Leaf-to-Whole Plant Spread Bioassay for Pepper and Ralstonia solanacearum Interaction Determines Inheritance of Resistance to Bacterial Wilt for Further Breeding
Abstract
:1. Introduction
2. Results
2.1. Identification of Leaf Wilt Symptoms between Resistant and Susceptible Pepper
2.2. BW Symptoms by R. solanacearum through Leaf-to-Whole Plant Spread Bioassay (LWB)
2.3. Development of an Efficient Evaluation System for Resistance to R. solanacearum in Pepper
2.4. Inheritance Analysis of Resistance to R. solanacearum in Pepper
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Bacteria Inoculation and Quantification
4.3. Disease Evaluation and Data Analysis
4.4. Quantitative RT-PCR of Defense-Related Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howard, L.R.; Wildman, R.E. Antioxidant vitamin and phytochemical content of fresh and processed pepper fruit (Capsicum annuum). In Handbook of Nutraceuticals and Functional Foods, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 165–191. [Google Scholar]
- Faostat. 2020. Available online: http://www.fao.org (accessed on 22 October 2020).
- Comtrade UN. UN Comtrade Database. Available online: http://comtrade.un.org (accessed on 15 October 2020).
- APS. Common Names of Plant Disease. Available online: https://www.apsnet.org/edcenter/resources/commonnames/Pages/default.aspx (accessed on 24 October 2020).
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant. Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef] [Green Version]
- Jeong, Y.; Kim, J.; Kang, Y.; Lee, S.; Hwang, I. Genetic diversity and distribution of Korean isolates of Ralstonia solanacearum. Plant. Dis. 2007, 91, 1277–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.K.; Kang, H.W. Physiological, biochemical and genetic characteristics of Ralstonia solanacearum strains isolated from pepper plants in Korea. Res. Plant. Dis. 2013, 19, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Jiang, G.; Peyraud, R.; Remigi, P.; Guidot, A.; Ding, W.; Genin, S.; Peeters, N. Modeling and experimental determination of infection bottleneck and within-host dynamics of a soil-borne bacterial plant pathogen. bioRxiv 2016. [Google Scholar] [CrossRef]
- Jiang, G.; Wei, Z.; Xu, J.; Chen, H.; Zhang, Y.; She, X.; Macho, A.P.; Ding, W.; Liao, B. Bacterial wilt in China: History, current status, and future perspectives. Front. Plant. Sci. 2017, 8, 1549. [Google Scholar] [CrossRef]
- Hayward, A. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 1991, 29, 65–87. [Google Scholar] [CrossRef]
- Guidot, A.; Prior, P.; Schoenfeld, J.; Carrere, S.; Genin, S.; Boucher, C. Genomic structure and phylogeny of the plant pathogen Ralstonia solanacearum inferred from gene distribution analysis. J. Bacteriol. 2007, 189, 377–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prior, P.; Ailloud, F.; Dalsing, B.L.; Remenant, B.; Sanchez, B.; Allen, C. Genomic and proteomic evidence supporting the division of the plant pathogen Ralstonia solanacearum into three species. BMC Genom. 2016, 17, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safni, I.; Cleenwerck, I.; De Vos, P.; Fegan, M.; Sly, L.; Kappler, U. Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: Proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. Int. J. Syst. Evol. Microbiol. 2014, 64, 3087–3103. [Google Scholar]
- Vasse, J.; Frey, P.; Trigalet, A. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Mol. Plant-Microbe Interact. 1995, 8, 241–251. [Google Scholar] [CrossRef]
- Hwang, S.M.; Jang, K.S.; Choi, Y.H.; Kim, H.; Choi, G.J. Development of an Efficient Bioassay Method to Evaluate Resistance of Chili Pepper Cultivars to Ralstonia solanacearum. Res. Plant. Dis. 2017, 23, 334–347. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, J.; Oh, D. Resistance of pepper cultivars to Ralstonia solanacearum isolates from major cultivated areas of chili peppers in Korea. Hortic. Sci. Technol. 2018, 36, 569–576. [Google Scholar]
- Lee, H.J.; Jo, E.J.; Kim, N.H.; Chae, Y.; Lee, S.W. Disease responses of tomato pure lines against Ralstonia solanacearum strains from Korea and susceptibility at high temperature. Res. Plant. Dis. 2011, 17, 326–333. [Google Scholar] [CrossRef] [Green Version]
- Jung, E.J.; Joo, H.J.; Choi, S.Y.; Lee, S.Y.; Jung, Y.H.; Lee, M.H.; Kong, H.G.; Lee, S.W. Resistance evaluation of tomato germplasm against bacterial wilt by Ralstonia solanacearum. Res. Plant. Dis. 2014, 20, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, N.R.; Oliveira, L.S.; Guimarães, L.M.; Teixeira, R.U.; Lopes, C.A.; Alfenas, A.C. An efficient inoculation method of Ralstonia solanacearum to test wilt resistance in Eucalyptus Spp. Trop. Plant. Pathol. 2016, 41, 42–47. [Google Scholar] [CrossRef]
- Kiba, A.; Maimbo, M.; Kanda, A.; Tomiyama, H.; Ohnishi, K.; Hikichi, Y. Isolation and expression analysis of candidate genes related to Ralstonia solanacearum–tobacco interaction. Plant. Biotechnol. 2007, 24, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Nakano, M.; Nishihara, M.; Yoshioka, H.; Takahashi, H.; Sawasaki, T.; Ohnishi, K.; Hikichi, Y.; Kiba, A. Suppression of DS1 phosphatidic acid phosphatase confirms resistance to Ralstonia solanacearum in Nicotiana Benthamiana. PLoS ONE 2013, 8, e75124. [Google Scholar]
- Huet, G. Breeding for resistances to Ralstonia solanacearum. Front. Plant. Sci. 2014, 5, 715. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.M.; Kwak, Y.S.; Lee, K.H.; Kim, H.T. Control efficacy of fungicides on pepper bacterial wilt. Korean J. Pestic. Sci. 2015, 19, 323–328. [Google Scholar] [CrossRef]
- Lopes, C.A.; Boiteux, L.S. Biovar-specific and broad-spectrum sources of resistance to bacterial wilt (Ralstonia solanacearum) in Capsicum. Embrapa Hortaliças-Artigo Periódico Indexado (ALICE) 2004, 4, 350–355. [Google Scholar] [CrossRef] [Green Version]
- Mimura, Y.; Yoshikawa, M.; Hirai, M. Pepper accession LS2341 is highly resistant to Ralstonia solanacearum strains from Japan. HortScience 2009, 44, 2038–2040. [Google Scholar] [CrossRef] [Green Version]
- Tran, N.H.; Kim, B.S. Sources of resistance to bacterial wilt found in Vietnam collections of pepper (Capsicum annuum) and their nuclear fertility restorer genotypes for cytoplasmic male sterility. Plant. Pathol. J. 2012, 28, 418–422. [Google Scholar] [CrossRef] [Green Version]
- Matsunaga, H.; Sato, T.; Monma, S. In Inheritance of bacterial wilt resistance in the sweet pepper cv. Mie-Midori. In Proceedings of the 10th Eucarpia Meeting on Genetics and Breeding of Capsicum and Eggplant, Avignon, France, 7–11 September 1998; p. 172. [Google Scholar]
- Lafortune, D.; Béramis, M.; Daubèze, A.M.; Boissot, N.; Palloix, A. Partial resistance of pepper to bacterial wilt is oligogenic and stable under tropical conditions. Plant. Dis. 2005, 89, 501–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mimura, Y.; Kageyama, T.; Minamiyama, Y.; Hirai, M. QTL analysis for resistance to Ralstonia solanacearum in Capsicum accession ‘LS2341’. J. Jpn. Soc. Hortic. Sci. 2009, 78, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Wen, C.; Zhang, X.; Xu, X.; Yang, J.; Chen, B.; Geng, S. Identification of a major QTL (qRRs-10.1) that confers resistance to Ralstonia solanacearum in pepper (Capsicum annuum) using SLAF-BSA and QTL mapping. Int. J. Mol. Sci. 2019, 20, 5887. [Google Scholar] [CrossRef] [Green Version]
- Lebeau, A.; Daunay, M.C.; Frary, A.; Palloix, A.; Wang, J.F.; Dintinger, J.; Chiroleu, F.; Wicker, E.; Prior, P. Bacterial wilt resistance in tomato, pepper, and eggplant: Genetic resources respond to diverse strains in the Ralstonia solanacearum species complex. Phytopathology 2011, 101, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Cheung, J.; Cha, Y.; Hwang, H. Resistance to bacterial wilt of introduced peppers. Korean J. Plant Pathol. 1998, 14, 217–219. [Google Scholar]
- Huh, S.U.; Kim, K.J.; Paek, K.H. Capsicum annuum basic transcription factor 3 (CaBtf3) regulates transcription of pathogenesis-related genes during hypersensitive response upon Tobacco mosaic virus infection. Biochem. Biophys. Res. Commun. 2012, 417, 910–917. [Google Scholar] [CrossRef]
- Yeom, S.I.; Baek, H.K.; Oh, S.K.; Kang, W.H.; Lee, S.J.; Lee, J.M.; Seo, E.; Rose, J.K.; Kim, B.D.; Choi, D. Use of a secretion trap screen in pepper following Phytophthora capsici infection reveals novel functions of secreted plant proteins in modulating cell death. Mol. Plant-Microbe Interact. 2011, 24, 671–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamada, H.; Takeuchi, S.; Kiba, A.; Tsuda, S.; Suzuki, K.; Hikichi, Y.; Okuno, T. Timing and extent of hypersensitive response are critical to restrict local and systemic spread of Pepper mild mottle virus in pepper containing the L3 gene. J. Gen. Plant. Pathol. 2005, 71, 90–94. [Google Scholar] [CrossRef]
- Yang, J.W.; Yu, S.H.; Ryu, C.M. Priming of defense-related genes confers root-colonizing bacilli-elicited induced systemic resistance in pepper. Plant. Pathol. J. 2009, 25, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Hwang, I.S.; Lee, H.J.; Lee, J.M.; Seo, E.; Choi, D.; Oh, C.S. Identification of a molecular marker tightly linked to bacterial wilt resistance in tomato by genome-wide SNP analysis. Theor. Appl. Genet. 2018, 131, 1017–1030. [Google Scholar] [CrossRef]
- Lee, J.H.; Jang, K.S.; Choi, Y.H.; Kim, J.C.; Choi, G.J. Development of an efficient screening system for resistance of tomato cultivars to Ralstonia solanacearum. Res. Plant. Dis. 2015, 21, 290–296. [Google Scholar] [CrossRef] [Green Version]
- Bocsanczy, A.M.; Achenbach, U.C.; Mangravita, N.A.; Yuen, J.M.; Norman, D.J. Comparative effect of low temperature on virulence and twitching motility of Ralstonia solanacearum strains present in Florida. Phytopathology 2012, 102, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Deslandes, L.; Pileur, F.; Liaubet, L.; Camut, S.; Can, C.; Williams, K.; Holub, E.; Beynon, J.; Arlat, M.; Marco, Y. Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstonia solanacearum. Mol. Plant-Microbe Interact. 1998, 11, 659–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoun, N.; Tauleigne, L.; Lonjon, F.; Deslandes, L.; Vailleau, F.; Roux, F.; Berthomé, R. Quantitative disease resistance under elevated temperature: Genetic basis of new resistance mechanisms to Ralstonia solanacearum. Front. Plant. Sci. 2017, 8, 1387. [Google Scholar] [CrossRef] [PubMed]
- Lebeau, A.; Gouy, M.; Daunay, M.C.; Wicker, E.; Chiroleu, F.; Prior, P.; Frary, A.; Dintinger, J. Genetic mapping of a major dominant gene for resistance to Ralstonia solanacearum in eggplant. Theor. Appl. Genet. 2013, 126, 143–158. [Google Scholar] [CrossRef]
- Cruz, A.P.Z.; Ferreira, V.; Pianzzola, M.J.; Siri, M.I.; Coll, N.S.; Valls, M. A novel, sensitive method to evaluate potato germplasm for bacterial wilt resistance using a luminescent Ralstonia solanacearum reporter strain. Mol. Plant-Microbe Interact. 2014, 27, 277–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Remigi, P.; Anisimova, M.; Lonjon, F.; Kars, I.; Kajava, A.; Li, C.H.; Cheng, C.P.; Vailleau, F.; Genin, S. Functional assignment to positively selected sites in the core type III effector RipG7 from Ralstonia solanacearum. Mol. Plant. Pathol. 2016, 17, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Pontier, D.; Godiard, L.; Marco, Y.; Roby, D. Hsr203J, a tobacco gene whose activation is rapid, highly localized and specific for incompatible plant/pathogen interactions. Plant. J. 1994, 5, 507–521. [Google Scholar] [CrossRef]
- Planas-Marquès, M.; Bernardo, F.M.; Paulus, J.; Kaschani, F.; Kaiser, M.; Valls, M.; Van der Hoorn, R.A.; Coll, N.S. Protease activities triggered by Ralstonia solanacearum infection in susceptible and tolerant tomato lines. Mol. Cell. Proteom. 2018, 17, 1112–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janse, J.; Van den Beld, H.; Elphinstone, J.; Simpkins, S.; Tjou-Tam-Sin, N.; Van Vaerenbergh, J. Introduction to Europe of Ralstonia solanacearum biovar 2, race 3 in Pelargonium zonale cuttings. J. Plant. Pathol. 2004, 86, 147–155. [Google Scholar]
- Singh, D.; Yadav, D.; Sinha, S.; Choudhary, G. Effect of temperature, cultivars, injury of root and inoculums load of Ralstonia solanacearum to cause bacterial wilt of tomato. Arch. Phytopathol. Plant. Prot. 2014, 47, 1574–1583. [Google Scholar] [CrossRef]
- Caranta, C.; Palloix, A. Both common and specific genetic factors are involved in polygenic resistance of pepper to several potyviruses. Theor. Appl. Genet. 1996, 92, 15–20. [Google Scholar] [CrossRef]
- Thabuis, A.; Palloix, A.; Pflieger, S.; Daubeze, A.M.; Caranta, C.; Lefebvre, V. Comparative mapping of Phytophthora resistance loci in pepper germplasm: Evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. Theor. Appl. Genet. 2003, 106, 1473–1485. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.H.; Kim, B.S. Inheritance of resistance to bacterial wilt (Ralstonia solanacearum) in pepper (Capsicum annuum L.). Hortic. Environ. Biotechnol. 2010, 51, 431–439. [Google Scholar]
- Yi, S.Y.; Lee, D.J.; Yeom, S.I.; Yoon, J.; Kim, Y.H.; Kwon, S.Y.; Choi, D. A novel pepper (Capsicum annuum) receptor-like kinase functions as a negative regulator of plant cell death via accumulation of superoxide anions. New Phytol. 2010, 185, 701–715. [Google Scholar] [CrossRef] [PubMed]
- Simko, I.; Piepho, H.P. The area under the disease progress stairs: Calculation, advantage, and application. Phytopathology 2012, 102, 381–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, W.H.; Sim, Y.M.; Koo, N.; Nam, J.Y.; Lee, J.; Kim, N.; Jang, H.; Kim, Y.M.; Yeom, S.I. Transcriptome profiling of abiotic responses to heat, cold, salt, and osmotic stress of Capsicum annuum L. Sci. Data. 2020, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
Cultivar | In this Study (LWB) | Previous Study | ||||||
---|---|---|---|---|---|---|---|---|
Days after Inoculation | AUDPC b | rAUDPC(%) c | Phenotype d | Root-Drench Phenotype e,f | ||||
0 | 7 | 10 | 15 | |||||
Gangryeokjosenggeon | 0 a | 0.3 | 1.0 | 1.8 | 9.4 bc g | 24.1 | R | R e |
PR Cheongyang | 0 | 0.3 | 1.2 | 1.6 | 9.7 bc | 24.9 | R | MR e |
Ilsongjung | 0 | 0.1 | 0.8 | 1.9 | 8.3 c | 21.3 | R | MR e |
PR Jangwongeubje | 0 | 0.3 | 1.0 | 1.8 | 10.2 bc | 26.0 | R | S e |
Muhanjilju | 0 | 0.1 | 1.0 | 1.6 | 8.2 c | 20.9 | R | S e,f/MR f/R f |
Dokyachungchung | 0 | 0.4 | 1.4 | 2.0 | 12.5 bc | 32.0 | MR | R e |
Meotjinsanai | 0 | 0.5 | 1.4 | 2.2 | 13.4 bc | 34.2 | MR | MR f/R f |
Nokgwang | 0 | 0.5 | 1.3 | 2.0 | 12.5 bc | 32.0 | MR | - |
PR Gukgadeapyo | 0 | 0.7 | 1.6 | 2.1 | 15.3 b | 39.3 | MR | S e |
Yeokganghongjanggun | 0 | 0.4 | 1.2 | 2.3 | 12.0 bc | 30.4 | MR | S e |
PR Daedeulbo | 0 | 0.3 | 1.7 | 3.1 | 15.6 b | 40.0 | S | S e |
Supermanidda | 0 | 2.9 | 3.7 | 3.9 | 39.0 a | 100 | S | S e |
‘MC4′ | 0 | 0.1 | 0.4 | 0.6 | 3.5 d | 8.9 | R | R e |
‘Subicho’ | 0 | 2.6 | 3.9 | 4.0 | 38.5 a | 98.7 | S | S e |
Population a | No. of Plants | Disease Severity Index | Mean of DSI b | Wilt Rate (%) c | AUDPC d | ||||
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | |||||
MC4 | 30 | 6 | 24 | 0 | 0 | 0 | 0.8 | 0 | 7.5 |
Subicho | 30 | 0 | 0 | 0 | 0 | 30 | 4.0 | 100 | 50.3 |
F1 | 30 | 0 | 12 | 4 | 0 | 14 | 2.5 | 46.7 | 22.7 |
F2 | 90 | 0 | 44 | 11 | 1 | 34 | 2.3 | 38.8 | 21.9 |
DAI | 3:1 | 9:7 | 15:1 | 3:13 | 11:5 | 9:6:1 | 12:3:1 | 9:3:4 | 7:6:3 | 9:3:3:1 | 3:6:3:4 |
---|---|---|---|---|---|---|---|---|---|---|---|
15 | 1.2 ** | 6.9 | 86.6 | 155.2 | 0.1 *** | 111.0 | 93.47 | 14.0 | 44.90 | 55.7 | 144.3 |
20 | 9.3 | 0.9 *** | 163.6 | 106.0 | 2.4 ** | 169.6 | 163.6 | 9.9 | 35.4 | 161.0 | 79.8 |
30 | 38.5 | 3.4 * | 340.5 | 46.0 | 20.4 | 383.2 | 386.8 | 79.6 | 110.1 | 208.7 | 51.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, J.-S.; Nam, J.-Y.; Yeom, S.-I.; Kang, W.-H. Leaf-to-Whole Plant Spread Bioassay for Pepper and Ralstonia solanacearum Interaction Determines Inheritance of Resistance to Bacterial Wilt for Further Breeding. Int. J. Mol. Sci. 2021, 22, 2279. https://doi.org/10.3390/ijms22052279
Kwon J-S, Nam J-Y, Yeom S-I, Kang W-H. Leaf-to-Whole Plant Spread Bioassay for Pepper and Ralstonia solanacearum Interaction Determines Inheritance of Resistance to Bacterial Wilt for Further Breeding. International Journal of Molecular Sciences. 2021; 22(5):2279. https://doi.org/10.3390/ijms22052279
Chicago/Turabian StyleKwon, Ji-Su, Jae-Young Nam, Seon-In Yeom, and Won-Hee Kang. 2021. "Leaf-to-Whole Plant Spread Bioassay for Pepper and Ralstonia solanacearum Interaction Determines Inheritance of Resistance to Bacterial Wilt for Further Breeding" International Journal of Molecular Sciences 22, no. 5: 2279. https://doi.org/10.3390/ijms22052279
APA StyleKwon, J. -S., Nam, J. -Y., Yeom, S. -I., & Kang, W. -H. (2021). Leaf-to-Whole Plant Spread Bioassay for Pepper and Ralstonia solanacearum Interaction Determines Inheritance of Resistance to Bacterial Wilt for Further Breeding. International Journal of Molecular Sciences, 22(5), 2279. https://doi.org/10.3390/ijms22052279