Identification of Enzymatic Bottlenecks for the Aerobic Production of Malate from Glycerol by the Systematic Gene Overexpression of Anaplerotic Enzymes in Escherichia coli
Abstract
:1. Introduction
2. Results
2.1. Overexpression Screening of Malate Dehydrogenase and Anaplerotic Enzymes in E.coli M4 and M4-ΔiclR Mutant Strains
2.2. Identification of the Culture Media Factors That Affect to the Malate Production
2.3. Optimization of Culture Conditions
2.3.1. Effect of Pck Overexpression Level on Malate Production
2.3.2. Kinetic Study of Glycerol Consumption and Malate Production
2.3.3. Effect of Sodium Hydrogen Carbonate on Malate Production
2.3.4. Ppc Deletion on the M4-ΔiclR Genetic Background Hinders Cell Growth
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Construction of Knockout Strains
4.2. Gene Cloning of Anaplerotic and Cataplerotic E. coli Enzymes and Overexpression Assays through M4 and M4-ΔiclR Mutants
4.3. Growth Conditions
4.4. Evaluation of the Influence of Culture Medium Components on Malate Production
4.5. Analytical Techniques
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahn, J.H.; Jang, Y.S.; Lee, S.Y. Production of succinic acid by metabolically engineered microorganisms. Curr. Opin. Biotechnol. 2016, 42, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Song, C.W.; Shin, J.H.; Lee, S.Y. Biorefineries for the production of top building block chemicals and their derivatives. Metab. Eng. 2015, 28, 223–239. [Google Scholar] [CrossRef] [PubMed]
- Bressler, E.; Pines, O.; Goldberg, I.; Braun, S. Conversion of fumaric acid to L-malic by sol-gel immobilized Saccharomyces cerevisiae in a supported liquid membrane bioreactor. Biotechnol. Prog. 2002, 18, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Tsao, G.T.; Cao, N.J.; Du, J.; Gong, C.S. Production of Multifunctional organic acids from renewable resources. Recent Prog. Bioconversion Lignocellul. 2007, 65, 243–280. [Google Scholar] [CrossRef]
- Werpy, T.; Petersen, G. Top Valie Added Chemicals from Biomass: Results of screening for potential candidates from sugars and synthesis gas. US Dep. Energy 2004, 1–76. [Google Scholar] [CrossRef] [Green Version]
- Karp, P.D.; Keseler, I.M.; Shearer, A.; Latendresse, M.; Krummenacker, M.; Paley, S.M.; Paulsen, I.; Collado-Vides, J.; Gama-Castro, S.; Peralta-Gil, M.; et al. Multidimensional annotation of the Escherichia coli K-12 genome. Nucleic Acids Res. 2007, 35, 7577–7590. [Google Scholar] [CrossRef]
- Kao, K.C.; Tran, L.M.; Liao, J.C. A global regulatory role of gluconeogenic genes in Escherichia coli revealed by transcriptome network analysis. J. Biol. Chem. 2005, 280, 36079–36087. [Google Scholar] [CrossRef] [Green Version]
- Oh, M.-K.; Rohlin, L.; Kao, K.C.; Liao, J.C. Global expression profiling of acetate-grown Escherichia coli. J. Biol. Chem. 2002, 277, 13175–13183. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.H.; Lee, S.Y. Metabolic flux analysis for succinic acid production by recombinant Escherichia coli with amplified malic enzyme activity. Biotechnol. Bioeng. 2001, 74, 89–95. [Google Scholar] [CrossRef]
- Van Heeswijk, W.C.; Westerhoff, H.V.; Boogerd, F.C. Nitrogen assimilation in Escherichia coli: Putting molecular data into a systems perspective. Microbiol. Mol. Biol. Rev. 2013, 77, 628–695. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Zhang, B.; Chen, T.; Wang, Z.; Tang, Y.J.; Zhao, X. Directed pathway evolution of the glyoxylate shunt in Escherichia coli for improved aerobic succinate production from glycerol. J. Ind. Microbiol. Biotechnol. 2013, 40, 1461–1475. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Bennett, G.N.; San, K.-Y. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab. Eng. 2005, 7, 116–127. [Google Scholar] [CrossRef]
- Zhang, X.; Jantama, K.; Moore, J.C.; Jarboe, L.R.; Shanmugam, K.T.; Ingram, L.O. Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc. Natl. Acad. Sci. USA 2009, 106, 20180–20185. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wu, H.; Li, Z.; Ye, Q. Enhanced succinate production from glycerol by engineered Escherichia coli strains. Bioresour. Technol. 2016, 218, 217–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Wang, X.; Shanmugam, K.T.; Ingram, L.O. L-malate production by metabolically engineered Escherichia coli. Appl. Environ. Microbiol. 2011, 77, 427–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Zheng, T.; Ye, X.; Xin, F.; Zhang, W.; Dong, W.; Ma, J.; Jiang, M. Metabolic engineering of Escherichia coli for L-malate production anaerobically. Microb. Cell Fact. 2020, 19, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.Y.; Kim, T.Y.; Lee, S.Y.; Hong, S.H. Metabolic engineering of Escherichia coli for the production of malic acid. Biochem. Eng. J. 2008, 40, 312–320. [Google Scholar] [CrossRef]
- Trichez, D.; Auriol, C.; Baylac, A.; Irague, R.; Dressaire, C.; Carnicer-Heras, M.; Heux, S.; François, J.M.; Walther, T. Engineering of Escherichia coli for Krebs cycle-dependent production of malic acid. Microb. Cell Fact. 2018, 17, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, C.; Wang, S.; Hu, G.; Guo, L.; Chen, X.; Xu, P.; Liu, L. Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning. Biotechnol. Bioeng. 2018, 115, 661–672. [Google Scholar] [CrossRef]
- Li, Z.J.; Hong, P.H.; Da, Y.Y.; Li, L.K.; Stephanopoulos, G. Metabolic engineering of Escherichia coli for the production of L -malate from xylose. Metab. Eng. 2018, 48, 25–32. [Google Scholar] [CrossRef]
- Vivek, N.; Sindhu, R.; Madhavan, A.; Anju, A.J.; Castro, E.; Faraco, V.; Pandey, A.; Binod, P. Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate–Metabolic aspects, challenges and possibilities: An overview. Bioresour. Technol. 2017, 239, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, S.S.; Gonzalez, R.; Shams Yazdani, S.; Gonzalez, R.; Yazdani, S.S.; Gonzalez, R. Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab. Eng. 2008, 10, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shanmugam, K.T.; Ingram, L.O. Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli. Appl. Environ. Microbiol. 2010, 76, 2397–2401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voet, D.; Voet, J.P.C. Fundamentals of Biochemistry: Life at the Molecular Level, 4th ed.; Hoboken, N., Ed.; Wiley Online Library: Hoboken, NJ, USA, 2015. [Google Scholar]
- Utter, M.F.; Kolenbrander, H. The Enzymes, 3rd ed.; Boyer, P., Ed.; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Lin, H.; Vadali, R.V.; Bennett, G.N.; San, K.-Y. Increasing the Acetyl-CoA pool in the presence of overexpressed phosphoenolpyruvate carboxylase or pyruvate carboxylase enhances succinate production in Escherichia coli. Biotechnol. Prog. 2004, 20, 1599–1604. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-D.; Lee, S.Y.; Kim, P. A Physiology study of Escherichia coli overexpressing phosphoenolpyruvate carboxykinase. Biosci. Biotechnol. Biochem. 2008, 72, 1138–1141. [Google Scholar] [CrossRef] [Green Version]
- Karinou, E.; Compton, E.L.R.; Morel, M.; Javelle, A. The Escherichia coli SLC26 homologue YchM (DauA) is a C4-dicarboxylic acid transporter. Mol. Microbiol. 2013, 87, 623–640. [Google Scholar] [CrossRef]
- Janausch, I.; Kim, O.; Unden, G. DctA- and Dcu-independent transport of succinate in Escherichia coli: Contribution of diffusion and of alternative carriers. Arch. Microbiol. 2001, 176, 224–230. [Google Scholar] [CrossRef]
- Baba, T.; Ara, T.; Hasegawa, M.; Takai, Y.; Okumura, Y.; Baba, M.; Datsenko, K.A.; Tomita, M.; Wanner, B.L.; Mori, H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol. Syst. Biol. 2006, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Datsenko, K.A.; Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 2000, 97, 6640–6645. [Google Scholar] [CrossRef] [Green Version]
- Guzman, L.M.; Belin, D.; Carson, M.J.; Beckwith, J. Tight Regulation, modulation, and high-level expression by vectors containing the arabinose pBAD Promoter. J. Bacteriol. 1995, 177, 4121–4130. [Google Scholar] [CrossRef] [Green Version]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harb. Lab. Press: Cold Spring Harb, NY, USA, 1989. [Google Scholar]
- Valle, A.; Cabrera, G.; Cantero, D.; Bolivar, J. Heterologous expression of the human phosphoenol pyruvate carboxykinase (hPEPCK-M) improves hydrogen and ethanol synthesis in the Escherichia coli dcuD mutant when grown in a glycerol-based medium. N. Biotechnol. 2017, 35, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Plackett, R.L.; Burman, J.P. The design of optimum multifactorial experiments. Biometrika 1946, 33, 305. [Google Scholar] [CrossRef]
- Statgraphics Centurion, version 18; Statgraphics Technologies, Inc.: The Plains, VA, USA, 2019.
- Cofré, O.; Ramírez, M.; Gómez, J.M.; Cantero, D. Optimization of culture media for ethanol production from glycerol by Escherichia coli. Biomass Bioenergy 2012, 37, 275–281. [Google Scholar] [CrossRef] [Green Version]
- SigmaPlot, version 10.0; Statgraphics Technologies, Inc.: San Jose, CA, USA, 2007.
FACTORS | +1 | 0 | −1 |
---|---|---|---|
Na2HPO4 (g/L) | 12 | 10 | 8 |
KH2PO4 (g/L) | 10 | 8 | 6 |
NaHCO3 (g/L) | 4 | 2 | 0 |
NaCl (g/L) | 1 | 0.5 | 0 |
NH4Cl (g/L) | 3 | 1.75 | 0.5 |
Glycerol (g/L) | 19.5 | 13.5 | 6.5 |
MgSO4 1M (mL/L) | 4 | 2.25 | 0.5 |
CaCl2 1M (mL/L) | 0.15 | 0.1 | 0.05 |
Trace elements (mL/L) | 0.15 | 0.075 | 0 |
Thiamine (mL/L) | 1.5 | 0.75 | 0 |
L-arabinose (% m/V) | 0.02 | 0.0101 | 0.0002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soto-Varela, Z.E.; Cabrera, G.; Romero, A.; Cantero, D.; Valle, A.; Bolivar, J. Identification of Enzymatic Bottlenecks for the Aerobic Production of Malate from Glycerol by the Systematic Gene Overexpression of Anaplerotic Enzymes in Escherichia coli. Int. J. Mol. Sci. 2021, 22, 2266. https://doi.org/10.3390/ijms22052266
Soto-Varela ZE, Cabrera G, Romero A, Cantero D, Valle A, Bolivar J. Identification of Enzymatic Bottlenecks for the Aerobic Production of Malate from Glycerol by the Systematic Gene Overexpression of Anaplerotic Enzymes in Escherichia coli. International Journal of Molecular Sciences. 2021; 22(5):2266. https://doi.org/10.3390/ijms22052266
Chicago/Turabian StyleSoto-Varela, Zamira E., Gema Cabrera, Agustin Romero, Domingo Cantero, Antonio Valle, and Jorge Bolivar. 2021. "Identification of Enzymatic Bottlenecks for the Aerobic Production of Malate from Glycerol by the Systematic Gene Overexpression of Anaplerotic Enzymes in Escherichia coli" International Journal of Molecular Sciences 22, no. 5: 2266. https://doi.org/10.3390/ijms22052266
APA StyleSoto-Varela, Z. E., Cabrera, G., Romero, A., Cantero, D., Valle, A., & Bolivar, J. (2021). Identification of Enzymatic Bottlenecks for the Aerobic Production of Malate from Glycerol by the Systematic Gene Overexpression of Anaplerotic Enzymes in Escherichia coli. International Journal of Molecular Sciences, 22(5), 2266. https://doi.org/10.3390/ijms22052266