Molecular Insights into an Antibiotic Enhancer Action of New Morpholine-Containing 5-Arylideneimidazolones in the Fight against MDR Bacteria
Abstract
:1. Introduction
1.1. Bacterial Multidrug Resistance
1.2. AcrAB-TolC Efflux Pump
1.3. Penicillin Binding Protein (PBP)
1.4. Potency of Imidazolones in Battle against Bacterial MDR
1.5. Research Purpose and Scope
2. Results and Discussion
2.1. Synthesis
2.2. X-ray Crystallography
2.3. Biological Screening in S. aureus
2.3.1. Antibacterial Activity in S. aureus
2.3.2. Adjuvant Effects for Oxacillin
2.3.3. Extended Biological Screening in S. aureus
Antibacterial Activity in Additional Strains of S. aureus
Ability to Enhance Antibiotic Activity
2.3.4. Molecular Modelling of the Interactions with PBP2a
2.4. Biological Screening in the Gram-Negative Bacterial Species K. aerogenes
2.4.1. Chemosensitizer Activity in K. aerogenes
2.4.2. Real-Time Efflux Assay
2.5. Drug-Likeness Study
2.5.1. Water Solubility
2.5.2. Stability in Different pH Conditions
2.5.3. Drug-Drug Interactions (DDI)
In Silico Assays
DDI In Vitro Assays
2.6. Structure Activity Relationships
3. Materials and Methods
3.1. Chemical Synthesis
3.1.1. General Procedure to Obtain 5-Arylidenethioxothiazolidin-4-one (31)
(Z)-5-((9H-Fluoren-2-yl)Methylene)-2-Thioxothiazolidin-4-one (31)
3.1.2. General Procedure to Obtain 5-Arylidene-2-Methylthio-Thioxothiazol-4-one (39)
(Z)-5-((9H-Fluoren-2-yl)Methylene)-2-(Methylthio)Thiazol-4(5H)-one (39)
3.1.3. Synthesis of Final Products (11, 18, 22, 23) – General Procedure
(Z)-5-(Naphthalen-1-ylmethylene)-2-(4-Morpholinopiperidin-1-yl)-Imidazol-4(5H)-one Hydrochloride (11)
(Z)-5-(Naphthalen-1-ylmethylene)-2-Amino-3-(3-Morpholinopropyl)-Imidazol-4(5H)-one Hydrochloride (18)
(Z)-5-((9H-Fluoren-2-yl)methylene)-2-(4-Morpholinopiperidin-1-yl)Thiazol-4-one Hydrochloride (22)
(Z)-5-((9H-Fluoren-2-yl)methylene)-2-((3-Morpholinopropyl)amino)Thiazol-4(5H)-one Hydrochloride (23)
3.2. Crystallographic Studies
3.3. Biological Assays
3.3.1. Biological Screening in S. aureus Clinical Isolates—Susceptibility Testing
3.3.2. Molecular Modeling
3.3.3. Biological Screening in K. aerogenes—Susceptibility Testing
3.3.4. Real-Time Efflux Assay
3.4. ADMET Screening
3.4.1. In Silico Assays
3.4.2. In Vitro Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Velez, R.; Sloand, E. Combating antibiotic resistance, miti-gating future threats and ongoing initiatives. J. Clin. Nurs. 2016, 25, 1886–1889. [Google Scholar] [CrossRef]
- Khameneh, B.; Diab, R.; Ghazvini, K.; Fazly Bazzaz, B.S. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb. Pathog. 2016, 95, 32–42. [Google Scholar] [CrossRef]
- Mushtaq, A. UN commits to tackling antimicrobial resistance. Lancet. Infect. Dis. 2016, 16, 1229–1230. [Google Scholar] [CrossRef]
- Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public Health 2017, 10, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Bakour, S.; Sankar, S.A.; Rathored, J.; Biagini, P.; Raoult, D.; Fournier, P.E. Identification of virulence factors and antibiotic resistance markers using bacterial genomics. Future Microbiol. 2016, 11, 455–466. [Google Scholar] [CrossRef]
- Masi, M.; Réfrégiers, M.; Pos, K.M.; Pagès, J.-M. Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nat. Microbiol. 2017, 2, 17001. [Google Scholar] [CrossRef] [PubMed]
- Mühlen, S.; Dersch, P. Anti-virulence strategies to target bacterial infections. Curr. Top Microbiol. Immunol. 2016, 398, 147–183. [Google Scholar] [CrossRef] [PubMed]
- Coussens, N.P.; Molinaro, A.L.; Culbertson, K.J.; Peryea, T.; Zahoranszky-Kohalmi, G.; Hall, M.D.; Daines, D.A. Better living through chemistry: Addressing emerging antibiotic resistance. Exp. Biol. Med. 2018, 243, 538–553. [Google Scholar] [CrossRef] [PubMed]
- Brunel, A.; Benoit, G. Multidrug resistant (or antimicrobial-resistant) pathogens - alternatives to new antibiotics? Swiss Med. Wkly. 2017, 147, 14553. [Google Scholar] [CrossRef]
- Gonzalez Bello, C. Antibiotic adjuvants – A strategy to unlock bacterial resistance to antibiotics. Bioorg. Med. Chem. Lett. 2017, 27, 4221–4228. [Google Scholar] [CrossRef]
- Wright, G.D. Antibiotic adjuvants: Rescuing antibiotics from resistance. Trends Microbiol. 2016, 24, 862–871. [Google Scholar] [CrossRef] [PubMed]
- Domalaon, R.; Idowu, T.; Zhanel, G.G.; Schweizer, F. Antibiotic Hybrids: The Next Generation of Agents and Adjuvants against Gram-Negative Pathogens? Clin. Microbiol. Rev. 2018, 31, e00077–e17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, T.; Yarnall, B.; Doyle, D.A. Efflux drug transporters at the forefront of antimicrobial resistance. Eur. Biophys. J. 2017, 46, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Nikaido, H.; Pagès, J.-M. Broad specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol. Rev. 2012, 36, 340–363. [Google Scholar] [CrossRef] [Green Version]
- Hernando-Amado, S.; Blanco, P.; Alcalde-Rico, M.; Corona, F.; Reales-Calderon, J.A.; Sanchez, M.B.; Martinez, J.L. Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials. Drug Resist. Updat. 2016, 28, 13–27. [Google Scholar] [CrossRef]
- Spengler, G.; Kincses, A.; Gajdács, M.; Amaral, L. New Roads Leading to Old Destinations: Efflux Pumps as Targets to Reverse Multidrug Resistance in Bacteria. Molecules 2017, 22, 468. [Google Scholar] [CrossRef] [Green Version]
- Richter, M.F.; Drown, B.S.; Riley, A.P.; Garcia, A.; Shirai, T.; Svec, R.L.; Hergenrother, P.J. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature 2017, 545, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Kong, C.; Neoh, H.M.; Nathan, S. Targeting Staphylococcus aureus toxins: A potential form of anti-virulence therapy. Toxins 2016, 8, 72. [Google Scholar] [CrossRef] [Green Version]
- Monaco, M.; Pimentel de Araujo, F.; Cruciani, M.; Coccia, E.M.; Pantosti, A. Worldwide epidemiology and antibiotic resistance of Staphylococcus aureus. Curr. Top Microbiol. Immunol. 2017, 409, 21–56. [Google Scholar] [CrossRef]
- Liu, J.; Chen, D.; Peters, B.M.; Li, L.; Li, B.; Xu, Z.; Shirliff, M.E. Staphylococcal chromosomal cassettes mec (SCCmec): A mobile genetic element in methicillin-resistant Staphylococcus aureus. Microb. Pathog. 2016, 101, 56–67. [Google Scholar] [CrossRef]
- Otero, L.H.; Rojas-Altuve, A.; Llarrull, L.I.; Carrasco-Lopez, C.; Kumarasiri, M.; Lastochkin, E.; Fishovitz, J.; Dawley, M.; Hesek, D.; Lee, M.; et al. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Proc. Natl. Acad. Sci. USA 2013, 110, 16808–16813. [Google Scholar] [CrossRef] [Green Version]
- Peacock, S.J.; Paterson, G.K. Mechanisms of Methicillin Resistance in Staphylococcus aureus. Annu. Rev. Biochem. 2015, 84, 577–601. [Google Scholar] [CrossRef]
- Bohnert, J.A.; Schuster, S.; Kern, W.V.; Karcz, T.; Olejarz, A.; Kaczor, A.; Handzlik, J.; Kieć-Kononowicz, K. Novel Piperazine Arylideneimidazolones Inhibit the AcrAB-TolC Pump in Escherichia coli and Simultaneously Act as Fluorescent Membrane Probes in a Combined Real-Time Influx and Efflux Assay. Antimicrob. Agents Chemother. 2016, 60, 1974–1983. [Google Scholar] [CrossRef] [Green Version]
- Kern, W.V.; Steinke, P.; Schumacher, A.; Schuster, S.; von Baum, H.; Bohnert, J.A. Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Escherichia coli. J. Antimicrob. Chemother. 2006, 57, 339–343. [Google Scholar] [CrossRef] [Green Version]
- Mahamoud, A.; Chevalier, J.; Baitiche, M.; Adam, E.; Pagès, J.M. An alkylaminoquinazoline restores antibiotic activity in Gram-negative resistant isolates. Microbiology 2011, 157, 566–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opperman, T.J.; Kwasny, S.M.; Kim, H.-S.; Nguyen, S.T.; Houseweart, C.; D’Souza, S.; Walker, G.C.; Peet, N.P.; Nikaido, H.; Bowlin, T.L. Characterization of a novel pyranopyridine inhibitor of the AcrAB efflux pump of Escherichia coli. Antimicrob. Agents Chemother. 2014, 58, 722–733. [Google Scholar] [CrossRef] [Green Version]
- Kaczor, A.; Witek, K.; Podlewska, S.; Czekajewska, J.; Lubelska, A.; Żesławska, E.; Nitek, W.; Latacz, G.; Alibert, S.; Pagès, J.M.; et al. 5-Arylideneimidazolones with Amine at Position 3 as Potential Antibiotic Adjuvants against Multidrug Resistant Bacteria. Molecules 2019, 24, 438. [Google Scholar] [CrossRef] [Green Version]
- Kaczor, A.; Nové, M.; Kincses, A.; Spengler, G.; Szymańska, E.; Latacz, G.; Handzlik, J. Computer-aided search for ABCB1 modulators among 2-amine-5-arylideneimidazolones as a new perspective to overcome cancer multidrug resistance. Molecules 2020, 25, 2258. [Google Scholar] [CrossRef]
- Żesławska, E.; Nitek, W.; Handzlik, J. Conformational study of (Z)-5-(4-chlorobenzylidene)-2-[4-(2-hydroxyethyl)piperazin-1-yl]-3H-imidazol-4(5H)-one in different environments: Insight into the structural properties of bacterial efflux pump inhibitors. Acta Crystallogr. C Struct. Chem. 2017, 73, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Żesławska, E.; Nitek, W.; Tejchman, W.; Handzlik, J. Influence of 3-{5-[4-(diethylamino)benzylidene]rhodanine}propionic acid on the conformation of 5-(4-chlorobenzylidene)-2-(4-methylpiperazin-1-yl)-3H-imidazol-4(5H)-one. Acta Crystallogr. C Struct. Chem. 2018, 74, 1427–1433. [Google Scholar] [CrossRef] [PubMed]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. 2016, B72, 171–179. [Google Scholar] [CrossRef]
- Karolak-Wojciechowska, J.; Mrozek, A.; Kieć-Kononowicz, K. Structure and activity studies of glycine receptor ligands: Part 6. The structure of ethyl-N-[(p-Cl-benzylidene)-4-oxo-2-imidazolidyl]glycinate hydrochloride as the basis for a model of the ligand–receptor interaction. J. Mol. Struct. 2000, 516, 113–121. [Google Scholar] [CrossRef]
- Pradel, E.; Pages, J.-M. The AcrAB-TolC efflux pump contributes to multidrug resistance inthe nosocomial pathogen Enterobacter aerogenes. Antimicrob. Agents Chemother. 2002, 46, 2640–2643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikaido, H.; Takatsuka, Y. Mechanisms of RND multidrug efflux pumps. Biochim. Biophys. Acta. 2009, 1794, 769–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikaido, H. Multidrug efflux pumps of Gram-negative bacteria. J. Bacteriol. 1996, 178, 5853–5859. [Google Scholar] [CrossRef] [Green Version]
- Ghisalberti, D.; Masi, M.; Pages, J.-M.; Chevalier, J. Chloramphenicol and expression of multidrug efflux pump in Enterobacter aerogenes. Biochem. Biophys. Res. Commun. 2005, 328, 1113–1118. [Google Scholar] [CrossRef]
- Chevalier, J.; Bredin, J.; Mahamoud, A.; Malléa, M.; Barbe, J.; Pagès, J.-M. Inhibitors of Antibiotic Efflux by AcrAB-TolC in Enterobacter aerogenes and Klebsiella pneumoniae strains. Antimicrob. Agents Chemother. 2004, 48, 1043–1046. [Google Scholar] [CrossRef] [Green Version]
- Bohnert, J.A.; Schuster, S.; Szymaniak-Vits, M.; Kern, W.V. Determination of real-time efflux phenotypes in Escherichia coli AcrB binding pocket phenylalanine mutants using a 1,2’ -dinaphthylamine efflux assay. PLoS ONE 2011, 6, e21196. [Google Scholar] [CrossRef] [Green Version]
- Vollmann, K.; Qurishi, R.; Hockemeyer, J.; Müller, C.E. Synthesis and properties of a new water-soluble prodrug of the adenosine A 2A receptor antagonist MSX-2. Molecules 2008, 13, 348–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szymańska, E.; Drabczyńska, A.; Karcz, T.; Müller, C.E.; Köse, M.; Karolak-Wojciechowska, J.; Fruziński, A.; Schabikowski, J.; Doroz-Płonka, A.; Handzlik, J.; et al. Similarities and differences in affinity and binding modes of tricyclic pyrimido- and pyrazinoxanthines at human and rat adenosine receptors. Bioorg. Med. Chem. 2016, 24, 4347–4362. [Google Scholar] [CrossRef] [PubMed]
- Matys, A.; Podlewska, S.; Witek, K.; Witek, J.; Bojarski, A.; Schabikowski, J.; Otrębska-Machaj, E.; Latacz, G.; Szymańska, E.; Kieć-Kononowicz, K.; et al. Imidazolidine-4-one derivatives in the search for novel chemosensitizers of Staphyloccocus aureus MRSA: Synthesis, biological evaluation and molecular modelling studies. Eur. J. Med. Chem. 2015, 101, 313–325. [Google Scholar] [CrossRef] [Green Version]
- Burla, M.C.; Caliandro, R.; Carrozzini, B.; Cascarano, G.L.; Cuocci, C.; Giacovazzo, C.; Mallamo, M.; Mazzone, A.; Polidori, G. Crystal structure determination and refinement via SIR2014. J. Appl. Cryst. 2015, 48, 306–309. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: Visualization and analysis of crystal structures. J. Appl. Cryst. 2006, 39, 453–457. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard, 9th ed.; Document M07-A9; CLSI: Wayne, PA, USA, 2012. [Google Scholar]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger Release 2019-3: LigPrep; Schrödinger LLC: New York, NY, 2019.
- Schrödinger Release 2019-3: Desmond; Schrödinger LLC: New York, NY, 2019.
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Cruciani, G.; Carosati, E.; De Boeck, B.; Ethirajulu, K.; Mackie, C.; Howe, T.; Vianello, R. MetaSite: Understanding metabolism in human cytochromes from the perspective of the chemist. J. Med. Chem. 2005, 48, 6970–6979. [Google Scholar] [CrossRef] [PubMed]
- Lubelska, A.; Latacz, G.; Jastrzębska-Więsek, M.; Kotańska, M.; Kurczab, R.; Partyka, A.; Marć, M.A.; Wilczyńska, D.; Doroz-Płonka, A.; Łażewska, D.; et al. Are the Hydantoin-1,3,5-triazine 5-HT6R Ligands a Hope to a Find New Procognitive and Anti-Obesity Drug? Considerations Based on Primary In Vivo Assays and ADME-Tox Profile In Vitro. Molecules 2019, 24, 4472. [Google Scholar] [CrossRef] [Green Version]
- Vergalli, J.; Atzori, A.; Pajovic, J.; Dumont, E.; Malloci, G.; Masi, M.; Vargiu, A.V.; Winterhalter, M.; Réfrégiers, M.; Ruggerone, P.; et al. The challenge of intracellular antibiotic accumulation, a function of fluoroquinolone influx versus bacterial efflux. Commun. Biol. 2020, 3, 198. [Google Scholar] [CrossRef]
Cpd | 7, 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|
R |
Cpd | Group | R | n | Cpd | Group | R | n | R1 |
---|---|---|---|---|---|---|---|---|
14 | B | 2 | 19 | B | 3 | - | ||
15 | B | 3 | 20 | B | 3 | - | ||
16 | B | 3 | 21 | B | 3 | - | ||
17 | B | 3 | 22 | C | - | |||
18 | B | 3 | 23 | C | - |
D-H···A | H···A (Å) | D···A (Å) | D-H-A (°) | Symmetry Code |
---|---|---|---|---|
N1-H1N···O1W | 2.00(2) | 2.875(1) | 173(2) | |
O1W-H1WA···O2W | 2.09(3) | 2.921(2) | 170(2) | |
O2W-H2WB···O3W | 1.93(2) | 2.712(2) | 174(2) | |
O3W-H3WA···Cl1 | 2.44(3) | 3.239(1) | 167(2) | |
N3-H3N···O2W | 2.01(2) | 2.857(2) | 173(2) | x, −y+1/2, z+1/2 |
O1W-H1WB···Cl1 | 2.50(3) | 3.334(1) | 174(2) | −x+1, y+1/2, −z+1/2 |
O2W-H2WA···Cl1 | 2.41(2) | 3.206(1) | 170(2) | −x+1, y−1/2, −z+1/2 |
O3W-H2WB···Cl1 | 2.39(3) | 3.203(1) | 162(2) | −x+1, y+1/2, −z+1/2 |
C21-H21B···O1W | 2.43 | 3.136(2) | 127.5 | |
C6-H6···O4 | 2.46 | 3.151(2) | 129.1 | −x, −y+1, −z+1 |
C19-H19A···O2W | 2.45 | 3.433(2) | 170.0 | x, −y+1/2, z+1/2 |
C19-H19B···O1 | 2.32 | 3.283(2) | 163.8 | −x+1, −y, −z+1 |
C20-H20A···Cl1 | 2.90 | 3.845(1) | 159.5 | x, −y+1/2, z+1/2 |
C20-H20B···O1 | 2.65 | 3.295(2) | 122.7 | −x+1, −y, −z+1 |
C21-H21A···Cl1 | 2.96 | 3.879(1) | 155.0 | −x+1, y+1/2, −z+1/2 |
Cpd | 1S. aureus ATCC 25923 | 1 MRSA 19449 | ||||
---|---|---|---|---|---|---|
Conc. of cpd [mM] | 2 MIC Reduction [µg/mL] | 3 A | Conc. of cpd [mM] | 2 MIC Reduction [µg/mL] | 3 A | |
10 | 0.0625 | No effect | 1 | 0.125 | From 256 to 64/32 | 4–8 |
15 | 0.03125 | No effect | 1 | 0.125 | From 256 to 128/64 | 2–4 |
Compound | Minimal Inhibitory Concentration (MIC) [mM] | ||
---|---|---|---|
Ea-294, Ea-308 ** | Ea-289 ** | CM-64 ** | |
7 * | 2 | > 2 | > 2 |
12 * | 1 | > 2 | > 2 |
13 | 2 | > 2 | > 2 |
14 | 2 | > 2 | > 2 |
15 * | 0.125 | > 2 | > 2 |
16 | 0.5 | > 2 | > 2 |
19 * | 0.25 | > 2 | > 2 |
20 * | 2 | > 2 | > 2 |
Compound | Solubility [mg/mL] | Solubility [mM/L] |
---|---|---|
9 | 1.483 | 3.168 |
10 | 2.685 | 5.735 |
11 | 20.153 | 47.288 |
12 | 0.765 | 1.645 |
15 | 87.581 | 205.502 |
19 | 8.530 | 19.467 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczor, A.; Witek, K.; Podlewska, S.; Sinou, V.; Czekajewska, J.; Żesławska, E.; Doroz-Płonka, A.; Lubelska, A.; Latacz, G.; Nitek, W.; et al. Molecular Insights into an Antibiotic Enhancer Action of New Morpholine-Containing 5-Arylideneimidazolones in the Fight against MDR Bacteria. Int. J. Mol. Sci. 2021, 22, 2062. https://doi.org/10.3390/ijms22042062
Kaczor A, Witek K, Podlewska S, Sinou V, Czekajewska J, Żesławska E, Doroz-Płonka A, Lubelska A, Latacz G, Nitek W, et al. Molecular Insights into an Antibiotic Enhancer Action of New Morpholine-Containing 5-Arylideneimidazolones in the Fight against MDR Bacteria. International Journal of Molecular Sciences. 2021; 22(4):2062. https://doi.org/10.3390/ijms22042062
Chicago/Turabian StyleKaczor, Aneta, Karolina Witek, Sabina Podlewska, Veronique Sinou, Joanna Czekajewska, Ewa Żesławska, Agata Doroz-Płonka, Annamaria Lubelska, Gniewomir Latacz, Wojciech Nitek, and et al. 2021. "Molecular Insights into an Antibiotic Enhancer Action of New Morpholine-Containing 5-Arylideneimidazolones in the Fight against MDR Bacteria" International Journal of Molecular Sciences 22, no. 4: 2062. https://doi.org/10.3390/ijms22042062
APA StyleKaczor, A., Witek, K., Podlewska, S., Sinou, V., Czekajewska, J., Żesławska, E., Doroz-Płonka, A., Lubelska, A., Latacz, G., Nitek, W., Bischoff, M., Alibert, S., Pagès, J. -M., Jacob, C., Karczewska, E., Bolla, J. -M., & Handzlik, J. (2021). Molecular Insights into an Antibiotic Enhancer Action of New Morpholine-Containing 5-Arylideneimidazolones in the Fight against MDR Bacteria. International Journal of Molecular Sciences, 22(4), 2062. https://doi.org/10.3390/ijms22042062