–10213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Ren, Y.; Wang, L.; Li, B.; Chen, Y.; Zhao, W.; Xu, W.; Li, T.; Dai, F. PTEN mutation spectrum in breast cancers and breast hyperplasia. J. Cancer Res. Clin. Oncol. 2010, 136, 1303–1311. [Google Scholar] [CrossRef]
- Razis, E.; Bobos, M.; Kotoula, V.; Eleftheraki, A.G.; Kalofonos, H.P.; Pavlakis, K.; Papakostas, P.; Aravantinos, G.; Rigakos, G.; Efstratiou, I.; et al. Evaluation of the association of PIK3CA mutations and PTEN loss with efficacy of trastuzumab therapy in metastatic breast cancer. Breast Cancer Res. Treat. 2011, 128, 447–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palimaru, I.; Brügmann, A.; Wium-Andersen, M.K.; Nexo, E.; Sorensen, B.S. Expression of PIK3CA, PTEN mRNA and PIK3CA mutations in primary breast cancer: Association with lymph node metastases. Springerplus 2013, 2, 464. [Google Scholar] [CrossRef]
- Cizkova, M.; Vacher, S.; Meseure, D.; Trassard, M.; Susini, A.; Mlcuchova, D.; Callens, C.; Rouleau, E.; Spyratos, F.; Lidereau, R.; et al. PIK3R1 underexpression is an independent prognostic marker in breast cancer. BMC Cancer 2013, 13, 545. [Google Scholar] [CrossRef] [Green Version]
- Firoozinia, M.; Zareian Jahromi, M.; Moghadamtousi, S.Z.; Nikzad, S.; Abdul Kadir, H. PIK3CA gene amplification and PI3K p110alpha protein expression in breast carcinoma. Int. J. Med. Sci. 2014, 11, 620–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, X.F.; Liu, Q.; Zhang, X.F.; Zhao, H.D.; Wang, W.; Chu, A.J. Expression of mTOR and its inhibitory effect on cell proliferation and apoptosis of breast cancer cells. J. Biol. Regul. Homeost Agents 2015, 29, 869–873. [Google Scholar]
- The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.M.; Yost, S.E.; Hutchinson, K.E.; Li, S.M.; Yuan, Y.C.; Noorbakhsh, J.; Liu, Z.; Warden, C.; Johnson, R.M.; Wu, X.; et al. CCNE1 amplification is associated with poor prognosis in patients with triple negative breast cancer. BMC Cancer 2019, 19, 96. [Google Scholar] [CrossRef]
- Nicoś, M.; Krawczyk, P.; Powrózek, T.; Szudy, P.; Jarosz, B.; Sawicki, M.; Szumiło, J.; Trojanowski, T.; Milanowski, J. PIK3CA Mutations Detected in Patients with Central Nervous System Metastases of Non-small Cell Lung Cancer. Anticancer Res. 2016, 36, 2243–2249. [Google Scholar] [PubMed]
- Nicoś, M.; Krawczyk, P.; Jarosz, B.; Sawicki, M.; Trojanowski, T.; Milanowski, J. Prevalence of NRAS, PTEN and AKT1 gene mutations in the central nervous system metastases of non-small cell lung cancer. Brain Tumor Pathol. 2017, 34, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.L.; Medrano, J.F. Real-time PCR for mRNA quantitation. Biotechniques 2005, 39, 75–85. [Google Scholar] [CrossRef]
- Kocki, J.; Ułamek-Kozioł, M.; Bogucka-Kocka, A.; Januszewski, S.; Jabłoński, M.; Gil-Kulik, P.; Brzozowska, J.; Petniak, A.; Furmaga-Jabłońska, W.; Bogucki, J.; et al. Dysregulation of Amyloid-β Protein Precursor, β-Secretase, Presenilin 1 and 2 Genes in the Rat Selectively Vulnerable CA1 Subfield of Hippocampus Following Transient Global Brain Ischemia. J. Alzheimers Dis. 2015, 47, 1047–1056. [Google Scholar] [CrossRef] [Green Version]
- Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017, 19, 649–658. [Google Scholar] [CrossRef]
- Jezequel, P.; Campone, M.; Gouraud, W.; Guérin-Charbonnel, C.; Leux, C.; Ricolleau, G.; Campion, L. bc-GenExMiner: An easy-to-use online platform for gene prognostic analyses in breast cancer. Breast Cancer Res. Treat. 2012, 131, 765–775. [Google Scholar] [CrossRef] [PubMed]
- Jezequel, P.; Frenel, J.S.; Campion, L.; Guérin-Charbonnel, C.; Gouraud, W.; Ricolleau, G.; Campone, M. bc-GenExMiner 3.0: New mining module computes breast cancer gene expression correlation analyses. Database 2013, 2013, bas060. [Google Scholar] [CrossRef] [PubMed]
- Babicki, S.; Arndt, D.; Marcu, A.; Liang, Y.; Grant, J.R.; Maciejewski, A.; Wishart, D.S. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 2016, 8, W147–W153. [Google Scholar] [CrossRef] [PubMed]
Gene | Substitution | Incidence |
---|---|---|
PIK3CA | E542K | 1 (1.85%) |
E545K | 2 (3.7%) | |
H1047R | 10 (18.52%) | |
AKT1 | E17K | 4 (7.4%) |
Examined Feature | p |
---|---|
Age | 0.704405 |
Bloom Richardson Scale | 0.71222 |
ER Status | 0.66227 |
PR Status | 0.07722 |
HER2 Status | 0.46270 |
Ki-67 Index | 0.02008 * |
Lymph Node Metastasis | 0.84787 |
Gene | p |
---|---|
AKT1 | 0.460034 |
mTOR | 0.243305 |
PIK3CA1 | 0.006065 * |
PIK3CA2 | 0.034344 * |
PIK3R1 | 0.635797 |
PTEN | 0.144665 |
Clinical parameters | Gene | p Analyzed Samples | p TCGA Samples |
---|---|---|---|
Age | AKT1 | 0.9214 | 0.2375 |
mTOR | 0.6773 | 0.0502 | |
PIK3CA | (1) 0.8979 | 0.2942 | |
(2) 0.7078 | |||
PIK3R1 | 0.3250 | 0.2821 | |
PTEN | 0.8625 | 0.2624 | |
Bloom Richardson Scale | AKT1 | 0.0317 * | - |
mTOR | 0.0154 * | - | |
PIK3CA | (1) 0.3632 | - | |
(2) 0.6685 | |||
PIK3R1 | 0.7813 | - | |
PTEN | 0.0202 * | - | |
ER Status | AKT1 | 0.6358 | 0.0004 * |
mTOR | 0.8623 | 0.7480 | |
PIK3CA | (1) 0.7325 | 0.0285 * | |
(2) 0.6308 | |||
PIK3R1 | 0.3250 | 0.0039 * | |
PTEN | 0.5345 | <0.0001 * | |
PR Status | AKT1 | 0.5906 | 0.2708 |
mTOR | 0.5228 | 0.9331 | |
PIK3CA | (1) 0.1756 | 0.1313 | |
(2) 0.4190 | |||
PIK3R1 | 0.3447 | <0.0001 * | |
PTEN | 0.6476 | <0.0001 * | |
HER2 Status | AKT1 | 0.0377 * | 0.0002 * |
mTOR | 0.1052 | 0.2515 | |
PIK3CA | (1) 0.0855 | 0.0549 | |
(2) 0.4534 | |||
PIK3R1 | 0.2821 | 0.3693 | |
PTEN | 0.0111 * | 0.0227 * | |
Ki-67 Index | AKT1 | 0.0571 | - |
mTOR | 0.0939 | - | |
PIK3CA | (1) 0.1760 | - | |
(2) 0.6745 | - | ||
PIK3R1 | 0.9928 | - | |
PTEN | 0.1917 | - | |
Node Status | AKT1 | 0.911346 | 0.4174 |
mTOR | 0.101923 | 0.2850 | |
PIK3CA | (1) 0.385262 | 0.7241 | |
(2) 0.959624 | |||
PIK3R1 | 0.911346 | 0.0228 * | |
PTEN | 0.640050 | 0.2651 |
Examined Feature | Variable | Value |
---|---|---|
Control Group | ||
Age | 54 ± 13.53, 46–82 1 | |
Histopathological Diagnosis | Laesio fibroso-cystica | 11 (100%) |
ER Status | 2+ | 6 (54.55%) |
3+ | 5 (45.45%) | |
PR Status | 1+ | 8 (72.73%) |
2+ | 3 (27.27%) | |
HER2 Status | 1+, without overexpression | 11 (100%) |
Ki-67 Index | 5% | 10 (90.91%) |
15% | 1 (9.09%) | |
Study Group | ||
Age | 58 ± 12.67, 37–92 1 | |
Histopathological Diagnosis | Carcinoma ductale invasivum | 39 (72.22%) |
Carcinoma ductale invasivum parti comedocarcinoma | 5 (9.26%) | |
Carcinoma partim ductale partim lobulare invasivum | 6 (11.11%) | |
Carcinoma ductale invasivum recidivans | 1 (1.85%) | |
Carcinoma ductale in situ | 3 (5.56%) | |
Grade of histopathological malignancy | G1 | 3 (5.56%) |
G2 | 41 (75.92%) | |
G3 | 7 (12.96%) | |
Labeled as diffuse | 3 (5.56%) | |
Bloom Richardson Scale | Bloom I | 3 (5.56%) |
Bloom II | 41 (75.92%) | |
Bloom III | 7 (12.96%) | |
Not specified | 3 (5.56%) | |
ER Status | (−) | 6 (11.11%) |
(1+) | 2 (3.7%) | |
(2+) | 6 (11.11%) | |
(3+) | 36 (66.67%) | |
Not marked | 4 (7.41%) | |
PR Status | (−) | 14 (25.93%) |
(1+) | 2 (3.7%) | |
(2+) | 12 (22.22%) | |
(3+) | 22 (40.74%) | |
Not marked | 4 (7.41%) | |
HER2 Status | 0, without overexpression | 20 (37.04%) |
1+, without overexpression | 18 (33.33%) | |
2+, overexpression | 2 (3.7%) | |
3+, overexpression | 9 (16.67%) | |
Not marked | 5 (9.26%) | |
Ki-67 Index | ≤10% | 19 (35.185%) |
>10%-≤50% | 19 (35.185%) | |
>50%-≤90% | 11 (20.37%) | |
Not marked | 5 (9.26%) | |
Lymph Node Metastasis | Yes | 11 (20.37%) |
No | 43 (79.63%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kołodziej, P.; Nicoś, M.; Krawczyk, P.A.; Bogucki, J.; Karczmarczyk, A.; Zalewski, D.; Kubrak, T.; Kołodziej, E.; Makuch-Kocka, A.; Madej-Czerwonka, B.; et al. The Correlation of Mutations and Expressions of Genes within the PI3K/Akt/mTOR Pathway in Breast Cancer—A Preliminary Study. Int. J. Mol. Sci. 2021, 22, 2061. https://doi.org/10.3390/ijms22042061
Kołodziej P, Nicoś M, Krawczyk PA, Bogucki J, Karczmarczyk A, Zalewski D, Kubrak T, Kołodziej E, Makuch-Kocka A, Madej-Czerwonka B, et al. The Correlation of Mutations and Expressions of Genes within the PI3K/Akt/mTOR Pathway in Breast Cancer—A Preliminary Study. International Journal of Molecular Sciences. 2021; 22(4):2061. https://doi.org/10.3390/ijms22042061
Chicago/Turabian StyleKołodziej, Przemysław, Marcin Nicoś, Paweł A. Krawczyk, Jacek Bogucki, Agnieszka Karczmarczyk, Daniel Zalewski, Tomasz Kubrak, Elżbieta Kołodziej, Anna Makuch-Kocka, Barbara Madej-Czerwonka, and et al. 2021. "The Correlation of Mutations and Expressions of Genes within the PI3K/Akt/mTOR Pathway in Breast Cancer—A Preliminary Study" International Journal of Molecular Sciences 22, no. 4: 2061. https://doi.org/10.3390/ijms22042061
APA StyleKołodziej, P., Nicoś, M., Krawczyk, P. A., Bogucki, J., Karczmarczyk, A., Zalewski, D., Kubrak, T., Kołodziej, E., Makuch-Kocka, A., Madej-Czerwonka, B., Płachno, B. J., Kocki, J., & Bogucka-Kocka, A. (2021). The Correlation of Mutations and Expressions of Genes within the PI3K/Akt/mTOR Pathway in Breast Cancer—A Preliminary Study. International Journal of Molecular Sciences, 22(4), 2061. https://doi.org/10.3390/ijms22042061