Recent Advances in Biomarkers and Regenerative Medicine for Diabetic Neuropathy
Abstract
:1. Introduction
2. Biomarkers for Diabetic Neuropathy
2.1. AGE-Related Molecules
2.1.1. AGEs and Their Precursors
2.1.2. Glyoxalase I (GLO I)
2.2. Molecules That Participate in the Progression of Inflammation
2.2.1. Toll-Like Receptor (TLR)
2.2.2. Adiponectin
2.2.3. MicroRNAs (miRNAs)
2.3. Molecules Associated with Nerve Damage
2.3.1. Neuron-Specific Enolase (NSE)
2.3.2. Semaphorins
2.4. Molecules Involved in Nerve Protection
2.4.1. Nerve Growth Factor (NGF)
2.4.2. Heat Shock Protein (HSP27)
3. Current Status of Regenerative Medicine
3.1. Supplementation Therapy with Exogenous Cytokines
3.2. Cell Transplantation Therapy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feldman, E.L.; Callaghan, B.C.; Pop-Busui, R.; Zochodne, D.W.; Wright, D.E.; Bennett, D.L.; Bril, V.; Russell, J.W.; Viswanathan, V. Diabetic neuropathy. Nat. Rev. Dis. Primers 2019, 5, 42. [Google Scholar] [CrossRef]
- Pop-Busui, R.; Boulton, A.J.; Feldman, E.L.; Bril, V.; Freeman, R.; Malik, R.A.; Sosenko, J.M.; Ziegler, D. Diabetic Neuropathy: A Position Statement by the American Diabetes Association. Diabetes Care 2017, 40, 136–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Diabetes Control and Complications Trial Research Group. The effect of intenstreatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993, 329, 977–986. [Google Scholar] [CrossRef]
- Martin, C.L.; Albers, J.; Herman, W.H. Neuropathy among the diabetes control and complications trial cohort 8 years after trial completion. Diabetes Care 2006, 29, 340–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galer, B.S.; Gianas, A.; Jensen, M.P. Painful diabetic polyneuropathy: Epidemiology, pain description, and quality of life. Diabetes Res. Clin. Pract. 2000, 47, 123–128. [Google Scholar] [CrossRef]
- Yagihashi, S. Glucotoxic Mechanisms and related therapeutic approaches. Int. Rev. Neurobiol. 2016, 127, 121–149. [Google Scholar]
- Gasecka, A.; Siwik, D.; Gajewska, M.; Jaguszewski, M.J.; Mazurek, T.; Filipiak, K.J.; Postuła, M.; Eyileten, C. Early biomarkers of neurodegenerative and neurovascular disorders in diabetes. J. Clin. Med. 2020, 9, 2807. [Google Scholar] [CrossRef] [PubMed]
- Bönhof, G.J.; Herder, C.; Strom, A.; Papanas, N.; Roden, M.; Ziegler, D. Emerging biomarkers, tools, and treatments for diabetic polyneuropathy. Endocr. Rev. 2019, 40, 153–192. [Google Scholar] [CrossRef]
- Fan, B.; Chopp, M.; Zhang, Z.G.; Liu, X.S. Emerging roles of microRNAs as biomarkers and therapeutic targets for diabetic Neuropathy. Front. Neurol. 2020, 11, 558758. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, K.; Nishizawa, Y.; Horiuchi, S.; Yagihashi, S. Localization in human diabetic peripheral nerve of N(epsilon)-carboxymethyllysine-protein adducts, an advanced glycation endproduct. Diabetologia 1997, 40, 1380–1387. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, K.; Yasujima, M.; Yagihashi, S. Role of advanced glycation end products in diabetic neuropathy. Curr. Pharm. Des. 2008, 14, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Duran-Jimenez, B.; Dobler, D.; Moffatt, S.; Rabban, N.; Streuli, C.H.; Thornalley, P.J.; Tomlinson, D.R.; Gardiner, N.J. Advanced glycation end products in extracellular matrix proteins contribute to the failure of sensory nerve regeneration in diabetes. Diabetes 2009, 58, 2893–2903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bierhaus, A.; Haslbeck, K.M.; Humpert, P.M.; Liliensiek, B.; Dehmer, T.; Morcos, M.; Sayed, A.A.; Andrassy, M.; Schiekofer, S.; Schneider, J.G.; et al. Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. J. Clin. Investig. 2004, 114, 1741–1751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thornalley, P.J. Glycation in diabetic neuropathy: Characteristics, consequences, causes, and therapeutic options. Int. Rev. Neurobiol. 2002, 50, 37–57. [Google Scholar] [PubMed]
- Bierhaus, A.; Fleming, T.; Stoyanov, S.; Leffler, A.; Babes, A.; Neacsu, C.; Sauer, S.K.; Eberhardt, M.; Schnölzer, M.; Lasitschka, F.; et al. Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nat. Med. 2012, 18, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Andersson, D.A.; Gentry, C.; Light, E.; Vastani, N.; Vallortigara, J.; Bierhaus, A.; Fleming, T.; Bevan, S. Methylglyoxal evokes pain by stimulating TRPA1. PLoS ONE 2013, 8, e77986. [Google Scholar]
- Düll, M.M.; Riegel, K.; Tappenbeck, J.; Ries, V.; Strupf, M.; Fleming, T.; Sauer, S.K.; Namer, B. Methylglyoxal causes pain and hyperalgesia in human through C-fiber activation. Pain 2019, 160, 2497–2507. [Google Scholar] [CrossRef]
- Cheng, R.X.; Feng, Y.; Liu, D.; Wang, Z.H.; Zhang, J.T.; Chen, L.H.; Su, C.J.; Wang, B.; Huang, Y.; Ji, R.R.; et al. The role of Na(v)1.7 and methylglyoxal-mediated activation of TRPA1 in itch and hypoalgesia in a murine model of type 1 diabetes. Theranostics 2019, 9, 4287–4307. [Google Scholar] [CrossRef]
- Hansen, C.S.; Jensen, T.M.; Jensen, J.S.; Nawroth, P.; Fleming, T.; Witte, D.R.; Lauritzen, T.; Sandbaek, A.; Charles, M.; Fleischer, J.; et al. The role of serum methylglyoxal on diabetic peripheral and cardiovascular autonomic neuropathy: The ADDITION Denmark study. Diabet. Med. 2015, 32, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Andersen, S.T.; Witte, D.R.; Dalsgaard, E.M.; Andersen, H.; Nawroth, P.; Fleming, T.; Jensen, T.M.; Finnerup, N.B.; Jensen, T.S.; Lauritzen, T.; et al. Risk factors for incident diabetic polyneuropathy in a cohort with screen-detected type 2 diabetes followed for 13 years: ADDITION-Denmark. Diabetes Care 2018, 41, 1068–1075. [Google Scholar] [CrossRef] [Green Version]
- Thornalley, P.J. Glyoxalase I--structure, function and a critical role in the enzymatic defence against glycation. Biochem. Soc. Trans. 2003, 31, 1343–1348. [Google Scholar] [CrossRef] [PubMed]
- Jack, M.M.; Ryals, J.M.; Wright, D.E. Protection from diabetes-induced peripheral sensory neuropathy--a role for elevated glyoxalase I? Exp. Neurol. 2012, 234, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Peculis, R.; Konrade, I.; Skapare, E.; Fridmanis, D.; Nikitina-Zake, L.; Lejnieks, A.; Pirags, V.; Dambrova, M.; Klovins, J. Identification of glyoxalase I polymorphisms associated with enzyme activity. Gene 2013, 515, 140–143. [Google Scholar] [CrossRef] [PubMed]
- Skapare, E.; Konrade, I.; Liepinsh, E.; Strele, I.; Makrecka, M.; Bierhaus, A.; Lejnieks, A.; Pirags, V.; Dambrova, M. Association of reduced glyoxalase I activity and painful peripheral diabetic neuropathy in type 1 and 2 diabetes mellitus patients. J. Diabetes Complicat. 2013, 27, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Groener, J.B.; Reismann, P.; Fleming, T.; Kalscheuer, H.; Lehnhoff, D.; Hamann, A.; Roser, P.; Bierhaus, A.; Nawroth, P.P.; Rudofsky, G. C332C genotype of glyoxalase I and its association with late diabetic complications. Exp. Clin. Endocrinol. Diabetes 2013, 121, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Miyake, K. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin. Immunol. 2007, 19, 3–10. [Google Scholar] [CrossRef]
- Garcia, M.M.; Goicoechea, C.; Molina-Álvarez, M.; Pascual, D. Toll-like receptor 4: A promising crossroads in the diagnosis and treatment of several pathologies. Eur. J. Pharmacol. 2020, 874, 172975. [Google Scholar] [CrossRef]
- Yamagishi, S.; Ogasawara, S.; Mizukami, H.; Yajima, N.; Wada, R.; Sugawara, A.; Yagihashi, S. Correction of protein kinase C activity and macrophage migration in peripheral nerve by pioglitazone, peroxisome proliferator activated-gamma-ligand, in insulin-deficient diabetic rats. J. Neurochem. 2008, 104, 491–499. [Google Scholar]
- Elzinga, S.; Murdock, B.J.; Guo, K.; Hayes, J.M.; Tabbey, M.A.; Hur, J.; Feldman, E.L. Toll-like receptors and inflammation in metabolic neuropathy; a role in early versus late disease? Exp. Neurol. 2019, 320, 112967. [Google Scholar] [CrossRef]
- Zhu, T.; Meng, Q.; Ji, J.; Lou, X.; Zhang, L. Toll-like receptor 4 and tumor necrosis factor-alpha as diagnostic biomarkers for diabetic peripheral neuropathy. Neurosci. Lett. 2015, 585, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Hussain, G.; Rizvi, S.A.; Singhal, S.; Zubair, M.; Ahmad, J. Serum levels of TNF-α in peripheral neuropathy patients and its correlation with nerve conduction velocity in type 2 diabetes mellitus. Diabetes Metab. Syndr. Clin. Res. Rev. 2013, 7, 238–242. [Google Scholar] [CrossRef]
- Long, H.; O’Connor, B.P.; Zemans, R.L.; Zhou, X.; Yang, I.V.; Schwartz, D.A. The Toll-like receptor 4 polymorphism Asp299Gly but not Thr399Ile influences TLR4 signaling and function. PLoS ONE 2014, 9, e93550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudofsky, G., Jr.; Reismann, P.; Witte, S.; Humpert, P.M.; Isermann, B.; Chavakis, T.; Tafel, J.; Nosikov, V.V.; Hamann, A.; Nawroth, P.; et al. Asp299Gly and Thr399Ilegenotypes of the TLR4 gene are associated with a reduced prevalence of diabetic neuropathy in patients with type 2 diabetes. Diabetes Care 2004, 27, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Buraczynska, M.; Zukowski, P.; Ksiazek, K.; Wacinski, P.; Dragan, M. The effect of Toll-like receptor 4 gene polymorphism on vascular complications in type 2 diabetes patients. Diabetes Res. Clin. Pract. 2016, 116, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Maeda, N.; Funahashi, T.; Matsuzawa, Y.; Shimomura, I. Adiponectin, a unique adipocyte-derived factor beyond hormones. Atherosclerosis 2020, 292, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.J.; Nunes, V.S.; Mastronardi, C.A.; Neeman, T.; Paz-Filho, G.J. Association between circulating adipocytokine concentrations and microvascular complications in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of controlled cross-sectional studies. J. Diabetes Complicat. 2016, 30, 357–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradeepa, R.; Surendar, J.; Indulekha, K.; Chella, S.; Anjana, R.M.; Mohan, V. Association of serum adiponectin with diabetic microvascular complications among south Indian type 2 diabetic subjects—(CURES-133). Clin. Biochem. 2015, 48, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Herder, C.; Kannenberg, J.M.; Huth, C.; Carstensen-Kirberg, M.; Rathmann, W.; Koenig, W.; Heier, M.; Püttgen, S.; Thorand, B.; Peters, A.; et al. Proinflammatory cytokines predict the incidence and progression of distal sensorimotor polyneuropathy: KORA F4/FF4 Study. Diabetes Care 2017, 40, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Kato, M.; Castro, N.E.; Natarajan, R. MicroRNAs: Potential mediators and biomarkers of diabetic complications. Free Radic. Biol. Med. 2013, 64, 85–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldeón, R.L.; Weigelt, K.; de Wit, H.; Ozcan, B.; van Oudenaren, A.; Sempértegui, F.; Sijbrands, E.; Grosse, L.; Freire, W.; Drexhage, H.A.; et al. Decreased serum level of miR-146a as sign of chronic inflammation in Type 2 diabetic patients. PLoS ONE 2014, 9, e115209. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chopp, M.; Szalad, A.; Zhang, Y.; Wang, X.; Zhang, R.L.; Liu, X.S.; Jia, L.; Zhang, Z.G. The role of miR-146a in dorsal root ganglia neurons of experimental diabetic peripheral neuropathy. Neuroscience 2014, 259, 1551–1563. [Google Scholar] [CrossRef] [Green Version]
- Massaro, J.D.; Polli, C.D.; Costa, E.; Silva, M.; Alves, C.C.; Passos, G.A.; Sakamoto-Hojo, E.T.; Rodrigues de Holanda Miranda, W.; Bispo Cezar, N.J.; Rassi, D.M.; et al. Post-transcriptional markers with clinical complications in Type 1 and Type 2 diabetes mellitus. Mol. Cell. Endocrinol. 2019, 490, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Santos-Bezerra, D.P.; Santos, A.S.; Guimarães, G.C.; Admoni, S.N.; Perez, R.V.; Machado, C.G.; Pelaes, T.S.; Passarelli, M.; Machado, U.F.; Queiroz, M.S.; et al. Micro-RNAs 518d-3p and 618 are upregulated in individuals with Type 1 diabetes with multiple microvascular complications. Front. Endocrinol. 2019, 10, 385. [Google Scholar] [CrossRef]
- Kulpav, J.; Wójcik, E.; Reinfuss, M.; Kołodziejski, L. Carcinoembryonic antigen, squamous cell carcinoma antigen, CYFRA 21-1, and neuron-specific enolase in squamous cell lung cancer patients. Clin. Chem. 2002, 48, 1931–1937. [Google Scholar] [CrossRef]
- Carney, D.N.; Marangos, P.J.; Ihde, D.C.; Bunn, P.A., Jr.; Cohen, M.H.; Minna, J.D.; Gazdar, A.F. Serum neuron-specific enolase: A marker for disease extent and response to therapy of small-cell lung cancer. Lancet 1982, 1, 583–585. [Google Scholar] [CrossRef]
- Ishiguro, Y.; Kato, K.; Shimizu, A.; Ito, T.; Nagaya, M. High levels of immunoreactive nervous system-specific enolase in sera of patients with neuroblastoma. Clin. Chim. Acta 1982, 121, 173–180. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Xie, M.; Yan, L.; Chen, J.; Wang, H. NSE, a potential biomarker, is closely connected to diabetic peripheral neuropathy. Diabetes Care 2013, 36, 3405–3410. [Google Scholar] [CrossRef] [Green Version]
- Anju, M.; Maiya, A.G.; Hande, M.; Binu, V.S. Effect of photobiomodulation on serum neuron specific enolase (NSE) among patients with diabetic peripheral neuropathy—A pilot study. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 1061–1063. [Google Scholar]
- Tamagnone, L.; Comoglio, P.M. To move or not to move? Semaphorin signalling in cell migration. EMBO Rep. 2004, 5, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Gunput, R.A.; Pasterkamp, R.J. Semaphorin signaling: Progress made and promises ahead. Trends Biochem. Sci. 2008, 33, 161–710. [Google Scholar] [CrossRef] [PubMed]
- Nishide, M.; Kumanogoh, A. The role of semaphorins in immune responses and autoimmune rheumatic diseases. Nat. Rev. Rheumatol. 2018, 14, 19–31. [Google Scholar] [CrossRef]
- Scarlato, M.; Ara, J.; Bannerman, P.; Scherer, S.; Pleasure, D. Induction of neuropilins-1 and -2 and their ligands; Sema3A, Sema3F, and VEGF, during Wallerian degeneration in the peripheral nervous system. Exp. Neurol. 2003, 183, 489–498. [Google Scholar] [CrossRef]
- Ara, J.; Bannerman, P.; Hahn, A.; Ramirez, S.; Pleasure, D. Modulation of sciatic nerve expression of class 3 semaphorins by nerve injury. Neurochem. Res. 2004, 29, 1153–1159. [Google Scholar] [CrossRef]
- Hayashi, M.; Kamiya, Y.; Itoh, H.; Higashi, T.; Miyazaki, T.; Funakoshi, K.; Yamashita, N.; Goshima, Y.; Andoh, T.; Yamada, Y.; et al. Intrathecally administered Sema3A protein attenuates neuropathic pain behavior in rats with chronic constriction injury of the sciatic nerve. Neurosci. Res. 2011, 69, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.Y.; Li, M.; Qu, M.L.; Li, X.; Pi, L.H.; Chen, Z.; Zhou, S.L.; Yi, X.Q.; Shi, X.J.; Wu, J.; et al. High glucose up-regulates Semaphorin 3A expression via the mTOR signaling pathway in keratinocytes: A potential mechanism and therapeutic target for diabetic small fiber neuropathy. Mol. Cell. Endocrinol. 2018, 472, 107–116. [Google Scholar] [CrossRef]
- Apfel, S.C.; Arezzo, J.C.; Brownlee, M.; Federoff, H.; Kessler, J.A. Nerve growth factor administration protects against experimental diabetic sensory neuropathy. Brain Res. 1994, 634, 7–12. [Google Scholar] [CrossRef]
- Sun, Q.; Tang, D.D.; Yin, E.G.; Wei, L.L.; Chen, P.; Deng, S.P.; Tu, L.L. Diagnostic significance of serum levels of nerve growth factor and brain derived neurotrophic factor in diabetic peripheral neuropathy. Med. Sci. Monit. 2018, 24, 5943–5950. [Google Scholar] [CrossRef]
- Faradji, V.; Sotelo, J. Low serum levels of nerve growth factor in diabetic neuropathy. Acta Neurol. Scand. 1990, 81, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.C.; Cho, Y.J.; Ahn, C.W.; Park, K.S.; Ki, J.C.; Nam, J.S.; Im, Y.S.; Lee, J.E.; Lee, S.C.; Lee, H.K. Nerve growth factor and expression of its receptors in patients with diabetic neuropathy. Diabet. Med. 2009, 26, 1228–1234. [Google Scholar] [CrossRef]
- Kamiya, H.; Zhangm, W.; Sima, A.A. Apoptotic stress is counterbalanced by survival elements preventing programmed cell death of dorsal root ganglions in subacute type 1 diabetic BB/Wor rats. Diabetes 2005, 54, 3288–3295. [Google Scholar] [CrossRef] [Green Version]
- Benn, S.C.; Perrelet, D.; Kato, A.C. Hsp27 upregulation and phosphorylation is required for injured sensory and motor neuron survival. Neuron 2002, 36, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Pourhamidi, K.; Skärstrand, H.; Dahlin, L.B.; Rolandsson, O. HSP27 concentrations are lower in patients with type 1 diabetes and correlate with large nerve fiber dysfunction. Diabetes Care 2014, 37, e49–e50. [Google Scholar] [CrossRef] [Green Version]
- Pourhamidi, K.; Dahlin, L.B.; Boman, K.; Rolandsson, O. Heat shock protein 27 is associated with better nerve function and fewer signs of neuropathy. Diabetologia 2011, 54, 3143–3149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruden, G.; Bruno, G.; Chaturvedi, N.; Burt, D.; Schalkwijk, C.; Pinach, S.; Stehouwer, C.D.; Witte, D.R.; Fuller, J.H.; Perin, P.C.; et al. Serum heat shock protein 27 and diabetes complications in the EURODIAB prospective complications study: A novel circulating marker for diabetic neuropathy. Diabetes 2008, 57, 1966–1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schratzberger, P.; Walter, D.H.; Rittig, K.; Bahlmann, F.H.; Pola, R.; Curry, C.; Silver, M.; Krainin, J.G.; Weinberg, D.H.; Ropper, A.H. Reversal of experimental diabetic neuropathy by VEGF gene transfer. J. Clin. Investig. 2001, 107, 1083–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, N.; Nemoto, K.; Nakanishi, K.; Morishita, R.; Kaneda, Y.; Uenoyama, M.; Ikeda, T.; Fujikawa, K. Nonviral gene transfer of human hepatocyte growth factor improves streptozotocin-induced diabetic neuropathy in rats. Diabetes 2005, 54, 846–854. [Google Scholar] [CrossRef]
- Nakae, M.; Kamiya, H.; Naruse, K.; Horio, N.; Ito, Y.; Mizubayashi, R.; Hamada, Y.; Nakashima, E.; Akiyama, N.; Kobayashi, Y.; et al. Effects of basic fibroblast growth factor on experimental diabetic neuropathy in rats. Diabetes 2006, 55, 1470–1477. [Google Scholar] [CrossRef]
- Ropper, A.H.; Gorson, K.C.; Gooch, C.L.; Weinberg, D.H.; Pieczek, A.; Ware, J.H.; Kershen, J.; Rogers, A.; Simovic, D.; Schratzberger, P.; et al. Vascular endothelial growth factor gene transfer for diabetic polyneuropathy: A randomized, double-blinded trial. Ann. Neurol. 2009, 65, 386–393. [Google Scholar] [CrossRef]
- Pawson, E.J.; Duran-Jimenez, B.; Surosky, R.; Brooke, H.E.; Spratt, S.K.; Tomlinson, D.R.; Gardiner, N.J. Engineered zinc finger protein-mediated VEGF-a activation restores deficient VEGF-a in sensory neurons in experimental diabetes. Diabetes 2010, 59, 509–518. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, R.B.; Bartoli, M.; Behzadian, M.A.; El-Remessy, A.E.; Al-Shabrawey, M.; Platt, D.H.; Liou, G.I.; Caldwell, R.W. Vascular endothelial growth factor and diabetic retinopathy: Role of oxidative stress. Curr. Drug Targets 2005, 6, 511–524. [Google Scholar] [CrossRef]
- Murakami, T.; Arai, M.; Sunada, Y.; Nakamura, A. VEGF 164 gene transfer by electroporation improves diabetic sensory neuropathy in mice. J. Gene Med. 2006, 8, 773–781. [Google Scholar] [CrossRef]
- Murakami, T.; Imada, Y.; Kawamura, M.; Takahashi, T.; Fujita, Y.; Sato, E.; Yoshitomi, H.; Sunada, Y.; Nakamura, A. Placental growth factor-2 gene transfer by electroporation restores diabetic sensory neuropathy in mice. Exp. Neurol. 2011, 227, 95–202. [Google Scholar] [CrossRef] [PubMed]
- Naruse, K.; Sato, J.; Funakubo, M.; Hata, M.; Nakamura, N.; Kobayashi, Y.; Kamiya, H.; Shibata, T.; Kondo, M.; Himeno, T.; et al. Transplantation of bone marrow-derived mononuclear cells improves mechanical hyperalgesia; cold allodynia and nerve function in diabetic neuropathy. PLoS ONE 2011, 6, e27458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibata, T.; Naruse, K.; Kamiya, H.; Kozakae, M.; Kondo, M.; Yasuda, Y.; Nakamura, N.; Ota, K.; Tosaki, T.; Matsuki, T.; et al. Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes 2008, 57, 3099–3107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naruse, K.; Hamada, Y.; Nakashima, E.; Kato, K.; Mizubayashi, R.; Kamiya, H.; Yuzawa, Y.; Matsuo, S.; Murohara, T.; Matsubara, T.; et al. Therapeutic neovascularization using cord blood-derived endothelial progenitor cells for diabetic neuropathy. Diabetes 2005, 54, 1823–1828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbanelli, L.; Buratta, S.; Sagini, K.; Ferrara, G.; Lanni, M.; Emiliani, C. Exosome-based strategies for diagnosis and therapy. Recent Pat. CNS Drug Discov. Discontin. 2015, 10, 10–27. [Google Scholar] [CrossRef]
- Lopez-Verrilli, M.A.; Picou, F.; Court, F.A. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia 2013, 61, 1795–1806. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chopp, M.; Szalad, A.; Lu, X.; Zhang, Y.; Wang, X.; Cepparulo, P.; Lu, M.; Li, C.; Zhang, Z.G. Exosomes derived from Schwann cells ameliorate peripheral neuropathy in type 2 diabetic mice. Diabetes 2020, 69, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Li, C.; Szalad, A.; Wang, L.; Pan, W.; Zhang, R.; Chopp, M.; Zhang, Z.G.; Liu, X.S. Mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy in a mouse model of diabetes. Diabetologia 2020, 63, 431–443. [Google Scholar] [CrossRef]
Biomarker Candidate | Sample Source | Quantitative Method | Function | Changes during Neuropathy | Literature |
---|---|---|---|---|---|
(a) AGEs related | |||||
Methylglyoxal | Human serum | HPLC | Post-translational modification of voltage-gated sodium channel Nav 1.8 causes hyperalgesia. In addition, it activates TRPA1 and induces temperature and mechanical hyperalgesia. | When administered to mice, hyperalgesia due to thermal and mechanical stimulation is induced. | [14,15,16,17,18,19,20] |
Glyoxalase I (GLO I) | Mouse DRG Human serum | Colorimetric method | A rate-limiting enzyme that decomposes reactive dicarbonyls such as methylglyoxal | The neuropathic symptoms observed in diabetic conditions are significantly suppressed in mice with high GLO I activity. In humans, decreased GLO I activity is also significantly correlated with the frequency of painful neuropathy | [21,22,23,24,25] |
(b) Inflammation-related molecules | |||||
TNF-α | Human serum | ELISA | Expression of cell adhesion molecules and induction of apoptosis Increased inflammatory mediator | It is elevated in type 2 diabetic patients in the control group and in the diabetic and neuropathy group compared to the diabetic group | [28,29] |
TLR4 | Human peripheral blood mononuclear cells | qPCR | Receptors involved in innate immunity | It is elevated in type 2 diabetic patients in the control group and in the diabetic and neuropathy group compared to the diabetic group | [30,31,32,33,34] |
Adiponectin | Human serum | ELISA | Adipocytokines produced and secreted by adipocytes | There is a significant difference between the control group and the diabetic group with neuropathy compared with the control group in type 2 diabetic patients (the distinction differs depending on the report). | [36,37,38] |
miR-146a | Human Serum Mouse DRG | qPCR | Negative feedback on inflammatory response | It is elevated in patients with type 2 diabetes, but its association with neuropathy has not been investigated. In diabetic neuropathy mice, the expression level in the DRG is reduced, and the forced expression in the DRG after culture acquires resistance to hyperglycemia-induced apoptosis. | [40,41] |
(c)Molecules associated with nerve damage | |||||
Nerve-specificenolase (NSE) | Human serum | ELISA | Glycolytic enzymes specific to nerve tissue (Leakage due to nerve damage) | It is elevated in type 1 and type 2 diabetic patients compared to the control group, especially in the group with neuropathy. | [47,48] |
Semaphorin | Mouse sciatic nerve | qPCR | Nerve axon elongation guidance factor | These mRNAs are induced in the sciatic nerve in a rat sciatic nerve ligation model. | [52,53,54,55] |
(d) Molecules involved in neuroprotection | |||||
NGF | Human serum | ELISA | Neurotrophic factors involved in nerve regeneration | It is lower in type 2 diabetic patients in the control group and in the diabetic and neuropathy group than in the diabetic group | [56,57,58,59] |
HSP27 | Human serum | ELISA | Cell protective factors in the presence of stress | It is elevated in type 1 and type 2 diabetic patients compared to the control group, especially in the group with neuropathy. | [60,61,62,63,64] |
Supplementation Therapy with Exogenous Cytokines | |||
---|---|---|---|
Method | Clinical Significance | Literature | |
hepatocyte growth factor (HGF) | nonviral liposome-mediated gene transfer | Improvement in nerve conduction velocity | [66] |
basic fibroblast growth facto (bFGF) | intramuscular injection of recombinant bFGF protein | Improvement in the motor nerve conduction velocity of the sciatic nerve and in sciatic nerve blood flow | [67] |
nerve growth factor (NGF) | recombinant protein | Improvement of thermal allodynia in streptozotocin-induced diabetic rats. | [56] |
placental growth factor 2 (PLGF-2) | intramuscular gene transfer of plasmid DNA by electroporation | Improved hypoalgesia in diabetic mice Restoration sensory nerve function | [72] |
Cell transplantation therapy | |||
cell source | Clinical Significance | Literature | |
mononuclear cells | bone marrow | Improvement of mechanical hyperalgesia and cold allodynia in streptozotocin-induced diabetic rats. Improvement in sciatic motor nerve conduction velocity, sensory nerve conduction velocity | [73] |
mesenchymal stem cells | bone marrow | Improvement of mechanical hyperalgesia in streptozotocin-induced diabetic rats. Restoration of nerve conduction velocity and sciatic nerve blood flow | [74] |
endothelial progenitor cells | umbilical cord blood | Improvement in sciatic motor nerve conduction velocity and sciatic nerve blood flow | [75] |
Exosome | |||
exosome source | Clinical Significance | Literature | |
Schwann cell-derived exosomes | Schwann cell | Improvement in sciatic nerve conduction velocity and increasing thermal and mechanical sensitivity in diabetic mouse | [78] |
Mesenchymal stromal cell-derived exosomes | bone marrow | Improvement of thermal and mechanical sensitivity in diabetic mouses. Improvement in sciatic motor nerve conduction velocity, sensory nerve conduction velocity | [79] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujita, Y.; Murakami, T.; Nakamura, A. Recent Advances in Biomarkers and Regenerative Medicine for Diabetic Neuropathy. Int. J. Mol. Sci. 2021, 22, 2301. https://doi.org/10.3390/ijms22052301
Fujita Y, Murakami T, Nakamura A. Recent Advances in Biomarkers and Regenerative Medicine for Diabetic Neuropathy. International Journal of Molecular Sciences. 2021; 22(5):2301. https://doi.org/10.3390/ijms22052301
Chicago/Turabian StyleFujita, Yoshikai, Tatsufumi Murakami, and Akihiro Nakamura. 2021. "Recent Advances in Biomarkers and Regenerative Medicine for Diabetic Neuropathy" International Journal of Molecular Sciences 22, no. 5: 2301. https://doi.org/10.3390/ijms22052301
APA StyleFujita, Y., Murakami, T., & Nakamura, A. (2021). Recent Advances in Biomarkers and Regenerative Medicine for Diabetic Neuropathy. International Journal of Molecular Sciences, 22(5), 2301. https://doi.org/10.3390/ijms22052301