Editorial of Special Issue “Protein Post-Translational Modifications in Signal Transduction and Diseases”
Author Contributions
Funding
Conflicts of Interest
References
- Hornbeck, P.V.; Zhang, B.; Murray, B.; Kornhauser, J.M.; Latham, V.; Skrzypek, E. PhosphoSitePlus, 2014: Mutations, PTMs and Recalibrations. Nucleic Acids Res. 2015, 43, D512–D520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khella, M.S.; Bröhm, A.; Weirich, S.; Jeltsch, A. Mechanistic Insights into the Allosteric Regulation of the Clr4 Protein Lysine Methyltransferase by Autoinhibition and Automethylation. Int. J. Mol. Sci. 2020, 21, 8832. [Google Scholar] [CrossRef] [PubMed]
- Andrés, M.; García-Gomis, D.; Ponte, I.; Suau, P.; Roque, A. Histone H1 Post-Translational Modifications: Update and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 5941. [Google Scholar] [CrossRef] [PubMed]
- Salvi, M. Non-Histone Protein Methylation: Molecular Mechanisms and Physiopathological Relevance. Curr. Protein Pept. Sci. 2020, 21, 640–641. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-W.; Huang, L.-Y.; Liao, C.-F.; Chang, K.-P.; Chu, Y.-W. GasPhos: Protein Phosphorylation Site Prediction Using a New Feature Selection Approach with a GA-Aided Ant Colony System. Int. J. Mol. Sci. 2020, 21, 7891. [Google Scholar] [CrossRef] [PubMed]
- Syifa, N.; Yang, J.-T.; Wu, C.-S.; Lin, M.-H.; Wu, W.-L.; Lai, C.-W.; Ku, S.-H.; Liang, S.-Y.; Hung, Y.-C.; Chou, C.-T.; et al. Phosphoproteomics and Bioinformatics Analyses Reveal Key Roles of GSK-3 and AKAP4 in Mouse Sperm Capacitation. Int. J. Mol. Sci. 2020, 21, 7283. [Google Scholar] [CrossRef] [PubMed]
- Mercado-Gómez, M.; Lopitz-Otsoa, F.; Azkargorta, M.; Serrano-Maciá, M.; Lachiondo-Ortega, S.; Goikoetxea-Usandizaga, N.; Rodríguez-Agudo, R.; Fernández-Ramos, D.; Bizkarguenaga, M.; Juan, V.G.; et al. Multi-Omics Integration Highlights the Role of Ubiquitination in CCl4-Induced Liver Fibrosis. Int. J. Mol. Sci. 2020, 21, 9043. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Yu, J.; Liao, W.; Xie, J.; Yu, J.; Lv, J.; Xiao, X.; Hu, L.; Wu, Y. Proteomic Investigation of S-Nitrosylated Proteins during NO-Induced Adventitious Rooting of Cucumber. Int. J. Mol. Sci. 2019, 20, 5363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cesaro, L.; Salvi, M. Mitochondrial Tyrosine Phosphoproteome: New Insights from an up-to-Date Analysis. Biofactors 2010, 36, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Stram, A.R.; Payne, R.M. Post-Translational Modifications in Mitochondria: Protein Signaling in the Powerhouse. Cell Mol. Life Sci. 2016, 73, 4063–4073. [Google Scholar] [CrossRef] [PubMed]
- Ould Amer, Y.; Hebert-Chatelain, E. Insight into the Interactome of Intramitochondrial PKA Using Biotinylation-Proximity Labeling. Int. J. Mol. Sci. 2020, 21, 8283. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Castellano, A.; Márquez, I.; Pérez-Mejías, G.; Díaz-Quintana, A.; De la Rosa, M.A.; Díaz-Moreno, I. Post-Translational Modifications of Cytochrome c in Cell Life and Disease. Int. J. Mol. Sci. 2020, 21, 8483. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Mehta, D.; Mishra, N.; Nayak, D.; Sunil, S. Role of Host-Mediated Post-Translational Modifications (PTMs) in RNA Virus Pathogenesis. Int. J. Mol. Sci. 2021, 22, 323. [Google Scholar] [CrossRef] [PubMed]
- Lechowicz, U.; Rudzinski, S.; Jezela-Stanek, A.; Janciauskiene, S.; Chorostowska-Wynimko, J. Post-Translational Modifications of Circulating Alpha-1-Antitrypsin Protein. Int. J. Mol. Sci. 2020, 21, 9187. [Google Scholar] [CrossRef] [PubMed]
- Schianchi, F.; Glatz, J.F.C.; Navarro Gascon, A.; Nabben, M.; Neumann, D.; Luiken, J.J.F.P. Putative Role of Protein Palmitoylation in Cardiac Lipid-Induced Insulin Resistance. Int. J. Mol. Sci. 2020, 21, 9438. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Sun, H.; Wang, G.; Ren, H. Imbalance of Lysine Acetylation Contributes to the Pathogenesis of Parkinson’s Disease. Int. J. Mol. Sci. 2020, 21, 7182. [Google Scholar] [CrossRef] [PubMed]
- Cesaro, L.; Pinna, L.A.; Salvi, M. A Comparative Analysis and Review of Lysyl Residues Affected by Posttranslational Modifications. Curr. Genom. 2015, 16, 128–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.A.; Cole, P.A. The Chemical Biology of Reversible Lysine Post-Translational Modifications. Cell Chem. Biol. 2020, 27, 953–969. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.-Y.; Lee, T.-Y.; Kao, H.-J.; Ma, C.-T.; Lee, C.-C.; Lin, T.-H.; Chang, W.-C.; Huang, H.-D. DbPTM in 2019: Exploring Disease Association and Cross-Talk of Post-Translational Modifications. Nucleic Acids Res. 2019, 47, D298–D308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Amore, C.; Salvi, M. Editorial of Special Issue “Protein Post-Translational Modifications in Signal Transduction and Diseases”. Int. J. Mol. Sci. 2021, 22, 2232. https://doi.org/10.3390/ijms22052232
D’Amore C, Salvi M. Editorial of Special Issue “Protein Post-Translational Modifications in Signal Transduction and Diseases”. International Journal of Molecular Sciences. 2021; 22(5):2232. https://doi.org/10.3390/ijms22052232
Chicago/Turabian StyleD’Amore, Claudio, and Mauro Salvi. 2021. "Editorial of Special Issue “Protein Post-Translational Modifications in Signal Transduction and Diseases”" International Journal of Molecular Sciences 22, no. 5: 2232. https://doi.org/10.3390/ijms22052232
APA StyleD’Amore, C., & Salvi, M. (2021). Editorial of Special Issue “Protein Post-Translational Modifications in Signal Transduction and Diseases”. International Journal of Molecular Sciences, 22(5), 2232. https://doi.org/10.3390/ijms22052232