Permissive Modulation of Sphingosine-1-Phosphate-Enhanced Intracellular Calcium on BKCa Channel of Chromaffin Cells
Abstract
:1. Introduction
2. Results
2.1. S1P Decrease the Single-Channel Currents of BKCa in Cell-Free Mode
2.2. High-Dose S1P Elevate Intracellular Ca2+ (Cai) Thereby Enhancing BKCa Activities in On-Cell Patches
2.3. Biphasic Effects of S1P on IK(Ca) of Chromaffin Cells
2.4. Low-Dose S1P Increase Chromaffin Cell Excitability
2.5. S1P Modulate IK(Ca) and BKCa in PC12
3. Discussion
3.1. Endogenous S1P Dosage in Physiology
3.2. S1P Modulate BKCa Channel Kinetics in Chromaffin Cells
3.3. S1P-Induced Cai Elevation Triggers BKCa Activation
3.4. Biphasic Effects of S1P on IK(Ca) and the Mechanism of S1P-Mediated Stimulus-Secretion
3.5. Possible Mechanisms of S1P-Mediated Regulations on BKCa and Study Limitations
4. Materials and Methods
4.1. Cell Preparations
4.2. Drugs and Solutions
4.3. Intracellular Ca2+ (Cai) Measurements
4.4. Electrophysiological Measurements
4.5. Single-Channel Analyses
4.6. Statistical Analysis
4.7. Computer Simulations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | analysis of variance |
AP | action potential |
BAPTA | bis-(o-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid tetrakis |
BKCa | large-conductance Ca2+-activated K+ channel |
Cai | intracellular Ca2+ concentration |
Cav | voltage-gated Ca2+ channel |
EGTA | ethylene glycol tetraacetic acid |
Emax | maximal inhibition of channel activity |
IC50 | the concentration for a 50% inhibition |
ICa | voltage-gated Ca2+ currents |
IK(Ca) | Ca2+-activated K+ currents |
Pax | paxilline |
PC12 | pheochromocytoma cell line |
S1P | sphingosine-1-phosphate |
S1PR | S1P receptor |
Vm | membrane potential |
References
- Cartier, A.; Hla, T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science 2019, 366, eaar5551. [Google Scholar] [CrossRef] [PubMed]
- Yatomi, Y. Plasma sphingosine 1-phosphate metabolism and analysis. Biochim. Biophys. Acta 2008, 1780, 606–611. [Google Scholar] [CrossRef]
- Vito, C.D.; Hadi, L.A.; Navone, S.E.; Marfia, G.; Campanella, R.; Mancuso, M.E.; Riboni, L. Platelet-derived sphingosine-1-phosphate and inflammation: From basic mechanisms to clinical implications. Platelets 2016, 27, 393–401. [Google Scholar] [CrossRef]
- Pyne, S.; Pyne, N. Sphingosine 1-phosphate signalling via the endothelial differentiation gene family of G-protein-coupled receptors. Pharmacol. Ther. 2000, 88, 115–131. [Google Scholar] [CrossRef]
- Posse de Chaves, E.I. Sphingolipids in apoptosis, survival and regeneration in the nervous system. Biochim. Biophys. Acta 2006, 1758, 1995–2015. [Google Scholar] [CrossRef] [Green Version]
- Teisseyre, A.; Michalak, K.; Kuliszkiewicz-Janus, M. The influence of membrane lipid metabolites on lymphocyte potassium channel activity. Cell. Mol. Biol. Lett. 2002, 7, 1095–1109. [Google Scholar]
- Ochi, R.; Momose, Y.; Oyama, K.; Giles, W.R. Sphingosine-1-phosphate effects on guinea pig atrial myocytes: Alterations in action potentials and K+ currents. Cardiovasc. Res. 2006, 70, 88–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.Z.; Muraki, K.; Zeng, F.; Li, J.; Sukumar, P.; Shah, S.; Dedman, A.M.; Flemming, P.K.; McHugh, D.; Naylor, J.; et al. A sphingosine-1-phosphate-activated calcium channel controlling vascular smooth muscle cell motility. Circ. Res. 2006, 98, 1381–1389. [Google Scholar] [CrossRef]
- Kim, M.Y.; Liang, G.H.; Kim, J.A.; Kim, Y.J.; Oh, S.; Suh, S.H. Sphingosine-1-phosphate activates BKCa channels independently of G protein-coupled receptor in human endothelial cells. Am. J. Physiol. Cell Physiol. 2006, 290, C1000–C1008. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.N.; Wu, A.Z.; Lin, M.W. Pharmacological roles of the large-conductance calcium-activated potassium channel. Curr. Top. Med. Chem. 2006, 6, 1025–1030. [Google Scholar] [CrossRef]
- Gueguinou, M.; Chantome, A.; Fromont, G.; Bougnoux, P.; Vandier, C.; Potier-Cartereau, M. KCa and Ca(2+) channels: The complex thought. Biochim. Biophys. Acta 2014, 1843, 2322–2333. [Google Scholar] [CrossRef] [Green Version]
- Gavello, D.; Vandael, D.; Gosso, S.; Carbone, E.; Carabelli, V. Dual action of leptin on rest-firing and stimulated catecholamine release via phosphoinositide 3-kinase-driven BK channel up-regulation in mouse chromaffin cells. J. Physiol. 2015, 593, 4835–4853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovell, P.V.; James, D.G.; McCobb, D.P. Bovine versus rat adrenal chromaffin cells: Big differences in BK potassium channel properties. J. Neurophysiol. 2000, 83, 3277–3286. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.N.; Wang, Y.J.; Lin, M.W. Potent stimulation of large-conductance Ca2+-activated K+ channels by rottlerin, an inhibitor of protein kinase C-delta, in pituitary tumor (GH3) cells and in cortical neuronal (HCN-1A) cells. J. Cell. Physiol. 2007, 210, 655–666. [Google Scholar] [CrossRef]
- Yang, L.; Yatomi, Y.; Miura, Y.; Satoh, K.; Ozaki, Y. Metabolism and functional effects of sphingolipids in blood cells. Br. J. Haematol. 1999, 107, 282–293. [Google Scholar] [CrossRef] [PubMed]
- Ruwisch, L.; Schafer-Korting, M.; Kleuser, B. An improved high-performance liquid chromatographic method for the determination of sphingosine-1-phosphate in complex biological materials. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2001, 363, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Allende, M.L.; Sasaki, T.; Kawai, H.; Olivera, A.; Mi, Y.; van Echten-Deckert, G.; Hajdu, R.; Rosenbach, M.; Keohane, C.A.; Mandala, S.; et al. Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J. Biol. Chem. 2004, 279, 52487–52492. [Google Scholar] [CrossRef] [Green Version]
- Butter, J.J.; Koopmans, R.P.; Michel, M.C. A rapid and validated HPLC method to quantify sphingosine 1-phosphate in human plasma using solid-phase extraction followed by derivatization with fluorescence detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005, 824, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Schwab, S.R.; Pereira, J.P.; Matloubian, M.; Xu, Y.; Huang, Y.; Cyster, J.G. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 2005, 309, 1735–1739. [Google Scholar] [CrossRef]
- Murata, N.; Sato, K.; Kon, J.; Tomura, H.; Yanagita, M.; Kuwabara, A.; Ui, M.; Okajima, F. Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem. J. 2000, 352 Pt 3, 809–815. [Google Scholar] [CrossRef]
- Okajima, F. Plasma lipoproteins behave as carriers of extracellular sphingosine 1-phosphate: Is this an atherogenic mediator or an anti-atherogenic mediator? Biochim. Biophys. Acta 2002, 1582, 132–137. [Google Scholar] [CrossRef]
- Hla, T.; Lee, M.J.; Ancellin, N.; Paik, J.H.; Kluk, M.J. Lysophospholipids--receptor revelations. Science 2001, 294, 1875–1878. [Google Scholar] [CrossRef]
- Solaro, C.R.; Prakriya, M.; Ding, J.P.; Lingle, C.J. Inactivating and noninactivating Ca(2+)- and voltage-dependent K+ current in rat adrenal chromaffin cells. J. Neurosci. Off. J. Soc. Neurosci. 1995, 15, 6110–6123. [Google Scholar] [CrossRef]
- Weiger, T.M.; Langer, T.; Hermann, A. External action of di- and polyamines on maxi calcium-activated potassium channels: An electrophysiological and molecular modeling study. Biophys. J. 1998, 74 Pt 1, 722–730. [Google Scholar] [CrossRef] [Green Version]
- Marty, A. Ca-dependent K channels with large unitary conductance in chromaffin cell membranes. Nature 1981, 291, 497–500. [Google Scholar] [CrossRef]
- Ghosh, T.K.; Bian, J.; Gill, D.L. Intracellular calcium release mediated by sphingosine derivatives generated in cells. Science 1990, 248, 1653–1656. [Google Scholar] [CrossRef]
- Ghosh, T.K.; Bian, J.; Gill, D.L. Sphingosine 1-phosphate generated in the endoplasmic reticulum membrane activates release of stored calcium. J. Biol. Chem. 1994, 269, 22628–22635. [Google Scholar] [CrossRef]
- Pan, C.Y.; Wu, A.Z.; Chen, Y.T. Lysophospholipids regulate excitability and exocytosis in cultured bovine chromaffin cells. J. Neurochem. 2007, 102, 944–956. [Google Scholar] [CrossRef]
- Rosa, J.M.; Gandia, L.; Garcia, A.G. Permissive role of sphingosine on calcium-dependent endocytosis in chromaffin cells. Pflug. Arch. Eur. J. Physiol. 2010, 460, 901–914. [Google Scholar] [CrossRef]
- Darios, F.; Wasser, C.; Shakirzyanova, A.; Giniatullin, A.; Goodman, K.; Munoz-Bravo, J.L.; Raingo, J.; Jorgacevski, J.; Kreft, M.; Zorec, R.; et al. Sphingosine facilitates SNARE complex assembly and activates synaptic vesicle exocytosis. Neuron 2009, 62, 683–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiegel, S.; Milstien, S. Sphingosine 1-phosphate, a key cell signaling molecule. J. Biol. Chem. 2002, 277, 25851–25854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Z.J.; Delaney, T.L.; Zanin, M.P.; Haberberger, R.V.; Pitson, S.M.; Huang, J.; Alford, S.; Cologna, S.M.; Keating, D.J.; Gong, L.W. Extracellular and intracellular sphingosine-1-phosphate distinctly regulates exocytosis in chromaffin cells. J. Neurochem. 2019, 149, 729–746. [Google Scholar] [CrossRef] [PubMed]
- Alemany, R.; Kleuser, B.; Ruwisch, L.; Danneberg, K.; Lass, H.; Hashemi, R.; Spiegel, S.; Jakobs, K.H.; Meyer zu Heringdorf, D. Depolarisation induces rapid and transient formation of intracellular sphingosine-1-phosphate. FEBS Lett. 2001, 509, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.T.; Liu, P.Y.; Wu, S.N. Actions of FTY720 (Fingolimod), a Sphingosine-1-Phosphate Receptor Modulator, on Delayed-Rectifier K+ Current and Intermediate-Conductance Ca2+-Activated K+ Channel in Jurkat T-Lymphocytes. Molecules 2020, 25, 4525. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, L.; Jiang, L.; Xiong, W.; Tang, Y.; Lin, L.; Yu, T. Alteration of sphingosine-1-phosphate with aging induces contractile dysfunction of colonic smooth muscle cells via Ca2+-activated K+ channel (BKCa) upregulation. Neurogastroenterol. Motil. Off. J. Eur. Gastrointest. Motil. Soc. 2021, e14052. [Google Scholar] [CrossRef]
- Chang, H.M.; Reitstetter, R.; Gruener, R. Lipid-ion channel interactions: Increasing phospholipid headgroup size but not ordering acyl chains alters reconstituted channel behavior. J. Membr. Biol. 1995, 145, 13–19. [Google Scholar] [CrossRef]
- Clarke, A.L.; Petrou, S.; Walsh, J.V., Jr.; Singer, J.J. Modulation of BK(Ca) channel activity by fatty acids: Structural requirements and mechanism of action. Am. J. Physiol. Cell Physiol. 2002, 283, C1441–C1453. [Google Scholar] [CrossRef]
- Denson, D.D.; Wang, X.; Worrell, R.T.; Eaton, D.C. Effects of fatty acids on BK channels in GH(3) cells. Am. J. Physiol. Cell Physiol. 2000, 279, C1211–C1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, M.W.; Wu, A.Z.; Ting, W.H.; Li, C.L.; Cheng, K.S.; Wu, S.N. Changes in membrane cholesterol of pituitary tumor (GH3) cells regulate the activity of large-conductance Ca2+-activated K+ channels. Chin. J. Physiol. 2006, 49, 1–13. [Google Scholar]
- Taha, T.A.; Argraves, K.M.; Obeid, L.M. Sphingosine-1-phosphate receptors: Receptor specificity versus functional redundancy. Biochim. Biophys. Acta 2004, 1682, 48–55. [Google Scholar] [CrossRef]
- Lee, M.J.; Van Brocklyn, J.R.; Thangada, S.; Liu, C.H.; Hand, A.R.; Menzeleev, R.; Spiegel, S.; Hla, T. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 1998, 279, 1552–1555. [Google Scholar] [CrossRef] [PubMed]
- Molderings, G.J.; Bonisch, H.; Bruss, M.; Wolf, C.; von Kugelgen, I.; Gothert, M. S1P-receptors in PC12 and transfected HEK293 cells: Molecular targets of hypotensive imidazoline I(1) receptor ligands. Neurochem. Int. 2007, 51, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Safarian, F.; Khallaghi, B.; Ahmadiani, A.; Dargahi, L. Activation of S1P(1) receptor regulates PI3K/Akt/FoxO3a pathway in response to oxidative stress in PC12 cells. J. Mol. Neurosci. Mn 2015, 56, 177–187. [Google Scholar] [CrossRef]
- Wang, W.; Xiang, P.; Chew, W.S.; Torta, F.; Bandla, A.; Lopez, V.; Seow, W.L.; Lam, B.W.S.; Chang, J.K.; Wong, P.; et al. Activation of sphingosine 1-phosphate receptor 2 attenuates chemotherapy-induced neuropathy. J. Biol. Chem. 2020, 295, 1143–1152. [Google Scholar] [CrossRef]
- Qin, F.; Auerbach, A.; Sachs, F. Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. Biophys. J. 1996, 70, 264–280. [Google Scholar] [CrossRef] [Green Version]
- Van Goor, F.; LeBeau, A.P.; Krsmanovic, L.Z.; Sherman, A.; Catt, K.J.; Stojilkovic, S.S. Amplitude-dependent spike-broadening and enhanced Ca(2+) signaling in GnRH-secreting neurons. Biophys. J. 2000, 79, 1310–1323. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.N.; Liu, S.I.; Huang, M.H. Cilostazol, an inhibitor of type 3 phosphodiesterase, stimulates large-conductance, calcium-activated potassium channels in pituitary GH3 cells and pheochromocytoma PC12 cells. Endocrinology 2004, 145, 1175–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gullo, F.; Ales, E.; Rosati, B.; Lecchi, M.; Masi, A.; Guasti, L.; Cano-Abad, M.F.; Arcangeli, A.; Lopez, M.G.; Wanke, E. ERG K+ channel blockade enhances firing and epinephrine secretion in rat chromaffin cells: The missing link to LQT2-related sudden death? FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2003, 17, 330–332. [Google Scholar] [CrossRef]
Solution’s Name | Milieu | Composition (in mM) |
---|---|---|
Normal Tyrode solution | Extracellular | NaCl 136.5, KCl 5.4, CaCl2 1.8, MgCl2 0.53, glucose 5.5, and HEPES 5.5, adjusted with NaOH to pH 7.4 |
High K+-bathing solution | Extracellular | KCl 145, CaCl2 1.8, MgCl2 0.53, and HEPES 5, adjusted with KOH to pH 7.4 |
K+-aspartate solution | Intracellular | K+-aspartate 130, KCl 20, KH2PO4 1, MgCl2 1, EGTA 0.1, ATP 3, GTP 0.1, and HEPES 5, adjusted with KOH to pH 7.2 |
High K+-pipette solution | Intracellular | KCl 145, MgCl2 2, EGTA 0.1, and HEPES 5, adjusted with KOH to pH 7.2 |
Symbol | Description | Value |
---|---|---|
Cm | Membrane capacitance | 14 pF |
gNa | Na+ current conductance | 65 nS |
gCa,L | L-type Ca2+ current conductance | 0.98 nS |
gCa,T | T-type Ca2+ current conductance | 0.94 nS |
gK(DR) | K+ current conductance | 97 nS |
gK(Ca) | Ca2+-activated K+ current conductance | 0.64 nS |
gK(M) | M-type K+ current conductance | 0.43 nS |
gK(erg) | erg K+ current conductance | 0.95 nS |
VNa | Na+ reversal potential | +60 mV |
VCa | Ca2+ reversal potential | +100 mV |
VK | K+ reversal potential | −80 mV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, A.Z.; Ohn, T.-L.; Shei, R.-J.; Wu, H.-F.; Chen, Y.-C.; Lee, H.-C.; Dai, D.-F.; Wu, S.-N. Permissive Modulation of Sphingosine-1-Phosphate-Enhanced Intracellular Calcium on BKCa Channel of Chromaffin Cells. Int. J. Mol. Sci. 2021, 22, 2175. https://doi.org/10.3390/ijms22042175
Wu AZ, Ohn T-L, Shei R-J, Wu H-F, Chen Y-C, Lee H-C, Dai D-F, Wu S-N. Permissive Modulation of Sphingosine-1-Phosphate-Enhanced Intracellular Calcium on BKCa Channel of Chromaffin Cells. International Journal of Molecular Sciences. 2021; 22(4):2175. https://doi.org/10.3390/ijms22042175
Chicago/Turabian StyleWu, Adonis Z., Tzu-Lun Ohn, Ren-Jay Shei, Huei-Fang Wu, Yong-Cyuan Chen, Hsiang-Chun Lee, Dao-Fu Dai, and Sheng-Nan Wu. 2021. "Permissive Modulation of Sphingosine-1-Phosphate-Enhanced Intracellular Calcium on BKCa Channel of Chromaffin Cells" International Journal of Molecular Sciences 22, no. 4: 2175. https://doi.org/10.3390/ijms22042175
APA StyleWu, A. Z., Ohn, T. -L., Shei, R. -J., Wu, H. -F., Chen, Y. -C., Lee, H. -C., Dai, D. -F., & Wu, S. -N. (2021). Permissive Modulation of Sphingosine-1-Phosphate-Enhanced Intracellular Calcium on BKCa Channel of Chromaffin Cells. International Journal of Molecular Sciences, 22(4), 2175. https://doi.org/10.3390/ijms22042175